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The changing mouse embryo transcriptome 
at whole tissue and single-cell resolution

Peng He1,10,11, Brian A. Williams1,11 ✉, Diane Trout1, Georgi K. Marinov2, Henry Amrhein1,  
Libera Berghella1, Say-Tar Goh1, Ingrid Plajzer-Frick3, Veena Afzal3, Len A. Pennacchio3,4,5, 
Diane E. Dickel3, Axel Visel3,4,6, Bing Ren7, Ross C. Hardison8, Yu Zhang9 & Barbara J. Wold1 ✉

During mammalian embryogenesis, differential gene expression gradually builds the 
identity and complexity of each tissue and organ system1. Here we systematically 
quantified mouse polyA-RNA from day 10.5 of embryonic development to birth, 
sampling 17 tissues and organs. The resulting developmental transcriptome is 
globally structured by dynamic cytodifferentiation, body-axis and cell-proliferation 
gene sets that were further characterized by the transcription factor motif codes of 
their promoters. We decomposed the tissue-level transcriptome using single-cell 
RNA-seq (sequencing of RNA reverse transcribed into cDNA) and found that 
neurogenesis and haematopoiesis dominate at both the gene and cellular levels, 
jointly accounting for one-third of differential gene expression and more than 40% of 
identified cell types. By integrating promoter sequence motifs with companion 
ENCODE epigenomic profiles, we identified a prominent promoter de-repression 
mechanism in neuronal expression clusters that was attributable to known and novel 
repressors. Focusing on the developing limb, single-cell RNA data identified 25 
candidate cell types that included progenitor and differentiating states with 
computationally inferred lineage relationships. We extracted cell-type transcription 
factor networks and complementary sets of candidate enhancer elements by using 
single-cell RNA-seq to decompose integrative cis-element (IDEAS) models that were 
derived from whole-tissue epigenome chromatin data. These ENCODE reference data, 
computed network components and IDEAS chromatin segmentations are companion 
resources to the matching epigenomic developmental matrix, and are available for 
researchers to further mine and integrate.

Hierarchical transcription programs regulate mammalian histogen-
esis, a spatiotemporally coordinated process of changing cell identi-
ties, numbers and locations1. Contemporary RNA-seq time-courses 
can comprehensively quantify expression trajectories, including the 
transcriptional regulators that drive patterning, cell-type specification 
and differentiation and their regulatory targets. Here we systemati-
cally map the mouse polyadenylated RNA transcriptome, tracking 12 
major tissues from embryonic day (E) 10.5 to birth (postnatal day (P) 0) 
(Fig. 1a, b, Extended Data Fig. 1a) to cover much of organogenesis and 
histogenesis. Pertinent to integrative regulatory analysis and model-
ling, these RNA expression data are part of the ENCODE Consortium 
mouse embryo project, which provides companion genome-wide 
microRNA, DNA methylation, histone mark, and chromatin acces-
sibility datasets for the same sample matrix2. To better interpret the 
core sample set, we added five additional organs at P0, sampling 
seventeen tissues in all. As these whole-tissue data are intended for 

community use, including integration with high-resolution single-cell 
transcriptomes, we chose a widely used RNA-seq method that is robust 
at both bulk sample and single-cell scales3 and has been used for other 
single-cell RNA-seq (scRNA-seq) experiments in ENCODE4 (https://www.
encodeproject.org/) and elsewhere (Tabula Muris5).

Single-cell RNA-seq data are increasingly used to discover and define 
constituent cell-types and states that comprise complex tissues such as 
those in our bulk mRNA-seq matrix6–9. For embryogenesis and regen-
erating systems in particular, scRNA-seq further promises to address 
longstanding questions about the nature and number of intermediate 
cell types in a developmental lineage and the regulatory mechanisms 
that govern transitions between them. Finally, scRNA-seq data offer 
an important source of input for gene network modelling by unam-
biguously assigning to an individual cell (or cell group) its transcrip-
tion factor repertoire. Different contemporary scRNA-seq methods 
have complementary strengths, with some (for example, Fluidigm 
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SMART-seq) assaying relatively modest numbers of cells with high tran-
script detection efficiency and RNA isoform discriminating coverage, 
while others (for example, 10x Genomics) capture larger cell numbers  
at lower transcript detection efficiency and without isoform or pro-
moter use information5,10–12. We present here an ENCODE scRNA-seq 
resource that contains both data-types for the developing forelimb,  
a tissue series not represented in the Tabula Muris project5. We  

identify limb cell lineages and stages within them, and extract their 
corresponding cell-type marker gene sets, transcription factor (TF) 
networks, and promoter and distal candidate regulatory elements 
with their TF binding motifs. The higher sensitivity data-type addition-
ally uncovered developmentally precocious low-level transcription of 
lineage-specific regulators that supports computed lineage inference 
models.

n = 15,747

–2.5

–2.0

–1.5

–1.0

–0.5

0

0.5

1.0

1.5

2.0

2.5

Lng

Th
y

S
p

l

Lvr Hrt

M
us

B
ld

A
d

r

bMbmiL bFcaFtnImtSndK Hb Nt PC loadings
54321

PC scores – +

5
4
3
2
1 Blood Neuron

Embryo
Extracell.
Digestive
Intestinal

Blood
Cycle.

Contract.
Skel. mus.

12

3
4

5
6 7
8 9

10

11

12
13

14
15

16

17
1819

20

21

2223
24

25262728293031
32

33

34

Mus. and
skel. CNSHaem.

and hep.

Adrenal gland

E
10

.5

E
12

.5
E

13
.5

E
14

.5
E

15
.5

E
16

.5

Thymus
Spleen
Liver
Heart
Skeletal muscle
Bladder

Kidney
Lung
Stomach
Intestine
Limb
Craniofacial
Forebrain
Midbrain
Hindbrain
Neural tube

E1
1.

5

P
0

P
C

3 
(1

1%
)

PC2 (11%)

0

PC1 (35%)

15010050–100 0

50

0

–50

–100

–150
200

100

–250 –200 –150 –100 –50

Cellular mechanisms
of histogenesis

Fetal development

a b

cd
12

3
4

5
6 7
8 9

10

11

12
13

14
15

16

17
1819

20

21

2223
24

25262728293031
32

33

34

Cytodifferentiation

Cell immigration

Differential

Proliferation
and death

Early cell
sum

Late cell
sum

Fig. 1 | Whole-tissue polyA-RNA transcriptome structure with cell-type 
decomposition. a, Schematic of E10.5 and E15.5 embryos shows the colour  
key for organ identity and developmental stage across the timespan of the 
study with the complete key adjacent and the major cellular mechanisms of 
histogenesis below. b, Whole-tissue transcriptome top three PCs; colour code 
from a (viewable in 3D, Supplementary Video 1). n = 156 biological replicates.  
c, Hierarchical clustering of differentially expressed genes, heat map (bottom) 
for normalized log2(FPKM) values; two biological replicates per tissue. Thy, 
thymus; Spl, spleen; Lvr, liver; Hrt, heart; Mus, skeletal muscle; Bld, bladder; 
Adr, adrenal gland; Kdn, kidney; Lng, lung; Stm, stomach; Int, intestine; Lmb, 
limb; Fac, craniofacial prominence; Fb, forebrain; Mb, midbrain; Hb, hindbrain; 
Nt, Neural tube. Right, normalized loadings of each gene for the top five PCs. 

Bottom, normalized scores of the top five PCs (same sample order as 
clustergram). GO terms for the top 100 positive-loading and top 100 
negative-loading genes abbreviated as key words (bottom right). Blood, blood 
microparticle; Neuron, neuron part; Embryo, embryonic morphogenesis; 
Extracell., extracellular region part; Cycle, mitotic cell cycle process; Digestive, 
digestive system process; Contract, contractile fibre part; Intestinal, intestinal 
epithelial cell differentiation; Skel. mus., skeletal muscle contraction.  
d, Integrating single-cell organogenesis data from whole mouse embryos11 with 
the whole-tissue transcriptome clustering (c). y-axis, genes are ordered as in  
c; x-axis, 38 cell types from ref. 11. A point in the diagram indicates expression of 
a marker gene from ref. 11 with horizontal jittering. Boxes highlight specific cell 
types and gene clusters of interest (see text).
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An emerging goal for developmental genomics is to comprehensively 

chart the cis- and trans-acting regulatory codes of embryogenesis 
with single-cell resolution. Working in this direction, we used the limb 
scRNA-seq data to deconvolve IDEAS enhancer element models13,14 that 
are based on whole-tissue ENCODE epigenomic data. The resulting col-
lection of candidate active and poised enhancer elements, parsed for 
cell type and stage, complements matching trans-acting TF networks. 
All primary RNA-seq data and processed quantifications for tissue-level 
and single-cell experiments are available from the ENCODE portal 
(https://www.encodeproject.org).

Results
The developmental timespan from mid-gestation (E10.5) to birth (P0) 
encompasses much of histogenesis and organogenesis in the mouse 
(Fig. 1a, Extended Data Fig. 1a). The timecourse transcriptomes clus-
tered according to their respective tissue identities and, within tissues, 
by developmental time, as shown by principal component analysis 
(PCA) (Fig. 1b, Supplementary Data 2), t-distributed stochastic neigh-
bour embedding (t-SNE) (Extended Data Fig. 6a), and hierarchical 
clustering (Fig. 1c, Extended Data Fig. 6b). Overall, this polyA-RNA 
transcriptome encompasses 84% of known protein coding genes and 
44% of long noncoding RNA (lncRNA) genes, with the majority (15,644 
genes) differing in expression level by tenfold or more across the matrix, 
while another 9,085 genes were more uniformly expressed (Extended 
Data Figs. 1b, 5a). The FANTOM5 mouse resource10 (https://fantom.gsc.
riken.jp/5/) covers many of the same tissues and stages but is based 
on CAGE promoter data; we detected 97% of its 13,999 protein coding 
genes, plus an additional 5,035 not detected by FANTOM5 (Extended 
Data Fig. 3c).

Global transcriptome structure
Neurogenesis and haematopoiesis polarize the global data structure, 
with transcriptomes from these systems occupying opposite ends of the 
first two principal components (PCs) (Fig. 1b, c). Nearly one-fifth of the 
expressed transcriptome (about 5,000 genes) unambiguously defines 
this differential axis, which was robust to the choice of quantification 
units (fragments per kilobase of transcript per million mapped reads 
(FPKM) or transcripts per million (TPM); Extended Data Fig. 6f, g) and to 
tissue representation (Extended Data Fig. 6d, e). Because whole-tissue 
data sum over all constituent cell types, their transcriptomes obscure 
underlying cell identities and relative cell proportions that are funda-
mental in histogenesis (Fig. 1a). We therefore projected cell-type marker 
genes and cell identities from a recent single-cell mouse whole embryo 
survey11 into our transcriptome structure (Fig. 1d). This showed that 
the high-complexity CNS and haematopoetic gene profiles correspond 
to high cellular diversity defined by the single-cell decomposition, 
with more than 40% of cell types mapping to CNS and haematopoetic 
gene clusters. Focusing in, the single-cell projection further identi-
fies tissue-level expression of numerous gene clusters or sub-clusters 
that can be attributed to specific cell-type contributions (for example, 
ependymal cells, neural progenitor cells, or cardiomyocytes; Fig. 1d, 
black boxes).

