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Abstract

Single Particle Tracking (SPT) is a powerful class of tools for analyzing the dynamics of 

individual biological macromolecules moving inside living cells. The acquired data is typically in 

the form of a sequence of camera images that are then post-processed to reveal details about the 

motion. In this work, we develop an algorithm for jointly estimating both particle trajectory and 

motion model parameters from the data. Our approach uses Expectation Maximization (EM) 

combined with an Unscented Kalman filter (UKF) and an Unscented Rauch-Tung-Striebel 

smoother (URTSS), allowing us to use an accurate, nonlinear model of the observations acquired 

by the camera. Due to the shot noise characteristics of the photon generation process, this model 

uses a Poisson distribution to capture the measurement noise inherent in imaging. In order to apply 

a UKF, we first must transform the measurements into a model with additive Gaussian noise. We 

consider two approaches, one based on variance stabilizing transformations (where we compare 

the Anscombe and Freeman-Tukey transforms) and one on a Gaussian approximation to the 

Poisson distribution. Through simulations, we demonstrate efficacy of the approach and explore 

the differences among these measurement transformations.

I. INTRODUCTION

Single particle tracking (SPT) is an important class of techniques for studying the motion of 

single biological macromolecules. With its ability to localize particles with an accuracy far 

below the diffraction limit of light and the ability to track the trajectory across time, SPT 

continues to be an invaluable tool in understanding biology at the nanometer-scale. Under 

the standard approach, the images are post-processed individually to determine the location 

of each particle in the frame and then these positions are linked across frames to create a 

trajectory [1]. This trajectory is then further analyzed, typically by fitting the Mean Square 

Displacement (MSD) curve to an appropriate motion model to determine parameters such as 

diffusion coefficients. Regardless of the algorithms used, the paradigm separates trajectory 

estimation from model parameter identification, though it is clear that these two problems 

are coupled. In addition, the techniques for model parameter estimation assume a simple 

linear observation of the true particle position corrupted by additive white Gaussian noise. 

The actual data, however, are intensity measurements from a CCD camera. These 
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measurements are well modeled as Poisson-distributed random variables with a rate that 

depends on the true location of the particle as well as on experimental realities, including 

background noise and details of the optics used in the instrument. This already nonlinear 

model becomes even more complicated at the low signal intensities common to SPT data 

where noise models specific to the type of camera being used become important [2], [3].

To handle such nonlinearities, one of the authors previously introduced an approach based 

on nonlinear system identification that uses Expectation Maximization (EM) combined with 

particle filtering and smoothing [4]. This general approach can handle nearly arbitrary 

nonlinearities in both the motion and observation models and has been shown to work as 

well as current state-of-the-art methods in the simple setting of 2-D diffusion. However, a 

major drawback of this approach is the computational complexity of the particle filtering 

scheme. In this paper we address this issue by replacing the particle-based methods with an 

Unscented Kalman filter (UKF) and Unscented Rauch-Tung-Striebel smoother (URTSS) [5], 

[6]. This Sigma Points based EM scheme, which we simply term as Unscented EM (U-EM), 

is significantly cheaper to implement, allowing it to be applied to larger data sets and for 

more complicated models. This reduction in complexity comes, of course, at the cost of 

generality in the posterior distribution describing the position of the particle at each time 

point since the UKF-URTSS approximates this distribution as a Gaussian while the particle-

based approaches can represent other distributions [6].

One of the challenges in applying the UKF is that it assumes Gaussian noise in both the state 

update and measurement equations. In this work we focus on diffusion to focus the 

discussion on a concrete setting. As the corresponding dynamic model is linear with additive 

Gaussian noise applying the UKF in terms of the state update equations is straightforward. 

The observation model discussed above, however, involves Poisson distributed noise whose 

parameters depend upon the state and experimental settings. Thus, to apply the UKF, the 

model must be transformed into one where the measurement noise is Gaussian instead of 

Poisson. Two possible approaches are considered: One is a choice of a variance stabilizing 

transformation, such as the Anscombe or Freeman-Tukey transform, that yields a 

measurement model with additive Gaussian noise with unity variance (both are used here); 

the other is a straightforward replacement of the Poisson distribution by a Gaussian with a 

mean and variance equal to the rate of the original distribution.