Temporal drivers
Developmental changes were expected at the tissue level, but we did 
not know in advance what genes and functions would most promi-
nently define the temporal axis or how they would distribute in tissue, 
organ, or cell space. Analysis across all tissues found three classes of 
temporal drivers:

1) Universal: PC3 captured a strong global time component (Fig. 1b, 
z-axis) that was explained at the gene level by widespread diminu-
tion in cell proliferation machinery and early erythroid markers 

(Extended Data Fig. 5c). The top 100 PC3 positive-loading genes are 
highly enriched for mitotic cell cycle components (Gene Ontology (GO) 
P = 3 × 10−13) that map to expression cluster 21 (Fig. 1c, Supplementary 
Note 1, Supplementary Fig. 1) which, in turn, maps to the stromal and 
early erythroid cell types previously reported11 (Fig. 1d, red boxes). 
Furthermore, their stromal cell marker set is itself enriched in cell cycle 
genes (P = 1.8 × 10−13, cell cycle) and the reverse is also true. Thus the 
universal transcriptome time axis of PC3 can be explained, at least in 
part, by gradual system-wide disappearance of circulating primitive 
erythrocytes and a decrease in the relative proportion of proliferating 
stromal cells across many tissues and organs.

2) Specification and differentiation: the most numerous and diverse 
temporal drivers reflect cell differentiation pathways. For example, PC5 
is prominent in differentiating the skeletal muscle systems of limbs and 
face (P = 3 × 10−12), with the high-PC5-loading cluster 2 containing genes 
that are turned on as myogenesis progresses (Fig. 1c, Supplementary 
Note 1, Supplementary Fig. 1). Neuronal and glial differentiation in 
CNS tissues is highlighted in PC1 (P = 2 × 10−22), prominently marking 
genes of cluster 34 (Supplementary Note 1, Supplementary Fig. 1), 
that are further parsed from single-cell marker distributions by cell 
sub-type (Fig. 1d).

3) Inter-tissue cell migration: migratory cell populations, either 
invading or exiting, are important for the development of many tis-
sues, as detailed further below using scRNA-seq data of the limb. At 
whole-tissue resolution, examples include a blood component (for 
example, PC2 P = 3 × 10−35) that emerges prominently in the haemat-
opoietic tissue of origin (liver) and then in other tissues (Fig. 1c, cluster 
10 in Supplementary Note 1, Supplementary Fig. 1), while genes that 
mark maturing B cells15–18 in cluster 10 appear in liver, and then in tissues 
with developing lymphatics (Extended Data Fig. 5b).

Additional data structure
Much additional dynamic and biological structure is summarized 
schematically at the major cluster level and is annotated further for 
individual clusters and sub-clusters (Extended Data Fig. 4, Supplemen-
tary Note 1, Supplementary Fig. 1). The anterior–posterior spatial axis 
was enriched in six of the top 20 PCs of different Hox cluster members 
expressed according to their known positional codes (Supplemen-
tary Data 1, 2, expression clusters 19 and 25 in Supplementary Note 1,  
Supplementary Fig. 1). Reanalysing specific gene groups of interest, 
such as transcription factors (Extended Data Fig. 7a–e), or apply-
ing speciality algorithms can provide additional insights such as 
anti-correlations of microRNAs with predicted polyA-RNA targets19. 
To evaluate additional effects of metadata features on transcriptome 
structure, we applied canonical correlation analysis20,21 (CCA, see Meth-
ods), which identified dissection-based batch effects and sex-specific 
expression that may be pertinent to some future data uses (for example, 
differential amounts of maternal blood; thymic contamination of some 
lung and heart samples; sex-biased samples from embryos of different 
sex) (Extended Data Figs. 1a, 8, Supplementary Data 3).

Transcription factor motif topology
The patterns of RNA co-expression revealed by clustering (Fig. 1c, 
Supplementary Note 1, Supplementary Fig. 1) are caused in part by 
transcriptional co-regulation. Elevated frequencies of TF recogni-
tion sequence motifs in promoters of co-expressed genes can com-
putationally link specific TFs or TF families to their likely target genes 
and regulatory elements. We tested the proximal promoters (500 bp 
upstream of the transcription start site (TSS)) of all genes in each expres-
sion cluster (numbered according to the expression cluster origin in 
Fig. 1c) for enrichment of all known consensus TF binding motifs (718 
motifs; see Methods). A bipartite graph was constructed to identify 
local and global relationships between the resulting combinatorial 

https://www.encodeproject.org
https://fantom.gsc.riken.jp/5/
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motif codes and their source expression clusters (Fig. 2). First, the 
resulting 307 significantly enriched motifs displayed expected local 
relationships: fetal liver cluster 10 is characterized by haematopoetic 
(GATA1, GATA2, RUNX1, BCL11A) and hepatic (SMAD1, PPARG, NR1H2) 
markers; the highly specific Rfx factor family marks its cilium cluster 
(cluster 28); and the E2f family is prominent in the previously discussed 
cell cycle-themed cluster 21 (Supplementary Note 1, Supplementary 
Fig. 1, Supplementary Data 5).

The graph topology also shows binary and higher-degree motif 
code-sharing (grey shaded nodes) that selectively connects specific 
expression cluster promoter nodes from Fig. 1c with each other, sug-
gesting that they jointly use identical or paralogous TFs. At a high level, 
the prominent separation of neurogenesis (cluster 34) from haema-
topoiesis (cluster 10) first observed in the transcriptome emerged 
independently for the motif codes, with only two shared motifs between 
them, whereas many other clusters share numerous motifs with each of 
them and with each other. The ubiquitous expression cluster had the 
strongest and most numerous motif enrichments in the entire tran-
scriptome, with extensive representation of the Ets and Cre families 
(Fig. 2b, Extended Data Fig. 10e). Enrichment and occupancy of these 
families have previously been associated with housekeeping genes in 
humans22,23. Finally, the most extensive code-sharing among expression 
clusters was with CNS neuronal cluster 34, which connects with many 
other clusters of diverse tissue origins and functional themes (Figs. 1c, 
2b). A plausible explanation for this CNS-centric sharing pattern is that 
many involved TFs (and/or their paralogues) were recruited during 
evolution to new uses that support increasing mammalian neuronal 
diversity.

Cluster-specific regulatory mechanisms
The transcriptome structure and corresponding promoter motif 
resource provide entry points for identifying cluster-specific 

regulatory mechanisms. For example, integrating our transcriptome 
and global epigenomic maps across matched samples showed that 
the upregulated brain cluster 34 has strong repressive histone mark 
density (H3K27me3) at early developmental times that declines as 
its RNA expression trajectories rise (Extended Data Fig. 9a, e). Sub-
sequent global quantification of developmental differentials in 
H3K27me3 promoter signal relative to RNA output across all clusters 
found that brain clusters 30, 32 and 34 stand out as candidates for a 
H3K27me3-mediated de-repression mechanism, even though many 
other clusters have similarly rising RNA trajectories (Extended Data 
Fig. 9a). Our previous DNA motif enrichment analysis showed that 
the neuronal repressor Rest (also known as Nrsf) motif is specifically 
and strongly enriched in cluster 34 promoters (Fig. 2b). The putative 
targets of REST, inferred from an independent ChIP–seq study24, are 
also specifically enriched in cluster 34 (Extended Data Fig. 9b); the 
expression of Rest RNA decreases in brain tissue over time (Extended 
Data Fig. 9c); and REST-occupied promoters24 show even greater 
H3K27me3 signal enrichment at early times (Extended Data Fig. 9f), 
all of which is consistent with a significant role for REST in CNS-focused 
de-repression. This in vivo result is consistent with the results of an 
earlier in vitro study of neural progenitors25, but not with those of an 
embryonic stem cell study that reported no H3K27me3 enrichment 
at REST locations26. Beyond REST, other candidate repressors whose 
motifs are enriched in clusters 34 and/or 32 also exhibit expression 
trajectories that diminish as development progresses (for example, 
Zfp219, Zbtb1, Zbtb3, Zfp740; red oval outlines, Fig. 2b) while additional 
presumptive C2H2 zinc finger transcriptional repressors whose rec-
ognition motifs are unknown are concentrated in the CNS-enriched 
expression cluster 33 (Extended Data Fig. 7e) with overall downward 
expression trajectories (Supplementary Note 1, Supplementary Fig. 1). 
Our working model is that these repressors provide additional target-
ing diversity and specificity for the pervasive H3K27me3-mediated 
repression and de-repression process in the developing brain.  
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the scaled number of genes in the corresponding cluster.
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This will become testable as their individual binding targets and derived 
motifs are determined (https://www.encodeproject.org/matrix/?ty
pe=Experiment&status=released&assay_title=TF+ChIP-seq&award.
rfa=ENCODE3&award.rfa=ENCODE4&lab.title=Michael+Snyder%2C+
Stanford&lab.title=Richard+Myers%2C+HAIB). In a separate analysis, 
we examined the large ubiquitous cluster and found evidence sug-
gesting that a post-transcriptional mechanism has a substantial role 
in setting divergent levels of expression within the ubiquitous cluster 
(Extended Data Fig. 10).

Histogenesis at single-cell resolution
From E10 to E15.5, the developing forelimb progresses from a simple 
limb bud composed mainly of undifferentiated mesoderm to a highly 
patterned structure with distinct skeletal, muscular, vascular, haema-
topoietic and dermal tissue systems (Fig. 3). We collected two types 
of scRNA-seq data (Fig. 3), each spanning the same time points as the 
parent bulk tissue study: 1) 920 cells from the C1 platform, sequenced to 
relatively high depth (about one million reads per cell), which achieved 
sensitive RNA detection rates, and full-length transcript coverage that 
was comparable with the bulk data (Extended Data Figs. 1c, e, 2a–e, 3a, b);  

and 2) about 90,000 cells from the 10x Genomics 3′end-tag platform, 
which expanded cell-type discovery (Extended Data Figs. 1c–e, 2a). In 
the higher-resolution data, we detected 15,931 protein-coding genes 
and 938 lncRNAs, of which 91% and 71%, respectively, overlapped with 
the limb whole tissue time-course (Extended Data Fig. 1c), while the 10x 
data captured 81% and 36%, respectively. Comparison of these data with 
published whole embryo scRNA-seq data11 showed the expected over-
lap of cell-type relationships (Extended Data Fig. 11b) coupled with a 
notably high overlap of expressed genes in which 15,314 protein-coding 
genes were in common and only 2,230 and 637 were found only in the 
whole embryo or in the forelimb, respectively. This is consistent with 
greater cellular breadth in the whole embryo study versus deeper cel-
lular and molecular coverage in the forelimb study (Extended Data 
Figs. 1d, e, 2a).