The remainder of this paper is organized as follows. In Sec. II, we describe the problem 

formulation, including the motion and observation models in SPT application. Also, we 

describe the SPT application and introduce the motion and observation models used. This is 

followed in Sec. III by a description of the general U-EM technique. In Sec. IV we use 

simulations to demonstrate the efficacy of our approach and to investigate the effect of the 

choice of transformation of the observation model under different experimental settings. 

Brief concluding remarks are provided in Sec. V.

II. PROBLEM FORMULATION

The outline of our scheme is shown in Fig. 1. The left side of the figure represents the 

experimental techniques for acquiring data in which a particle of interest is labeled with a 
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fluorescent tag (such as a fluorescent protein or quantum dot) and imaged through an optical 

microscope using a CCD camera. The image frames are then segmented to isolate individual 

particles. These segmented frames are then the input to the U-EM algorithm. In the 

remainder of this section we describe the motion and observation models used.

A. Motion Model

For concreteness and simplicity of presentation, we focus on anisotropic diffusion in 2-D, 

though the extension to 3-D or to other common motion models (including directed motion, 

where the labeled particle is carried by the machinery of the cell, Ornstein-Uhlenbeck 

motion, which captures tethered motion, or confined diffusion) is straightforward. The 

model of anisotropic diffusion is

Xt + 1 = Xt + N(0, Q), (1)

where Xt ∈ ℝ2 represents the location of the particle in the lateral plane at time t and Q is a 

covariance matrix given by

Q =
2DxΔt 0

0 2DyΔt . (2)

Here Dx and Dy are independent diffusion coefficients and Δt is the time between frames of 

the image sequence.

B. Observation Model

Because the single particle is smaller than the diffraction limit of light, the image on the 

camera is described by the point spread function (PSF) of the instrument. In 2-D (and in the 

focal plane of the objective lens), the PSF is well approximated by

PSF (x, y) = exp − x2

2σx2
− y2

2σy2
, (3)

where σx and σy are given by

σx = σy = 2λ
2πNA . (4)

Here λ is the wavelength of the emitted light and NA is the numerical aperture of the 

objective lens being used [7]. This PSF is then imaged by the CCD camera.

Assuming segmentation has already been done (which is a standard pre-processing step), the 

image acquired by the camera is composed of P pixels arranged into a P × P  square array. 

The pixel size is Δx by Δy with the actual dimensions determined both by the physical size 

of the CCD elements on the camera and the magnification of the optical system. At time step 

t, the expected photon intensity measured for the pth pixel is then
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λp, t = ∫xp, tmin
xp, tmax

∫yp, tmin
yp, tmax

G
ΔxΔyPSF xt − ξ, yt − ξ′ dξdξ′

where G denotes the peak intensity of the fluorescence and the integration bounds are over 

the given pixel.

In addition to the signal, there is always a background intensity rate arising from out-of-

focus fluorescence and autofluorescence in the sample. This is typically modeled as a 

uniform rate Nbgd [4]. Combining these signals and accounting for the shot noise nature of 

the photon generation process, the measured intensity in the pth pixel at time t is

Ip, t ∼ Poiss λp, t + Nbgd . (5)

where Poiss(·) represents a Poisson distribution.

C. Measurement Model Transformation

The UKF is developed with an assumption of Gaussian-distributed noise [6]. We therefore 

need to transform the Poisson distributed model in (5) into an appropriate form. We consider 

three possibilities.

Direct Gaussian Approximation—For a sufficiently high rate, a Poisson distribution of 

rate λ is well approximated by a Gaussian of mean and covariance equal to that rate [8]. One 

approach, then, is to replace (5) with

Ip, t = λp, t + Nbgd + vk, vk ∼ N 0, λp, t + Nbgd . (6)

This approach requires no modification to the measured data. However, the noise term vk 

itself depends upon the state variable since the rate λp,t is a function of Xt.