Resident and immigrating cell types
Clustering the most differentially expressed genes across all cells identi-
fied major progenitor and differentiating cell types and showed similar-
ity relationships between them (Fig. 3a–c, Extended Data Figs. 11, 12; 
see Methods). Provisional cell identity assignments were based on GO 
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enrichment analysis together with support from the published develop-
mental studies for previously reported ‘marker’ genes (Supplementary 
Note 2, Supplementary Figs. 2, 3; Supplementary Tables 1, 2; references 
and discussion of marker gene limitations therein; Fig. 3a, b). Major cell 
types in both studies included resident limb-bud mesenchyme and its 
chondrogenic and osteogenic derivatives, plus independently immi-
grating lineages that give rise to myogenic, monocyte/macrophage, 
endothelial or neural crest derivatives. These 10x data also provided 
evidence for 14 more cell types or states. When projected into the 
whole-tissue transcriptome and compared with similarly projected 
whole-embryo scRNA-seq data, this deeper and more focused limb 
sampling showed lineage subdivisions and sharpening of some types 
compared with the whole embryo (for example, myocytes, connective 
progenitors, limb mesenchyme; Extended Data Fig. 11b).

Lineage progression and inference
Whole-transcriptome t-SNE and uniform manifold approximation 
and projection (UMAP) and phylogenetic clustering analyses seg-
regated cell types (Fig. 3a–c, Extended Data Figs. 11c, d, 12a) whose 

trajectories through time were then mapped (Fig. 3d). The extent of 
under-representation of large multinucleated myotubes, together with 
other possible disaggregation, differential cell capture and survival, and 
stochastic sampling artefacts, were assessed relative to unperturbed 
whole-limb RNA data using CIBERSORT27 to produce an adjusted tissue 
proportion model (Extended Data Fig. 12b, c).

Computed UMAP and Monocle lineage models (Fig. 3c, e, Extended 
Data Fig. 11c, d) were mainly consistent with classical and modern 
tracing studies and inferences from genetic knockouts, while also 
identifying new relationships and associated regulators. In the myo-
genic system, early progenitors require the TF PAX3 to migrate into 
the limb bud from adjacent axial somites28–30, and Pax3 is indeed the 
strongest differential gene defining the Muscle1 cell cluster (Wilcoxon 
rank sum test: 3.7-fold enrichment in 10x data and 16.7-fold in C1 from 
both data-types), which mapped to the earliest Monocle pseudo-time 
group (Fig. 3e). The stages in the progression and inferred relationships 
among stages are defined by overall correlation patterns among dif-
ferentially expressed genes (Extended Data Fig. 11a, b), while specific 
marker genes from the myogenesis literature provided biological inter-
pretation and hypothesis generation (Fig. 3e, Extended Data Fig. 11d).
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with in vivo enhancer data from VISTA for a CA3-containing segment at right 
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The Monocle myogenic lineage model showed two branch points 

(Fig. 3e). The first (in both real time and pseudotime) produces branch 
1A, consistent with an important known population of muscle stem 
cells that later give rise to the regenerative cells of adult muscle. They 
are marked by the genetically pertinent PAX7 regulator (Extended Data 
Fig. 11d), and its direct target MSC (Fig. 3e), which represses myocyte 
differentiation31,32. From branch point 2, one arm leads to expected 
mature myocytes marked by Tnnc (branch 2B), whereas branch 2A was 
not expected. It models a cell population that expresses signatures of 
interstitial muscle fibroblasts (IMFs)33, such as Col1a1 and Osr1/2, in 
addition to classic myogenic markers such as Myod1 and Myog (Fig. 3e, 
Extended Data Fig. 12d). We confirmed that individual cells in the 
developing forelimb co-immunostained for muscle and IMF marker 
proteins (Extended Data Fig. 12e). This phenotype resembles the small 
and somewhat mysterious 10x cluster 22, and a second Monocle model 
incorporating cluster 22 supports that interpretation (Extended Data 
Fig. 12d). Considered in the light of earlier evidence that adult tissue 
IMFs have latent myogenic capacity34–36, this raises questions about 
their developmental origin (from resident mesenchyme or PAX3+ pre-
cursors); adult fate (whether to become an adult IMF and/or maintain 
myogenic potential); and biological importance. More broadly, we 
confirmed and extended previous microarray results on populations 
of muscle precursor cells enriched by fluorescence-activated cell sort-
ing (FACS)37,38 and recent scRNA-seq of PAX3–GFP-selected cells39. Our 
Monocle myogenesis models share some basic characteristics with the 
pioneering one constructed by Trapnell and colleagues40, although 
the models also reflect substantial differences between adult human 
muscle regeneration in vitro and fetal mouse myogenesis in vivo.

Within the haematopoetic lineage, we identified both erythro-myeloid 
progenitors (EMPs) and macrophages at early stages of limb develop-
ment, aided by their exceptionally robust sets of marker genes (Sup-
plementary Note 2, Extended Data Fig. 12a), which is consistent with 
limb macrophage developing from limb-resident EMPs (Extended Data 
Fig. 11c) in situ. Finally, the skeletogenic system and its resident mesen-
chymal progenitors are the largest limb component throughout the 
time course. Condensation, expansion and differentiation into cartilage 
and bone is the primary fate of the resident limb mesenchyme41–43, rep-
resented here by UMAP (Fig. 3c) and Monocle models (Extended Data 
Fig. 11c) that focus on putative chondrocytes and fibroblast/perichon-
drial cells that form two dominant branches from the mesenchyme. 
The structure detected is much less clearly partitioned and ordered 
than was myogenesis, and a more refined single-cell-resolved model of 
skeletogenesis will probably require more focused cell sampling coupled 
with spatial genomics to capture additional anatomical clues44–47.

Trans-acting cell-type TF networks
Each cell type cluster has a substantial set of differentially expressed TFs 
(Supplementary Data 4). In the myogenic lineage, these differential TFs 
were expressed in three modes with different regulatory and lineage 
inference implications (Fig. 3f, Extended Data Fig. 12f, Supplemen-
tary Fig. 3): 1) sharply stage-restricted Boolean patterns separate cell 
stages from each other, including the well-known causal transcription 
regulator genes Pax3, Pax7, Msc, and Myog; plus newly added ones 
such as Sp5 and Sox8; 2) a few lineage-restricted uniformly expressed 
regulators whose expression pattern defines the entire lineage (Pitx2 
and Six1); and 3) multi-stage TFs with graded expression levels, such as 
Myod1 and Pitx3, whose expression joins two or more stages together, 
while nevertheless discriminating stages quantitatively (Fig. 3f). Some 
regulators, including TFs that are widely understood to function 
only at later stages in the lineage, were detectably and precociously 
expressed at low levels, but only in the more sensitive C1 data (Fig. 3f, 
Extended Data Fig. 12f). For example, low level expression of Myod1 is 
detected in Pax3-expressing cells ahead of  well-known myoblast- and 
myocyte-stage MYOD1 functions48. This implies that the Myod1 locus is 

already open at this point, and visualization of the ENCODE DHS histone 
mark data at E10.5 identified specific distal and promoter-proximal 
sites that support this idea (Extended Data Fig. 15b).

We used known protein and genetic interactions to organize all 
cell-type differential TFs into their respective interaction networks 
(myogenic lineage Fig. 4a; all other cell type clusters Supplementary 
Note 3, Supplementary Figs. 4–7), showing that pan-lineage and graded 
factors extensively switch interacting partners across stages of the 
myogenic lineage progression. The inference leverage provided by 
the low-level graded-pattern genes was platform sensitive, with the 
higher sensitivity of the C1 data detecting anticipatory (and also trail-
ing) expression in sequential stages that had escaped detection in our 
10x data (Extended Data Fig. 12f).

Cis-acting cell-type elements
The companion ENCODE whole-tissue histone modification, chromatin 
accessibility and DNA methylation datasets provide rich biochemical 
signatures from which candidate regulatory elements can be compu-
tationally inferred at the whole-tissue level2,13,14, but they lack cell-type 
resolution. To parse elements that are selectively active according to 
cell type or state (Fig. 4b), we first defined the boundaries of biochemi-
cally active sequence elements using the companion limb DNase peak 
calls. We then applied IDEAS13,14 to learn and summarize epigenomic 
features over fixed genomic segment bins, and extracted those DNase 
peaks that overlapped with active and bivalent IDEAs bins (the biva-
lent bins include both poised elements and active signals from minor 
cell types diluted by cells with alternative signatures). We assigned 
an element to a cell type on the basis of the differential expression of 
its associated gene measured by scRNA-seq. Summing the active and 
bivalent signatures, among 2,208 cell-type and lineage-specific genes, 
2,018 (91.4%) had at least one affiliated active or poised element among 
the total collection of 22,230 (Supplementary Data 6). Individual loci 
with multiple candidate elements, plus supporting IDEAS state tracks, 
developmental DHS and RNA expression patterns, are shown for bio-
logically important chondrogenic, myogenic and macrophage exam-
ples (Fig. 4c, Extended Data Figs. 13b, 14a). On the basis of our overall 
element recovery and prior limb tissue reconstruction results (Fig. 3d, 
Extended Data Fig. 12b, c), we estimate that the whole limb epigenomic 
data have the sensitivity to identify validated cell type enhancers for 
cells that comprise less than 5% of the starting population.

We evaluated all elements in the collection that overlapped with the 
independently derived VISTA transgenic mouse database of empirically 
tested candidate cis-regulatory elements. For this overlapping set, 63% 
were validated as active VISTA enhancers (https://enhancer.lbl.gov/) 
distributed across our major cell types2,49 (Fig. 4d). We did not expect 
all IDEAS overlapping elements to have scored positively in the VISTA 
assay paradigm for reasons summarized in the accompanying paper2 
and because of VISTA’s narrower developmental time-window (E11.5–
E12.5, compared to E10.5–E15 for our data). VISTA’s spatial domains 
typically included limb LacZ transgene staining but often showed added 
staining elsewhere in the embryo. This is expected, as our major cell 
types are represented elsewhere in the body and are not restricted 
to the limb. Conversely, some spatially patterned limb elements in 
VISTA (for example, Mm1505 and Mm1492; Extended Data Fig. 13b) 
do not appear limited to a cell type, and so are not in our collection. 
Compared with the mouse FANTOM candidate enhancer and promoter 
sets, which were computed from CAGE data and cover a much wider 
sampling of tissues10 (http://fantom.gsc.riken.jp/5/), our entire limb 
IDEAS set overlaps with 44% and 30% of all FANTOM promoters and 
enhancers, respectively. Of these, 14% of each (9,943 promoters and 
2,147 enhancers) are in our cell-type collection. Another large group 
of ours (20,119 and 19,384 IDEAS cell-type enhancers and promoters) 
were not in the FANTOM database, which is overall a smaller collection 
(Extended Data Fig. 15a).

https://enhancer.lbl.gov/
http://fantom.gsc.riken.jp/5/
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Transcription factor binding motifs enriched in cell-type IDEAS distal 
elements (more than 2 kb from the affiliated transcription start site 
(TSS)) or in promoters (Supplementary Data 5, 6), were organized in 
computed graphs that revealed lineage-related cluster nodes joined 
to each other by motif sharing across stages and related cell types 
(that is, muscle clusters 4, 12, 17; haematopoetic clusters 8, 13, 20, 21 
in Extended Data Fig. 14b). Neural crest stood out for its large number 
of distal motifs, including many Hox family members, that are likely 
to reflect their use of positional signalling gradients for specification 
and migration. We similarly extracted motif codes for genes whose 
expression is significantly depleted in a cell-type-specific manner. 
Such genes were especially prominent in early haematopoetic cells, 
and their promoters were strikingly enriched in repressor and Hox 
motifs. We speculate that cells that traverse the entire embryo silence 
genes that, in other cell types, actively respond to positional signalling.

Overall, an advantage of the ENCODE fetal transcriptome compared 
to prior conceptually similar efforts is the opportunity to integrate com-
panion epigenome and microRNA resources2,19,50,51. In the limb example 
above, we have shown that scRNA-seq can be used to decompose the 
tissue-level epigenome according to cell type, an approach that could 
be generalized and further strengthened by integrating single-cell assay 
for transposase-accessible chromatin using sequencing (scATAC–seq) 
together within more sophisticated algorithms52–54.
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Methods

No statistical methods were used to predetermine sample size. The 
experiments were not randomized and investigators were not blinded 
to allocation during experiments and outcome assessment.

Bulk RNA-seq from mouse embryo tissues
Pulverized pooled mouse embryo tissue replicates from time points 
E10.5, E11.5, E12.5, E13.5 E15.5 and E16.5 were received from the Ren 
laboratory, which supplied these tissues for the entire mouse devel-
opment project50. E14.5 and P0 tissues were dissected from single 
animals at Caltech. Replicate tissue samples were lysed and extracted 
using the Ambion mirVana protocol (AM1560). Residual genomic 
DNA was removed using the Ambion Turbo DNA-free kit (AM1907). 
Total RNA was quantified with Qubit and RIN values were collected 
with the BioAnalyzer Pico RNA kit (5067-1513). The median RIN value 
was 9.7 (CV = 4.4%). Each cDNA library was built using 10 ng total RNA 
spiked with ERCC spikes (AM4456740) diluted 1:5,000 in UltraPure 
H2O (InVitrogen 10977023) containing carrier tRNA (AM7119) at 100 
ng/μl, RNase inhibitor (Clontech 2313A) at 1 unit/μl and DTT (Promega 
P1171) at 1 mM. cDNA was reverse-transcribed and amplified according 
to the protocol in the SMARTer UltraLow RNA kit for Illumina (634935) 
using Clontech SMARTScribe reverse transcriptase (639536), and TSO, 
dT priming and amplification primers from the Smart-seq2 protocol 
5. The first-strand product was cleaned up on Ampure XP beads, and 
then amplified using the Clontech Advantage 2 PCR kit (639207) with 
13 PCR cycles and an extension time of 12 min. After a second round of 
Ampure XP cleanup, the amplified cDNA was quantified on Qubit and 
the size distribution was checked with the HS DNA BioAnalyzer kit 
(5067-4626). cDNA libraries were then tagmented using the Illumina/
Nextera DNA prep kit (FC 121-1030) with index tags from Illumina (FC 
121-1031), cleaned up with Ampure XP beads, quantified on Qubit and 
sized with the Agilent HS DNA kit. Libraries were sequenced on the 
Illumina HiSeq 2500 as 100-bp single-end reads to 30M aligned reads 
depth. Inclusion for ENCODE submission required replicate concord-
ance scores by Spearman correlation of FPKM values >0.9.

Single-cell transcriptome measurements using the Fluidigm C1 
and 10x Genomics v2
One pair of embryonic forelimbs from a single mouse was used at each 
time point (E10.5, E11.0, E11.5, E12.0, E13.0, E13.5, E14.0, E15.0). After 
dissection from the carcass, limbs were incubated in a 50 μl droplet 
of a 10% collagenase solution (Worthington LS004202) for 5 min at 
37 °C. The limbs were then visualized under a dissecting scope and 
the ectoderm was removed manually with a pair of #5 Dumont for-
ceps, which had the effect of reducing epithelial cell representation 
in the high resolution data. The mesenchymal core of the limb bud 
was then transferred to a 200 μl droplet of Accumax (AM105), and the 
dish was reincubated for 15 min at room temperature. The cells were 
then manually triturated once with a P200 tip to suspend them, and 
pipetted into 500 μl DMEM + 10% FBS. Limb cells were spun at 500g for 
5 min at 4 °C, resuspended in 500 μl fresh DMEM + 10% FBS, and passed 
over a 20-μm mesh (Miltenyi 130-101-812). They were then counted 
and diluted in DMEM + 10% FBS to achieve a final concentration of 
250,000 cells/ml. Twelve microlitres of this suspension was added to 
8 μl Fluidigm Cell Suspension Reagent for loading on the Fluidigm IFC 
(10–17-μm size). Cells were then visually inventoried for doublets and 
empty chambers, and returned to the C1 for lysis, reverse transcrip-
tion and amplification using the SMART-Seq v4 protocol. Lysis buffer: 
8.6 μl water, 1 μl C1 loading buffer, 2.4 μl Smart-seq2 oligo dT primer 
(10 mM), 2.4 μl Clontech 10 mM dNTPs, 2 μl ERCC spikes (AM4456740) 
(diluted 1:40,000 in UltraPure H2O (InVitrogen 10977023) containing 
carrier tRNA (AM7119) at 200 pg/μl, RNase inhibitor (Clontech 2313A) 
at 1 unit/μl and DTT (Promega P1171) at 1 mM), 0.5 μl 100 mM DTT, 2.6 
μl Clontech single-cell reaction buffer. Reverse transcription reaction: 

5.6 μl Clontech 10x transcription buffer, 0.6 μl C1 loading buffer,  
5.6 μl Smart-seq2 TSO (10 mM), 0.4 μl Clontech RNase inhibitor, 2.8 μl 
Clontech SMARTScribe. PCR reaction: 4.4 μl water, 4.5 μl C1 loading 
buffer, 75.2 μl Clontech SeqAmp buffer, 3 μl Smart-seq2 amplification 
primers (10 mM) and 2.9 μl Clontech SeqAmp polymerase.

Amplified cDNA samples were diluted in 10 μl of C1 DNA dilution 
reagent, and a 1 μl aliquot of each was quantified on Qubit. Eleven 
samples from the IFC were selected for BioAnalyzer sizing based on 
yield and chamber occupancy. An aliquot of the cDNA libraries was 
diluted to 0.1–0.3 ng/μl using C1 Harvest reagent, and the libraries 
were then tagmented using the Nextera XT DNA sample prep kit (FC 
131-1096) and Nextera XT indices (FC 131-1002). After tagmentation and 
amplification, libraries were pooled, cleaned up twice with Ampure XP 
beads (0.9× volume), quantified on Qubit and sized on the BioAnalyzer 
using the HS DNA kit.

The libraries were then sequenced as 50-bp single reads to a depth 
of about 1M aligned reads on the Illumina Hi-Seq 2500.

10x Genomics single-cell libraries were prepared from the single-cell 
suspensions described above, targeting 10,000 cells per library, exactly 
as described in the manufacturer’s protocol. They were sequenced 
as 150-bp paired end libraries, to a depth of 400M reads each on the 
Illumina Hi-Seq 4000.

Read mapping and quantification
All the whole-tissue RNA-seq and C1 single-cell RNA-seq data were  
processed through the standard ENCODE pipeline (https://www. 
encodeproject.org/pipelines/ENCPL002LSE/), which uses STAR to align 
raw reads against mm10 genome with spikes and quantifies transcript 
abundances using RSEM, which provides FPKM, TPM and count values. 
Downstream analyses were mainly done using MATLAB scripts (https://
github.com/brianpenghe/Matlab-genomics). 10x single-cell RNA-seq 
data were processed using CellRanger with a compatible GTF annota-
tion and “--expect-cells 10000”.

Whole-tissue RNA-seq PCA, CCA and hierarchical clustering
tRNA genes and genes covered by fewer than 10 reads in all tissues 
were removed. PCA was performed over the log2-transformed FPKM 
values, with 0.1 added as pseudo-counts to unmask relatively lowly 
expressed transcripts in order to accommodate high sensitivity of 
whole-tissue RNA-seq assays. Z-scores of eigenvalues from PCA were 
used to visualize ‘PC scores’, while eigenvector coefficients from PCA 
were used to visualize ‘PC loadings’. Genes with the highest positive 
values and lowest negative values were used to interpret biological 
meanings for each PC.

Canonical correlation analysis (CCA) was performed on the top 20 
PCs and Boolean variables for tissue identities, stages, gender and 
dissection metadata. Standardized canonical variables scores were 
visualized using the heat map in Extended Data Fig. 6c, while z-scores 
of sample canonical coefficients were visualized using the heat map 
in Extended Data Fig. 6b, d. Canonical-correlation gene loading coef-
ficients were calculated by multiplying the PC-gene loading coefficient 
matrix (from PCA) and canonical-correlation PC loading coefficients 
(from CCA). Genes with the highest positive values and lowest nega-
tive values were used to interpret biological meanings for each CC 
(Supplementary Data 3).

The dynamic genes were defined as those with at least tenfold dif-
ference in FPKM values between the most and least abundant RNA 
samples; genes with less than tenfold difference were defined as flat, 
or ubiquitous. Dynamic genes and ubiquitous genes were categorized 
into different classes (protein-coding etc.) on the basis of gene types 
annotated by GENCODE M4. One-way and two-way hierarchical cluster-
ing were done using Pearson correlation coefficient and average linkage 
for the dynamic genes. Clusters were defined by traversing from the 
root of the tree towards the leaves, and splitting out clades with dif-
ferent dominant tissues and GO terms, recognized manually, until no 
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more major clusters could be split out. Clades with at least 30 nodes 
were defined as major clusters. In order to test the robustness of the 
results, we did an independent analysis with the forebrain, hindbrain 
and neural tube removed to decrease CNS representation, using the 
same methodology. Another independent analysis was performed 
using TPM values for all the tissues, using the same methodology. The 
main conclusions were largely the same.