Anscombe Transformation—The Anscombe transformation is a variance-stabilizing 

transformation that (approximately) converts a Poisson-distributed random variable into a 

unit variance Gaussian one [9]. Under this approach, the measurements are first transformed 

by

Ip, t = 2 Ip, t + 3
8 . (7)

The measurement model (5) is then replaced by

Ip, t ≃ 2 λp, t + 3
8 − 1

4 λp, t
+ vk, vk ∼ N(0, 1) . (8)
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Freeman Tukey Transformation—An alternative variance stabilizing transform is the 

Freeman and Tukey [10]. Under this approach, the measurements are first transformed by

Ip, t = Ip, t + 1 + Ip, t . (9)

and the measurement model is replaced by

Ip, t ≃ λp, t + 1 + λp, t + vk, vk ∼ N(0, 1) . (10)

III. UNSCENTED EXPECTATION MAXIMIZATION

In this section we describe the U-EM approach which consists of the expectation 

maximization algorithm for finding an (approximate) maximum likelihood estimate of the 

parameters together with the UKF and URTSS for estimating the smoothed distribution of 

the latent variable (the trajectory of the particle in the SPT application).

A. Parameter Estimation via Expectation Maximization

Consider the problem of identifying an unknown parameter θ ∈ ℝnθ for the nonlinear state 

space model

Xt + 1 = ft Xt, wt, θ (11a)

Y t = ℎt Xt, vt, θ (11b)

where the Xt ∈ ℝn, Y t ∈ ℝp, and wt and vt are independent, identitically distributed white 

noise processes (not necessarily Gaussian).

The primary goal is to determine a maximum likelihood (ML) estimate of θ from the data 

Y 1:T ≜ Y 1, …, Y T  since that estimator is known to be asymptotically consistent and 

efficient. That is, we would like

θ = argmax
θ

logpθ Y 1:T (12)

where we have expressed the estimator using the log likelihood. However, it is often the case 

that pθ(Y1:T) is unknown or intractable, and thus (12) cannot be solved directly.

The EM algorithm overcomes this challenge by taking advantage of the latent variables X1:T 

and seeks to optimize the complete log likelihood Lθ(X0:T, Y1:T), given by

Lθ X0:T , Y 1:T = logpθ Y 1:T ∣ X0:T + logpθ X0:T

= logpθ X0 + ∑
t = 1

T
logpθ Xt ∣ Xt − 1 + ∑

t = 1

T
logpθ Y t ∣ Xt . (13)
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Unfortunately the latent state is not available, only the measurements Y1:T. EM handles this 

by forming an approximation Q(θ, θ(e)) of Lθ to achieve the minimum variance estimate of 

the likelihood given the observed data and an assumption θ(e) of the true parameter value. 

This is of course given by the conditional mean

Q θ, θ(e) = Eθ(e) Lθ X0:T , Y 1:T ∣ Y 1:T . (14)

Using (13) in (14) yields

Q θ, θ(e) = I1 θ, θ(e) + I2 θ, θ(e) + I3 θ, θ(e)
(15)

where

I1 θ, θ(e) = E logp X0 ∣ θ ∣ Y 1:T , θ(e) , (16a)

I2 θ, θ(e) = ∑
t = 1

T
E logp Xt ∣ Xt − 1 ∣ Y 1:T , θ(e) , (16b)

I3 θ, θ(e) = ∑
t = 1

T
E logp Y t ∣ Xt ∣ Y 1:T , θ(e) . (16c)

The calculation of Q θ, θ(e)  is called the Expectation (E) step at the eth iteration. It has been 

shown [11] that any choice of θ(e+1) such that Q θ(e + 1), θ(e) > Q θ(e), θ(e)  also increases the 

original likelihood, that is pθ(e + 1) Y 1:T > pθ(e) Y 1:T . Thus, the expectation step is followed 

by a Maximization (M) step to produce the next estimate of the parameter,

θ(e + 1) = argmax
θ

Q θ, θ(e) . (17)

To implement the E step (that is, to calculate Q) by carrying out the expectations in (16), it is 

necessary to know the posterior densities p(Xt|Y1:T) and p(Xt,Xt−1|Y1:T). If the underlying 

model in (11) is linear with Gaussian noise then these distributions are easily obtained [12]. 

For nonlinear systems, however, there is no hope of any exact, analytical solution. Therefore, 

either some form of approximation or numerical approach must be used. Here we take an 

approximation approach and apply the UKF and URTSS.