Whole-tissue RNA-seq transcription factor analysis
TF expression vectors were used to generate t-SNE and clustering maps 
using the same settings as the whole-transcriptome analysis. Tran-
scription factor families were compared against cluster identities. The 
hypergeometric test was performed to assess enrichment.

Embryo sex inference
For the samples that were made from single embryos, we inferred their 
sex by comparing gene expression levels of Xist (a female marker) and 
Ddx3y (a male marker). Embryos that expressed Xist only are female 
while those that express Ddx3y only are male. Mixed embryo pools 
had both genes detected.

Ubiquitous gene analysis
Among the genes defined ubiquitous by the whole-tissue RNA-seq 
analysis, those with log2(FPKM + 0.1) values no higher than 2 were 
removed. The 3,000 genes with smallest sample variance were equally 
assigned into high, medium and low groups on the basis of their aver-
age FPKM values.

GRO-seq and Bru-seq reads were mapped and quantified using the 
ENCODE standard pipeline for computational consistency. Average 
3′ UTR lengths for each gene were extracted from the GENCODE M4 
annotation. The log2(FPKM + 0.1) values and log2(3′ UTR length) were 
used for comparisons and linear regressions.

Histone modification analysis
Histone modification ChIP–seq data were processed using the ENCODE 
ChIP–seq pipeline (https://www.encodeproject.org/pipelines/ENC-
PL220NBH/), and log2 fold change for ChIP–seq samples over input 
controls were calculated and plotted using deepTools2.4.1 (https://
github.com/fidelram/deepTools/tree/2.4.1). To summarize the fold 
decrease in histone modification signals in a specific sample among a 
specific cluster of genes, a 4-kb window enclosing the TSS at the centre 
was used and average log2 fold changes against input samples were 
calculated and visualized using a 3D heated barplot. The fold decrease 
was the difference between the fold changes of the earliest and latest 
time point. Rest target overlap P value was calculated based on the 
hypergeometric test using the iQNP Rest ChIP–seq target list published 
previously24.

Gene ontology analysis
FuncAssociate 3.0 (http://llama.mshri.on.ca/funcassociate/) was used 
at its default settings for term calling.

C1 scRNA-seq clustering and t-SNE visualization
Spike and tRNA gene FPKM values were removed to rescale FPKM val-
ues. Libraries with no cells or more than one cell in their corresponding 
C1 chambers spotted by microscope were removed. Libraries from 
the same C1 Fluidigm chip that had systemic 3′ coverage bias were all 
removed. Cells with fewer than 100,000 reads mapped to the transcrip-
tome or fewer than 4,000 genes above 10 FPKM cutoff were removed. 
Genes that were expressed in fewer than 5 cells (0.5%), or at lower than 
10 FPKM in all cells, or that were covered by fewer than 100 mapped 
reads in all cells were filtered out. We then used log2-transformed FPKM 
+ 1 pseudo-count values for the following analyses. The genes were 
ranked based on their dispersion scores (defined by sample variance 
over sample mean). The top 1,500 genes were selected, from which 

non-coding genes and mitochondria genes were filtered out, leaving 
1,269 genes. t-SNE projection was done based on these genes, using the 
top 30 PCs and 30 as perplexity parameter (default for Laurens van der 
Maaten’s original MATLAB script)56. Two-way hierarchical clustering 
was then performed on the log2-transformed FPKM values using com-
plete linkage with Spearman rank correlation coefficient to cluster the 
cells. Cell types were annotated manually.

10x scRNA-seq clustering and t-SNE visualization
UMI counts from CellRanger were filtered first, where cells with fewer 
than 1,000 genes detected and genes detected in less than 0.1% of cells 
were removed. Within each cell, counts were divided by the sum and 
multiplied by 10,000, added to 1, and log-transformed. The top 4,000 
high-dispersion genes were identified. To remove noise (https://github.
com/brianpenghe/python-genomics), we first performed hierarchi-
cal clustering for these genes and then extracted genes that fell in 
‘tight’ clusters (those with more than two members after cutting the 
dendrogram at 0.8 distance), removing a large number of sporadic 
genes which had high dispersion scores but were barely co-expressed 
with other genes. These genes were used in place of ‘highly-variable 
genes’ for the Seurat pipeline. Using the Seurat pipeline, cells with 
more than 20% mitochondria reads or more than 8,000 genes detected 
were removed. Genes were regressed against the number of UMIs per 
cell and mitochondria percentage and scaled. The resulting matrix, 
guided by the aforementioned feature genes, was used to perform PCA. 
Jackstraw was then performed using Seurat’s default settings, result-
ing in 42 significant PCs. These PCs were in turn used for Louvain cell 
clustering and t-SNE visualization. Clusters 3, 4, 5, 6, 8, 12 and 13 were 
further re-clustered using the same method, yielding clusters 17–24.

Marker gene identification for C1 and 10x scRNA-seq data
Marker genes (Supplementary Data 4) were calculated using Seurat’s 
FindMarkers() for both C1 and 10x single-cell data with min.pct = 0.25 
and its default Wilcoxon rank sum test with min.diff.pct set to be 0.2 
or 0.4. For marker visualization, each cell type was down-sampled to 
at most 100 cells for 10x data and at most 30 cells for C1 data. Min.
diff.pct was set to be 0.2 and the top 15 markers for each cell type were 
visualized.

Comparing C1 and 10x cell types
Two methods were used to compare cell type annotations for C1 and 10x 
data. On the basis of Seurat3’s ‘Label transfer’ method, transfer anchors 
were calculated from 10x data and were used to predict cell types for 
C1 data. Independently, the scaled 10x data matrix was used to train a 
multinomial logistic regression model using scikit-learn package. The 
trained model was used to predict cell types for C1 data.

Integrating C1 and 10x data for UMAP visualization
Seurat3 was used to calculate integration anchors and to integrate the 
two different types of datasets. The joint set was scaled and visualized 
on UMAP based on an arbitrary top 50 PCs.

Lineage trajectory analyses
Prior to lineage inference, doublets were removed using a 
Scrublet-based57,58 subclustering scheme. Monocle3 alpha (2.99.3) 
was then used for trajectory analysis of the 10x data that contain a large 
number of cells. The function plot_pc_variance_explained() was used 
to select significant PCs above the knee cutoff. UMAP visualization and 
SimplePPT method were applied. The root node for each lineage tree 
was defined as the node that connects to the largest number of the cells 
from the earliest developmental time point (E10.5).

Differential transcription factor analysis
Transcription factors recorded at TFDB (http://bioinfo.life.hust.edu.cn/
AnimalTFDB/) were selected from marker genes derived at 0.2 cutoff 
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(described above), to infer evidence-based interaction networks using 
STRING59 (https://string-db.org/). A Python interface for STRING was 
used to query the database directly and render the resulting graph 
using Graphviz60. Edges of type ‘database’ and ‘experimental’ were 
used, filtered to meet a confidence value of greater than 0.400. Nodes 
were coloured using normalized values obtained from Scanpy61. The 
graph was laid out using layout software included with the Graphviz 
package. The algorithm used was SFDP. The complete code base as 
well as Docker and Singularity container recipes can be accessed on 
the GitHub repository: https://github.com/hamrhein/mouse_embryo.

IDEAS states
The IDEAS epigenetic states on the ENCODE3 mouse developmen-
tal data were generated by the IDEAS software13,14 using ten epige-
netic marks: H3K27ac, H3K27me3, H3K36me3, H3K4me1, H3K4me2, 
H3K4me3, H3K9ac, H3K9me3, ATAC–seq and DNase methylation data. 
We first converted the raw data in each sample to –log10P values using 
a negative binomial model. The mean and variance parameters of the 
model for each sample were calculated using the bottom 99% of the 
data. We then adjusted the mean parameters at each genomic position 
from the input data to account for local genomic variations. Specifi-
cally, we downloaded the input data for each tissue (see list of datasets), 
and we calculated rolling means per genomic position using a 20-kb 
window centred at the position, for both signals and the input. The ratio 
between the two means at each position was multiplied to the overall 
mean estimate of the sample, and we normalized the ratios across the 
genome to have mean 1. We treated the –log10(P value) as input data for 
IDEAS, capped at 16, and we ran the program in its default setting. The 
output from IDEAS is a set of genome tracks to display in the genome 
browser, where each epigenetic state is assigned a colour as a weighted 
mixture of colours pre-assigned by the program to each epigenetic 
mark. The IDEAS segmentation can be accessed by the Hub link at http://
woldlab.caltech.edu/ENCODE3_Mouse_RNA_paper_yuzhang_me66n/.

Cell type and lineage-specific marker gene identification and 
cCRE assignment
Genes exclusively expressed in only one cell type or lineage were 
regarded as ‘marker genes’ for this series of analyses. Using the 
high-resolution C1 Fluidigm data, marker genes at 0.2 or 0.4 cutoff were 
cross-intersected to derive exclusively expressed markers of cell types 
or groups of related cell types (Muscle 1 + Muscle 2, Muscle 2 + Muscle 
3, Muscle1–3, Chondrocyte + Perichondrium, EMP + Macrophage etc.). 
Candidate cis-regulatory elements (cCREs) were defined by merging 
all the DHS peaks called by the ENCODE HOTSPOT2 pipeline. These 
merged regions were assigned to closest transcription start sites of 
genes that are expressed (FPKM higher than 0.1 in at least one bulk 
limb tissue, or detected in more than four cells in single-cell limb data). 
These merged regions were then compared against IDEAS chromatin 
states generated from ENCODE3 mouse developmental time course 
data (see below). Only the peaks that overlapped with active (state 14, 
19, 20, 21, 23, 24, 25, 27, 28, 30–32), poised (8 and 13) or bivalent (26 and 
29) IDEAS states were regarded as ‘IDEAS active DHS’ (cCREs). Finally, 
these cCREs assigned to the aforementioned marker genes’ TSSs were 
regarded as cell-type or lineage-specific cCREs. On the basis of the 
distance between each cCRE and its assigned gene, cCREs were further 
divided into three categories: proximal (the distance is no greater than 
200 bp in any direction), middle (the distance is longer than 200 bp 
and no greater than 2,000 bp in any direction) and distal (the distance 
is longer than 2,000 bp in any direction).

Motif analysis
For whole-tissue RNA-seq promoter motif analysis, the upstream  
500 bp sequences of each co-expression cluster were extracted and pooled. 
For limb cell type-associated gene promoter analysis, the upstream  
500 bp sequences of each cell type’s marker genes (derived from 10x 

data using Seurat, min.diff.pct = 0.4) were extracted and pooled. For 
limb cell type-associated cCRE analysis, the DNA sequences of proximal, 
middle, or distal cCREs for each cell type’s marker genes were extracted 
and pooled. These sequence pools were used for motif discovery. A 
detailed flowchart can be found in Extended Data Fig. 11.