B. Unscented Kalman Filter

The UKF was developed by Julier and Uhlman to capture (an approximation to) the mean 

and covariance of a nonlinear stochastic process without relying on the linearization 

approach of the EKF [13]. More details can be found in many sources, such as [6].
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The UKF forms a Gaussian approximation of the filtering posterior distribution,

p Xt ∣ Y t ≃ N mt, Pt , (18)

where mean and covariance are calculated as follows.

Prediction step—First calculate the 2n + 1 sigma points (where n is the dimension of the 

state) according to

Xt − 1
(0) = mt − 1, (19a)

Xt − 1
(i) = mt − 1 + (n + ζ)[ Pt − 1]i, (19b)

Xt − 1
(i + n) = mt − 1 − (n + ζ)[ Pt − 1]i (19c)

for i = 1, … , n. Here [·]i denotes the ith column of the matrix, A is the matrix square root of 

A, and ζ is a scaling parameter defined by

ζ = α2(n + κ) − n (20)

where α, β and κ allow the users to tune the algorithm performance [14], [15]. The sigma 

points are then propagated through the motion model

Xt
(i) = f(Xt − 1

(i) ), i = 0, …, 2n, (21)

and then combined to produce the predicted mean and covariance at time t given data up to 

time t−1 according to

mt− = ∑
i = 0

2n
W i

(m)Xt
i, (22)

Pt
− = ∑

i = 0

2n
W i

(c)(Xt
(i) − mt−)(Xt

(i) − mt−)
T

+ Qt − 1 . (23)

The weights are given by

W 0
(m) = ζ

n + ζ , W 0
(c) = ζ

n + ζ + 1 − α2 + β , (24a)

W i
(m) = W i

(c) = 1
2(n + ζ) , i = 1, …, 2n . (24b)

Lin and Andersson Page 7

Proc IEEE Conf Decis Control. Author manuscript; available in PMC 2020 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Update and filter—A new set of sigma points Xt
− are formed from the predicted mean 

and covariance according to (19) using mt− and Pt
− in lieu of mt−1 and Pt−1. These sigma 

points are then propagated through the measurement

Yt
(i) = ℎ(Xt

−(i)), i = 0, …, 2n, (25)

and combined to form

μt = ∑
i = 0

2n
W i

(m)Yt
(i), (26)

St = ∑
i = 0

2n
, W i

(c)(Yt
(i) − μk)(Yt

(i) − μk)
T

+ Rt, (27)

Ct = ∑
i = 0

2n
W i

(c)(Xt
−(i) − m−)(Yt

(i) − μt)
T

. (28)

where Rt is a covariance matrix in measurement model. Finally, these are used to produce 

the filtered estimates of the mean and covariance of the process at time t using the data up to 

time t through

Kt = CtSt
−1, (29)

mt = mt− + Kt Y t − μt , (30)

Pt = Pt
− − KtStKt

T . (31)

C. Unscented Rauch-Tung-Striebel Smoother

To obtain (an approximation to) the distribution p(Xt|Y1:T), we apply the URTSS [16]. The 

URTSS begins with the final results of the UKF, mT
s = mT  and PT

s = PT , and then runs a 

backward recursion from t = T − 1, …, 0. as follows.

Prediction and update—First form the sigma points Xt from (19) using mt and Pt. These 

are then propagated through the motion model

Xt + 1
(i) = f(Xt

(i)), i = 0, 1, …, 2n (32)

and combined to form
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mt + 1− = ∑
i = 0

2n
W i

(m)Xt + 1
(i) , (33)

Pt + 1
− = ∑

i = 0

2n
W i

(c)(Xt + 1
(i) − mt + 1− )(Xt + 1

(i) − mt + 1− )
T

+ Qt, (34)

Dt + 1 = ∑
i = 0

2n
W i

(c)(Xt
(i) − mt)(Xt + 1

(i) − mk + 1− )
T

, (35)

where the weights are given in (24).