The analysis of transcription factor recognition motifs was carried 
out using version 4.11.2 of the MEME-SUITE62. Motifs annotated in 
the CIS-BP database55 (http://cisbp.ccbr.utoronto.ca/) were used to 
evaluate motif enrichment in the sequence pools mentioned above; 
enrichment was scored by the AME program in the MEME-SUITE63. 
The analysis was carried out twice based on UCSC mm10 refFlat and  
GENCODE M4 separately and only motifs with corrected P values 
smaller than 0.01 in both analyses were called significant.

Comparing whole-tissue RNA-seq and single-cell RNA-seq
10x single-cell data (without log transformation or Gaussian scaling) 
and the aforementioned 10x feature genes were used as input for 
CIBERSORT27 (https://cibersort.stanford.edu/) to compare against 
whole-limb RNA-seq data (without log transformation or Gaussian 
scaling). To compare cell type-associated gene signatures against 
ENCODE whole-tissue RNA-seq clusters, cell type-associated marker 
genes were acquired ref. 11 (Table S4 for gene names and Table S3 for 
cell type names from ref. 11) and filtered (p_val <0.05 and q_val <0.05). 
Noting that CIBERSORT is highly sensitive to the choice of input gene 
set, these signature genes were mapped to the ordered heat map of the 
bulk-tissue clustergram (Fig. 1d). For better visualization, we jittered 
individual dots, to create a re-purposed swarm plot to show distri-
bution of the locations (instead of quantities) of signature genes for  
each cell.

Immunocytochemical detection in tissue sections
Staged embryos were fixed in 4% PFA in PBS, cryoprotected with 30% 
sucrose in PBS, and frozen in OCT on dry ice. Ten-micrometre cryosec-
tions were blocked using the mouse on mouse blocking reagent from 
Vector (cat. # MKB-2213), and then stained with antibodies for OSR1 
(mouse monoclonal Santa Cruz cat. # 376545 at 1:40) and myogenin 
(Abcam RabMab cat. # ab124800 at 1:40). Secondary detection was 
done with InVitrogen donkey anti-rabbit Alexa 594 cat. # A21207, and 
InVitrogen goat anti-mouse Alexa 488 cat. # A11029, both at 1:300 dilu-
tions. Sections were first screened on a Zeiss Axio Observer Z.1 and 
then imaged for deconvolution microscopy using a Leica DMI6000, 
with a 63× oil immersion lens, and Huygens Professional deconvolu-
tion software from SVI.

Reporting summary
Further information on research design is available in the Nature 
Research Reporting Summary linked to this paper.

Data availability
These data are part of the ENCODE Consortium mouse embryo project, 
which provides companion microRNA-seq, DNA methylation, histone 
mark ChIP–seq, and chromatin accessibility datasets for the sample 
matrix (https://www.encodeproject.org/matrix/?type=Experiment
&status=released&perturbed=false&lab.title=Barbara+Wold%2C+C
altech&award.rfa=ENCODE4). The raw and first level processed data 
can be accessed at the ENCODE portal (https://www.encodeproject.
org) with the following experiment accession numbers: bulk RNA-seq: 
ENCSR574CRQ; Fluidigm C1 SMART-seq: ENCSR226XLF; 10x Genomics 
(raw data only): ENCSR713GIS. For convenient viewing on the UCSC 
single-cell browser (https://mouse-limb.cells.ucsc.edu/), we have 
uploaded the AnnData matrices corresponding to ENCSR226XLF 
(Fluidigm C1 SMART-Seq) and ENCSR713GIS (10x Genomics). The 
processed data matrix for the Fluidigm C1 is available at https://cells.
ucsc.edu/mouse-limb/C1_200325/200315_C1_categorical.h5ad and 
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the 10x Genomics processed matrix is available at https://cells.ucsc.
edu/mouse-limb/10x/200120_10x.h5ad.

Code availability
Standard ENCODE RNA-seq pipeline: https://www.encodeproject.org/
pipelines/ENCPL002LSE/; ENCODE ChIP–seq pipeline: https://www.
encodeproject.org/pipelines/ENCPL220NBH/; all MATLAB scripts: 
https://github.com/brianpenghe/Matlab-genomics. 10x single-cell 
RNA-seq data were processed using CellRanger with a compatible GTF 
annotation and default parameters. deepTools2.4.1: https://github.
com/fidelram/deepTools/tree/2.4.1; FuncAssociate 3.0: http://llama.
mshri.on.ca/funcassociate/; TFDB: http://bioinfo.life.hust.edu.cn/
AnimalTFDB/; motifs annotated in the CIS-BP database: http://cisbp.
ccbr.utoronto.ca/; STRING: https://string-db.org/. The complete code 
base for promoter motif graphs, STRING interaction graphs, as well 
as Docker and Singularity container recipes can be accessed on the 
GitHub repository: https://github.com/hamrhein/mouse_embryo. 
The IDEAS segmentation can be accessed by the Hub link at http://
woldlab.caltech.edu/ENCODE3_Mouse_RNA_paper_yuzhang_me66n/. 
CIBERSORT: https://cibersort.stanford.edu/.
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Extended Data Fig. 1 | Quality metrics of bulk RNA-seq and scRNA-seq I.  
a, Table representing all bulk RNA tissue/time samples in this study according 
to the colour scheme in Fig. 1, including ENCODE BioSample accession 
numbers. The individual embryo samples for E14.5 and P0 were characterized 
by sex-specific expression markers; embryo sex determinations are indicated. 
b, Percentages of ubiquitous, differential and undetected genes in each of the 
three categories: Protein-coding genes (Prot. code), lncRNA (long intergenic 
noncoding RNA), and others. c, Pairwise comparisons of detected 
protein-coding genes and lncRNAs among the three RNA-seq platforms.  

d, Number of genes detected per cell by C1 and 10x platforms in box plots (left), 
and full histogram distributions (right panel). n = 920 cells for C1; n = 90,637 
cells for 10x. e, Genes per cell histogram distributions coloured by abundance 
values. Cells are sorted in ascending order based on the number of genes 
detected per cell at the least stringent cutoff. Abundances are shown using the 
colour scale on the right of the two plots. Arrows represent the ‘knee’ cutoffs 
we picked for inclusion in the analysis (4,000 genes/cell for C1; 1,000 genes/cell 
for 10x).



Extended Data Fig. 2 | See next page for caption.
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Extended Data Fig. 2 | Quality metrics of bulk RNA-seq and scRNA-seq II.  
a, Numbers of genes detected among each cell type defined by the C1 platform 
(mus3, Muscle 3; mus2, Muscle 2; mus1; Muscle 1; mesprox, Mesenchymal; 
chon, chondrocyte; EMP, EMP; mac, Macrophage; endo, Endothelial; pchon, 
Perichondrial; sup epi, Epithelial; neur, Neural crest) and the 10x platform 
(mus4, Muscle 4; mus3, Muscle 3; mus2, Muscle 2; mus1, Muscle 1; mesprox, 
Mesenchymal 1; mesdist, Mesenchymal 2; mesX, Stressed mesenchymal; chon, 
Chondrocyte; chon Ihh, Ihh+ chondrocyte; ost, Osteoblast; EMP, EMP; mac, 
Macrophage; meg, Megakatyocyte; endo, Endothelial; pchon, Perichondrial; 
pchon Fox, Foxp1+ perichondrial; ecto, Epithelial 1; sup epi, Epithelial 2; neur, 
Neural crest; eryth2, Late erythrocyte; eryth1, Early erythrocyte; teno, 
Tenocyte; smm, Smooth muscle; fibro, Fibroblast; int/mus (22), Col1a1+ muscle 
4). Left: n = 23 mus3 cells; n = 38 mus2 cells; n = 54 mus1 cells; n = 571 mesprox 
cells; n = 57 chon cells; n = 5 EMP cells; n = 10 mac cells; n = 7 endo cells; n = 139 
pchon cells; n = 8 ecto cells; n = 8 neur cells. Right: n = 404 mus4 cells; n = 1764 
mus3 cells; n = 3,625 mus2 cells; n = 1,875 mus1 cells; n = 22,925 mesprox cells; 
n = 17,205 mesdist cells; n = 114 mesX cells; n = 10536 chon cells; n = 494 chon Ihh 
cells; n = 86 ost cells; n = 238 EMP cells; n = 1,123 mac cells; n = 29 meg cells; 
n = 1,011 endo cells; n = 20,254 pchon cells; n = 912 pchon Fox cells; n = 2,719 ecto 

cells; n = 629 sup epi cells; n = 577 neur cells; n = 188 eryth2 cells; n = 425 eryth1 
cells; n = 762 teno cells; n = 210 smm cells; n = 2,204 fibro cells; n = 328 int/
mus(22) cells. b, Transcript coverage from 5′ to 3′ (left to right on x axis) in C1 
single-cell libraries is uniform and consistent across the 11 different cell types. 
The y-axis is normalized, aggregate read counts. The centre values are median 
values for each bin; the shading represents standard deviations for each bin. 
n = 23 mus3 cells; n = 38 mus2 cells; n = 54 mus1 cells; n = 571 mesprox cells; n = 57 
chon cells; n = 5 EMP cells; n = 10 mac cells; n = 7 endo cells; n = 139 pchon cells; 
n = 8 ecto cells; n = 8 neur cells. c, Probability of single-molecule capture (Psmc) 
estimates for each of the 11 different C1 cell types. n = 23 mus3 cells; n = 38 mus2 
cells; n = 54 mus1 cells; n = 571 mesprox cells; n = 57 chon cells; n = 5 EMP cells; 
n = 10 mac cells; n = 7 endo cells; n = 139 pchon cells; n = 8 ecto cells; n = 8 neur 
cells. d, Estimated input (x-axis) and output ( y-axis) amounts of ERCC spikes in 
each cell type. One cell is represented by one dot. The slopes of the fitted lines 
in log space have been labelled in each panel. e, Psmc estimates for each C1 run. 
Error bars are standard error. n = 23 mus3 cells; n = 38 mus2 cells; n = 54 mus1 
cells; n = 571 mesprox cells; n = 57 chon cells; n = 5 EMP cells; n = 10 mac cells; 
n = 7 endo cells; n = 139 pchon cells; n = 8 ecto cells; n = 8 neur cells. All box plots 
are as in Fig. 3f.



Extended Data Fig. 3 | Quality metrics of bulk RNA-seq and scRNA-seq III.  
a, Cell-type-specific TSS choice for Mef2c in the developing limb identified by 
short-read RNA-seq. UCSC genome browser tracks display Fluidigm C1 data 
from muscle3 (dark red) and chondrocyte (cyan) cells at Mef2c with Gencode 
VM20 gene and transcript models. Splice-crossing reads document exon1/2, 
2/4 (red) and 3/4 junctions. Aggregate signal tracks for mus3 and chon show 
that the TSS at exon 1 is used in mus3, whereas chondrocytes select the TSS at 
exon 3. Median expressed level for MEF2c in muscle3 cells 53.4 FPKM; in 

chondrocytes 40.3. b, Alternative splice choices in different single 
mesenchymal cells of the developing limb result in alternate forms of Tcf3  
(E12 and E47 bHLH TFs) with different DNA binding specificities. Individual 
splice-crossing reads are displayed beneath the read tracks for each of 3 
separate exemplar cells. c, Comparisons of whole tissue and single-cell 
transcriptome gene content with external whole tissue and single-cell 
resources10,11. For all datasets, comparisons were restricted to only 
protein-coding genes that were detected.
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Extended Data Fig. 4 | Summary of expression cluster dynamics and 
dominant functional themes for bulk RNA clusters. Rectangles represent 
major gene expression clusters with more than 30 members, labelled by the 
dominant features based on GO analysis, tissue specificity and gene class are 

labelled. Blue boxes indicate increase over time; pink decreases over time; 
green reflect relatively constant levels; lavender lacks coherent time course 
dynamics; yellow represent likely technical issues. The remainder are small 
clusters (<30 genes), labelled as hexagons with the cluster size given.



Extended Data Fig. 5 | Additional groups of genes with diverse biological 
implications. In all plots, tissue identities are labelled on top (x-axis) matching 
Fig. 1, and genes are on the y-axis. a, Expression levels of ubiquitous genes are 

shown in the heat map according to the scale bar at right. b, c, normalized 
expression levels of genes associated with B-cell activation in cluster 10 (b) and 
haemoglobin genes (c).
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Extended Data Fig. 6 | Alternative views of global bulk transcriptome.  
a, Bulk tissue transcriptome is organized on a 2D t-SNE plane, with colour code 
as in Fig. 1. n = 156 bulk RNA-seq libraries b, Two-way hierarchical clustering of 
differential genes in bulk data using Pearson correlation. c, Normalized 
principal component scores of the top 20 components. Tissue identities and 
stages are labelled at the bottom following colour codes in Fig. 1. d, e, One-way 
hierarchical clustering (d) and PCA projection (PC scores are labelled at the 

bottom and loading coefficients are on the right) (e) of whole transcriptome 
with forebrains, hindbrains and neural tubes removed to test robustness. 
n = 112 bulk RNA-seq libraries. Colour codes as in Fig. 1. f, g, One-way 
hierarchical clustering (f) and PCA projection (similar to e) (g) of whole 
transcriptome quantified by TPM instead of FPKM. n = 156 bulk RNA-seq 
libraries. Colour codes as in Fig. 1.



Extended Data Fig. 7 | Transcription factor expressions in the bulk data. 
Colour codes in a–d as in Fig. 1. a, t-SNE representation of transcription factor 
expression profiles. n = 156 bulk RNA-seq libraries. b, 3-D projection of PC 
loading coefficients of transcription factors. c, 3-D projection of PC loadings of 
transcription factor expression profiles. n = 156 bulk RNA-seq libraries.  

d, One-way hierarchical clustering of transcription factor expressions in bulk 
data. Tissue identities are labelled following colour codes in Fig. 1. n = 156 bulk 
RNA-seq libraries. e, Abundance representation of transcription factor families 
in individual bulk expression clusters. Colours indicate Bonferroni-corrected 
P values from hypergeometric test.
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Extended Data Fig. 8 | Canonical correlation analysis of the bulk data.  
a, A diagram showing the setup of canonical correlation analysis (more details 
in Supplementary Data 3). b, The vertically normalized loadings of the Boolean 
metadata variables. Tissue identities are labelled with colour codes in Fig. 1.  
c, The horizontally normalized scores of CCA variables across tissue samples. 

d, The vertically normalized loadings of principal components. e, The 
correlations between U and V variables. Pairwise relationships between U and V 
variables are shown by the corresponding scatter plots and heat map 
representing the Pearson correlation coefficient. n = 156 bulk RNA-seq 
libraries.



Extended Data Fig. 9 | CNS-specific genes are associated with Rest/Nrsf 
binding and de-repression. a, H3K27me3 fold-decrease and RNA fold-change. 
Each bar represents a cluster of genes in a tissue type. The height represents 
RNA fold-increase between the earliest and latest time points, and the colours 
represent H3K27me3 ChIP signal fold decrease. The arrows point to the 
strongest decrease of H3K27me3 that happens in Cluster 34 in brain samples. 
b, Nrsf target enrichment in individual clusters. Bonferroni-corrected P values 
are calculated based on hypergeometric tests. Sample size (equal to that of 
Extended Data Fig. 2): Cluster 1 n = 121 genes, Cluster 2 n = 196 genes, Cluster 3 
n = 693 genes, Cluster 4 n = 65 genes, Cluster 5 n = 474 genes, Cluster 6 n = 95 
genes, Cluster 7 n = 226 genes, Cluster 8 n = 106 genes, Cluster 9 n = 103 genes, 
Cluster 10 n = 2182 genes, Cluster 11 n = 563 genes, Cluster 12 n = 536 genes, 

Cluster 13 n = 93 genes, Cluster 14 n = 341 genes, Cluster 15 n = 219 genes, Cluster 
16 n = 1176 genes, Cluster 17 n = 338 genes, Cluster 18 n = 37 genes, Cluster 19 
n = 45 genes, Cluster 20 n = 1319 genes, Cluster 21 n = 801 genes, Cluster 22 n = 44 
genes, Cluster 23 n = 95 genes, Cluster 24 n = 283 genes, Cluster 25 n = 138 genes, 
Cluster 26 n = 30 genes, Cluster 27 n = 68 genes, Cluster 28 n = 200 genes, 
Cluster 29 n = 56 genes, Cluster 30 n = 236 genes, Cluster 31 n = 90 genes, 
Cluster 32 n = 256 genes, Cluster 33 n = 1,008 genes, Cluster 34 n = 3,073 genes, 
Ubiquitous n = 3,000 genes. c, Abundance of Nrsf mRNA in forebrain. The 
individual data points are shown as individual bars. d–f, Averaged H3K27me3 
profiles near promoter regions (x-axis) for liver ChIP–seq signals over Cluster 
10 genes (d), forebrain ChIP–seq signals over Cluster 34 genes (e) and forebrain 
ChIP–seq signals over Rest-targeted genes in Cluster 34 (f).
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Extended Data Fig. 10 | Regulatory mechanisms of ubiquitous genes.  
a–c, Cumulative distribution function plots of polyA RNA-seq measurements 
from skeletal muscle (a), C2C12 GRO-seq data (b) and average 3′UTR length (c) 
are compared among three equal-sized groups of ubiquitous genes defined by 
their RNA-seq abundance. d, Comparisons of 3′UTR length, GRO-seq, Bru-seq 
and polyA RNA-seq assays among multiple different samples. Pearson 
correlation scores between each pair of measurements on the columns and 

rows are visualized using a heat map. In the corresponding cell of the 
comparison, a scatter plot is provided. On the diagonal are histograms of each 
individual measurement. n = 24,832 detectable genes. e, Significance of ETS 
motif enrichment in the promoters of ubiquitous genes determined using AME 
in MEME suite. n = 1,000 each for high, medium and low groups. f, A model is 
proposed that longer 3′UTR may harbour more binding sites for RNA-decay 
apparatus, leading to lower abundance at steady states.



Extended Data Fig. 11 | Cell-type relationships inferred from single-cell 
data I. a, Cell–cell correlations. Feature genes were used to calculate and 
visualize Pearson correlation coefficients between cells. Specific cell-type 
populations (indicated by colour bands on the axes) were downsampled to  
100 (10x) or 30 (C1). b, Comparing whole-embryo single-cell data with limb 
single-cell data. As an extended version of Fig. 1d, this comparison added a 

panel for 10x single-cell RNA-seq limb data (far right). c, Lineage inference. 
Skeletal (left), myeloid (middle) and skin (right) cell types were used for lineage 
inference, respectively. Pseudotime, developmental time and cell type are 
presented from top to the bottom. d, Selected transcription factor expressions 
are displayed on the Monocle graphs produced from the 10x data for the four 
cell types comprising the myogenic lineage.
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Extended Data Fig. 12 | See next page for caption.



Extended Data Fig. 12 | Cell-type relationships inferred from single-cell 
data II. a, Feature gene expression profiles of C1 single cells. Normalized log-
transformed FPKM values ( y-axis) are used for hierarchical clustering using 
Spearman coefficients with complete linkage. Major cell types (x-axis) 
together with an Lmo2+ mesenchyme subtype are highlighted using colours 
corresponding to Fig. 3a. The overall picture showed different numbers of 
marker genes across cell types. b, c CIBERSORT deconvolution of bulk data. 
CIBERSORT was used to deduce proportions of major cell types ( y-axis) 
present in staged samples (x-axis) of independently produced forelimbs (b) 
and ENCODE mixed limb materials (c). The colour codes match Fig. 3a.  
d, Monocle lineage inference for four skeletal muscle clusters including cluster 
22. Pseudotime, developmental time and cell type are shown on the left, and 

marker gene expression is mapped on the right. e, 20-micrometre sections of 
mouse E13.5 forelimb double-immunostained for Osr1 (green) and Myog (red) 
(left), with a DAPI (blue) counterstain (right). All images taken with 63X oil 
immersion objective. Images in upper panels are enlarged from boxed areas in 
lower panels. Arrowheads: green: Osr1(+) Myog(−) nucleus. Red: Myog(+) 
Osr1(−) nucleus. White: double (+/+) cells. Immunocytochemistry was repeated 
three times independently. f, TFs enriched in skeletal muscle cell types and 
mesenchyme in either 10x or C1 data. Cells were down-sampled for display 
(similar to Supplementary Fig. 3); cell types are colour-coded for cell cluster 
identity. Outlines highlight genes (Myod1; Plagl1) with early stage low-level 
expression detected in C1 but not 10x data versus pan-lineage markers (Six1; 
Pitx2) detected in both.
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Extended Data Fig. 13 | Analysis of CREs using ENCODE chromatin data and 
single-cell RNA-seq data I. a, A flowchart of the analysis. b, Computationally 
predicted regulatory elements at the Myog locus. From the top to the bottom 
are the tracks for limb IDEAS active DHS (black bars), cell-type affiliated ones 
among the former (purple bars), IDEAS scores of limb and liver samples from 
early to late time points, bulk DNase-seq raw data, bulk RNA-seq raw data, and 

aggregated C1 single-cell RNA-seq data per cell type. Validation of the Mu3 
element in mouse embryo by enhancer assay is also included at the bottom 
right. (Modified, with permission, from Yee and Rigby 1993, © Cold Spring 
Harbour Laboratory Press64.) Bottom, examples of limb-positive enhancer 
results from the VISTA database that are not cell-type-specific.