Calculate the smoothed estimate—The mean and covariance defining the smoothed 

Gaussian density at time t are calculated from

Gt = Dk + 1 Pt + 1 ∣ T
− −1, (36)

mt ∣ T
s = mt + Gt(mt + 1 ∣ T

s − mt + 1− ), (37)

Pt ∣ T
s = Pt − Gt(Pt + 1 ∣ T

s − Pt + 1
− )Gt

T . (38)

From the UKF and URTSS, we form the approximated posterior densities needed for the 

EM algorithm

p(Xt ∣ Y 1:T) ∼ N(mt ∣ T
s , Pt ∣ T

s ), (39)

p(Xt, Xt − 1 ∣ Y 1:T) ∼

N
mt ∣ T

s

mt − 1 ∣ T
s ,

Pt ∣ T
s Pt ∣ T

s Gt − 1
T

Gt − 1Pt ∣ T
s Pt − 1 ∣ T

s . (40)

D. Applying U-EM to the SPT Setting

Applying U-EM is primarily a matter of identifying the specific model for (11) and the 

parameters to be identified. As we are focusing on anisotropic diffusion, the motion model is 

given by (1) which depends on unknown diffusion coefficients. The observation model 

depends on the choice of transformation and is given either by (6), (8), or (10). The 

unknown parameters are diffusion coefficients Dx and Dy.

Lin and Andersson Page 9

Proc IEEE Conf Decis Control. Author manuscript; available in PMC 2020 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



IV. DEMONSTRATION AND ANALYSIS

To demonstrate the performance of the U-EM algorithm in the SPT setting, we performed 

several simulations. 40 different ground truth trajectories were generated from the diffusion 

motion model (1) and used to create simulated images according to the observation model in 

(5). The optical parameters and other fixed constants used in these simulations are shown in 

Table I; these were chosen to mimic experimental settings found in many SPT experiments.

A. Demonstration

To demonstrate, we fixed the background rate Nbgd = 10 and the peak signal intensity G = 

100, representing a strong but not atypical signal in actual SPT experiments [1], [4]. A 

typical image is shown in Fig. 2. The algorithm was applied across 40 sample trajectories. A 

typical trajectory estimation result, calculated using the Anscombe transform to the 

measurement model, is shown in Fig. 3. One interesting feature of the U-EM approach is 

that the trajectory estimation yields a (Gaussian) distribution at each time step rather than a 

single point estimate. In Fig. 3, the results show the mean tracks the true path very closely 

with a tight distribution.

The evolution of the diffusion coefficient estimate as a function of EM iteration is shown in 

Fig. 4. (These estimates were done using the Gaussian approximation to the measurement 

model.) These results show rapid convergence to a value quite close to the true diffusion 

coefficients.

To explore the difference among these transformations, the simulations were repeated with 

each of the three choices. The estimated position at each time was taken as the mean value 

of the smoothed distribution. The resulting root mean square errors (RMSE) are shown in 

Fig. 5. As can be seen, all approaches perform well with an estimation error of 

approximately 6.25 nm in x position and 7.30 nm in y position. Both the similarity and the 

actual error level is as expected given that the signal level is high.

Performance of parameter estimation over the 40 runs and with the three different 

transformation choices is shown in Table II.

B. Performance across Different Signal Levels

The primary differences among the different observation model transformations become 

meaningful only when the rate of the Poisson distribution is low (as determined by the 

combination of signal level and background). We performed two sets of simulations at 

different noise levels [1]. In the first set, the noise Nbgd was fixed at one and the signal G 
increased from one to 10. In the second, Signal to Noise Ratio (SNR) was fixed to 10 and 

Nbgd increased from 1 to 10. Other imaging and model parameters were kept the same.

The localization results are shown in Fig. 6 with the top graph corresponding to Nbgd = 1 

(and thus extremely low signal levels) and the bottom to simulations for a fixed SNR. In 

both plots, red corresponds to Gaussian approximation, blue to Anscombe transform and 

green to Freeman-Tukey transform. It is clear that differences only appear at the low signal 

levels. Note that in the first plot with a peak intensity of G = 6, the rate in the pixel at the 
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center of the PSF is still only 7 counts. At the lowest signal levels, the Anscombe transform 

outperforms the other two. While the Gaussian approach is close, the difference between the 

mean and the center quartiles indicates that it has several large outliers. To put these 

estimation errors in context, note that for the given imaging parameters, the diffraction limit 

of light is approximately 270 nm.

The corresponding results for the estimation of the diffusion coefficients are shown in Fig. 7. 

As before, red corresponds to Gaussian approximation, blue to Anscombe transform, and 

green to Freeman-Tukey transform. The true value is Dx = 0.005 μm/s2. These results 

parallel the trajectory estimation, with all transformations of the observation equation being 

essentially equivalent at high signal levels and Freeman-Tukey failing at the lowest signals.