Extended Data Fig. 14 | Analysis of CREs using ENCODE chromatin data and 
single-cell RNA-seq data II. a, UCSC genome browser visualization of the C1qb 
locus, which is in the limb macrophage cluster. Three candidate enhancers for 
limb-specific expression of this macrophage gene were identified (Lb1–Lb3).  
b, Enriched motifs over regulatory elements. Motifs enriched at the distal 

elements or promoters of positive and negative markers for each cell type 
found in the 10x data (see Methods) are visualized using a similar method as 
Fig. 2b. Colours and numbers of the round nodes correspond to 10x cell type 
identities (legend at bottom right), and the grey and yellow ovals represent 
shared and unique motifs, respectively.
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Extended Data Fig. 15 | Analysis of CREs using ENCODE chromatin data and 
single-cell RNA-seq data III. a, Comparison between FANTOM5 detected 
promoters and enhancers with promoters and enhancers detected in this 
study. Elements labelled as “other” are either active or poised in limb generally, 

but are not cell-type preferential. b, UCSC Genome Browser shot at the MyoD1 
locus. DHS locus accessibility data are shown, along with H3K4me2 and 
H3K4me3 histone ChIP–seq data. Vertical arrows indicate regions of early 
chromatin accessibility (see text and Fig. 4a).



1

nature research  |  reporting sum
m

ary
O

ctober 2018

Corresponding author(s): Williams, Brian and Barbara Wold

Last updated by author(s): May 31, 2020

Reporting Summary
Nature Research wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency 
in reporting. For further information on Nature Research policies, see Authors & Referees and the Editorial Policy Checklist.

Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection Sequencing base calls on Illumina libraries were performed with RTA 1.18.64 followed by conversion to FASTQ with bcl2fastq 1.8.4

Data analysis All the whole-tissue RNA-seq and C1 single-cell RNA-seq data were processed through the standard ENCODE pipeline (https://
www.encodeproject.org/pipelines/ENCPL002LSE/).  Downstream analyses were mainly done using Matlab scripts (https://github.com/
brianpenghe/Matlab-genomics). 10x single-cell RNA-seq data were processed using CellRanger.  Histone modification ChIP-seq data were 
processed using the ENCODE ChIP-seq pipeline (https://www.encodeproject.org/pipelines/ENCPL220NBH/), and log2 fold change for 
ChIP-seq samples over input controls were calculated and plotted using Deeptools2.4.1 (https://github.com/fidelram/deepTools/
tree/2.4.1). FuncAssociate 3.0 (http://llama.mshri.on.ca/funcassociate/) was used at its default settings for term calling. Seurat3 was 
used to calculate integration anchors and to integrate the two different types of datasets. Scrublet was used to remove putative doublet 
cells in 10x data.  Monocle3 alpha (2.99.3) was then used for trajectory analysis of the 10x data.  UMAP visualization and SimplePPT 
method were applied for data visualization.  Evidence-based interaction networks were inferred using STRING v11.  Graphs were 
rendered with GraphViz and SCANPY. The IDEAS segmentation can be accessed by the Hub link at http://bx.psu.edu/~yuzhang/me66/
hub_me66n_org.txt  TF motifs analyzed with version 4.11.2 of the MEME-SUITE, using the CIS-BP database.  Comparison of tissue and 
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All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A list of figures that have associated raw data 
- A description of any restrictions on data availability

These data are part of the ENCODE Consortium mouse embryo project, which provides companion microRNA-seq, DNA methylation, histone mark ChIP-73 seq, and 
chromatin accessibility datasets for the sample matrix (https://www.encodeproject.org/woldlab).  
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Data exclusions C1 single-cell libraries with fewer than 4000 genes detected at 10 FPKM,  libraries from a single C1 run with systematic 3'bias were removed, 
libraries with no cells or more than 1 cell were removed.  For 10x libraries, UMI counts from CellRanger were filtered first, where cells with 
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Methods
n/a Involved in the study
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Antibodies
Antibodies used Osr1 (mouse monoclonal Santa Cruz cat. # 376545, lot# IO117), Myog (Abcam RabMab cat. # ab124800, lot# GR3210821-5)

Validation Osr1 (PMID:30149291  DOI:10.1016/j.scr.2018.08.010 ); Myog (PMID:27924941  PMCID:PMC5141432   DOI:10.1038/srep38754)
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mycoplasma contamination OR declare that the cell lines were not tested for mycoplasma contamination.

Commonly misidentified lines
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Name any commonly misidentified cell lines used in the study and provide a rationale for their use.
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issuing authority, the date of issue, and any identifying information).
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where they were obtained (i.e. lab name), the calibration program and the protocol for quality assurance OR state that no new 
dates are provided.
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Field-collected samples For laboratory work with field-collected samples, describe all relevant parameters such as housing, maintenance, temperature, 
photoperiod and end-of-experiment protocol OR state that the study did not involve samples collected from the field.

Ethics oversight Identify the organization(s) that approved or provided guidance on the study protocol, OR state that no ethical approval or 
guidance was required and explain why not.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Policy information about studies involving human research participants

Population characteristics Describe the covariate-relevant population characteristics of the human research participants (e.g. age, gender, genotypic 
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questions and have nothing to add here, write "See above."

Recruitment Describe how participants were recruited. Outline any potential self-selection bias or other biases that may be present and how 
these are likely to impact results.

Ethics oversight Identify the organization(s) that approved the study protocol.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Clinical data
Policy information about clinical studies
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Data deposition

Confirm that both raw and final processed data have been deposited in a public database such as GEO.

Confirm that you have deposited or provided access to graph files (e.g. BED files) for the called peaks.

Data access links 
May remain private before publication.

For "Initial submission" or "Revised version" documents, provide reviewer access links.  For your "Final submission" document, 
provide a link to the deposited data.

Files in database submission Provide a list of all files available in the database submission.

Genome browser session 
(e.g. UCSC)

Provide a link to an anonymized genome browser session for "Initial submission" and "Revised version" documents only, to 
enable peer review.  Write "no longer applicable" for "Final submission" documents.

Methodology

Replicates Describe the experimental replicates, specifying number, type and replicate agreement.

Sequencing depth Describe the sequencing depth for each experiment, providing the total number of reads, uniquely mapped reads, length of 
reads and whether they were paired- or single-end.

Antibodies Describe the antibodies used for the ChIP-seq experiments; as applicable, provide supplier name, catalog number, clone 
name, and lot number.

Peak calling parameters Specify the command line program and parameters used for read mapping and peak calling, including the ChIP, control and 
index files used.

Data quality Describe the methods used to ensure data quality in full detail, including how many peaks are at FDR 5% and above 5-fold 
enrichment.

Software Describe the software used to collect and analyze the ChIP-seq data. For custom code that has been deposited into a 
community repository, provide accession details.
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The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers).

All plots are contour plots with outliers or pseudocolor plots.
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Methodology

Sample preparation Describe the sample preparation, detailing the biological source of the cells and any tissue processing steps used.

Instrument Identify the instrument used for data collection, specifying make and model number.

Software Describe the software used to collect and analyze the flow cytometry data. For custom code that has been deposited into a 
community repository, provide accession details.

Cell population abundance Describe the abundance of the relevant cell populations within post-sort fractions, providing details on the purity of the samples 
and how it was determined.

Gating strategy Describe the gating strategy used for all relevant experiments, specifying the preliminary FSC/SSC gates of the starting cell 
population, indicating where boundaries between "positive" and "negative" staining cell populations are defined.

Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.
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Experimental design

Design type Indicate task or resting state; event-related or block design.
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Design specifications Specify the number of blocks, trials or experimental units per session and/or subject, and specify the length of each trial 
or block (if trials are blocked) and interval between trials.

Behavioral performance measures State number and/or type of variables recorded (e.g. correct button press, response time) and what statistics were used 
to establish that the subjects were performing the task as expected (e.g. mean, range, and/or standard deviation across 
subjects).

Acquisition

Imaging type(s) Specify: functional, structural, diffusion, perfusion.

Field strength Specify in Tesla

Sequence & imaging parameters Specify the pulse sequence type (gradient echo, spin echo, etc.), imaging type (EPI, spiral, etc.), field of view, matrix size, 
slice thickness, orientation and TE/TR/flip angle.

Area of acquisition State whether a whole brain scan was used OR define the area of acquisition, describing how the region was determined.

Diffusion MRI Used Not used

Preprocessing

Preprocessing software Provide detail on software version and revision number and on specific parameters (model/functions, brain extraction, 
segmentation, smoothing kernel size, etc.).

Normalization If data were normalized/standardized, describe the approach(es): specify linear or non-linear and define image types 
used for transformation OR indicate that data were not normalized and explain rationale for lack of normalization.

Normalization template Describe the template used for normalization/transformation, specifying subject space or group standardized space (e.g. 
original Talairach, MNI305, ICBM152) OR indicate that the data were not normalized.

Noise and artifact removal Describe your procedure(s) for artifact and structured noise removal, specifying motion parameters, tissue signals and 
physiological signals (heart rate, respiration).

Volume censoring Define your software and/or method and criteria for volume censoring, and state the extent of such censoring.

Statistical modeling & inference

Model type and settings Specify type (mass univariate, multivariate, RSA, predictive, etc.) and describe essential details of the model at the first 
and second levels (e.g. fixed, random or mixed effects; drift or auto-correlation).

Effect(s) tested Define precise effect in terms of the task or stimulus conditions instead of psychological concepts and indicate whether 
ANOVA or factorial designs were used.

Specify type of analysis: Whole brain ROI-based Both

Statistic type for inference
(See Eklund et al. 2016)

Specify voxel-wise or cluster-wise and report all relevant parameters for cluster-wise methods.

Correction Describe the type of correction and how it is obtained for multiple comparisons (e.g. FWE, FDR, permutation or Monte 
Carlo).

Models & analysis

n/a Involved in the study
Functional and/or effective connectivity

Graph analysis

Multivariate modeling or predictive analysis

Functional and/or effective connectivity Report the measures of dependence used and the model details (e.g. Pearson correlation, partial 
correlation, mutual information).

Graph analysis Report the dependent variable and connectivity measure, specifying weighted graph or binarized graph, 
subject- or group-level, and the global and/or node summaries used (e.g. clustering coefficient, efficiency, 
etc.).

Multivariate modeling and predictive analysis Specify independent variables, features extraction and dimension reduction, model, training and evaluation 
metrics.
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