As noted in Sec. I, compared with SMC-EM, the method is faster with all of the 

transformation methods (on the order of a few minutes using unoptimized code in Matlab on 

a standard laptop with 10 EM iterations), the Gaussian approximation runs the slowest of the 

three (approximately 10–15% slower). This is easily explained from the equations (6) – (10) 

where we see that under the Gaussian approximation, the variance λp,t must be calculated at 

each time step while both Anscombe and Freeman-Tukey avoid this since they are variance 

stabilized to one. Since the Anscombe transform outperforms at low signal level and has 

lower computational load, it should be the preferred approach.

V. CONCLUSIONS

In this paper the U-EM algorithm is introduced to the application of localization and 

parameter estimation in SPT. We explored the use of three different transformation methods 

to bring the observation model describing the camera images in SPT into a form amenable to 

the UKF, namely using a direct Gaussian approximation of the Poisson-distributed random 

variable modeling the intensity measurements on the camera and transforming the 

measurements using an Anscombe or Freeman-Tukey transform to convert them into unity 

variance, Gaussian distributed random variables. At high signal levels, all three approaches 

produce similar results but that at very low signal levels, the Anscombe outperforms the 

others (though with the Gaussian approximation close behind). In future work we plan to 

incorporate other, biologically relevant motion models, as well as introduce additional 

complexities into the observation model to capture, for example, camera-specific noise.
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Fig. 1. 
Generic framework of SPT study by Sigma Points based EM
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Fig. 2. 
Typical data images with (left) Nbgd = 10 and G = 100 and (right) Nbgd = 1 and G = 10. 

There are a total of 867 photon counts captured among the 25 pixels in the left image and 85 

counts in the right image. Notice the different scaling in the two images.
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Fig. 3. 
Position estimation through Anscombe transform in x direction
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Fig. 4. 
Estimation of Dx and Dy using the Gaussian approximation to the measurement model. As 

with all box plots, the (red) line in the box denotes the median, the edges of the box show 

the first and third quartiles, the vertical dashed lines indicate bounds of 1.5 times the 

interquartile range, and the red dots indicate outliers.
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Fig. 5. 
Box plots of 2-D position estimation error using the (Gauss) Gaussian approximation, (Ans.) 

Anscombe transform, and (F-T) Freeman-Tukey transform. Blue and red box correspond to 

RMSE in x and y position respectively.
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Fig. 6. 
RMSE of x position estimation with different {Nbgd, G}. The superscript {1}, {2} and {3} 

indicates results based on the Gaussian approximation, Anscombe transform, and Freeman-

Tukey transform, respectively. (top) Results holding Nbgd=1 fixed and varying G, showing 

the behavior at very low signal levels. (bottom) Results holding the ratio SNR = 10 fixed 

while varying G. Note that for space reasons, only results for Dx are shown; estimation of Dy 

is similar.

Lin and Andersson Page 18

Proc IEEE Conf Decis Control. Author manuscript; available in PMC 2020 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 7. 
Results of estimation of Dx with a true value of Dx = 0.005 μm/s2. (top) Results holding 

Nbgd = 1 fixed while varying SNR. (bottom) Results holding the ratio SNR fixed while 

varying G.
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TABLE I

PARAMETER SETTINGS

Symbol Parameter Values

Δt Image period (discrete time step) 100 ms

T Number of images per dataset 100

P Number of pixels per squared image 25

Dx Diffusion coefficient in x direction 0.005 μm2/s

Dy Diffusion coefficient in y direction 0.01 μm2/s

Δx Length of unit pixel 100 nm

Δy Width of unit pixel 100 nm

λ Emission wavelength 540 nm

NA Numerical aperture 1.2
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TABLE II

PARAMETER ESTIMATION OF Dx AND Dy ON 40 DATASETS

Method Dx (μm2/s) Dy (μm2/s)

Gaussian 0.0047 ± 7.3e-4 0.009 ± 0.0011

Anscombe 0.0046 ± 7.3e-4 0.009 ± 0.0011

Freeman Tukey 0.0046 ± 7.3e-4 0.009 ± 0.0011
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