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Marine alkaloid 
monanchoxymycalin C: a new 
specific activator of JNK1/2 kinase 
with anticancer properties
Sergey A. Dyshlovoy1,2,3,4,7*, Moritz Kaune1, Malte Kriegs5,6, Jessica Hauschild1, 
Tobias Busenbender1, Larisa K. Shubina2, Tatyana N. Makarieva2, Konstantin Hoffer5,6, 
Carsten Bokemeyer1, Markus Graefen4, Valentin A. Stonik2 & Gunhild von Amsberg1,4

Monanchoxymycalin C (MomC) is a new marine pentacyclic guanidine alkaloid, recently isolated 
from marine sponge Monanchora pulchra by us. Here, anticancer activity and mechanism of action 
was investigated for the first time using a human prostate cancer (PCa) model. MomC was active in 
all PCa cell lines at low micromolar concentrations and induced an unusual caspase-independent, 
non-apoptotic cell death. Kinase activity screening identified activation of mitogen-activated 
protein kinase (MAPK) c-Jun N-terminal protein kinase (JNK1/2) to be one of the primary molecular 
mechanism of MomC anticancer activity. Functional assays demonstrated a specific and selective 
JNK1/2 activation prior to the induction of other cell death related processes. Inhibition of JNK1/2 
by pretreatment with the JNK-inhibitor SP600125 antagonized cytotoxic activity of the marine 
compound. MomC caused an upregulation of cytotoxic ROS. However, in contrast to other ROS-
inducing agents, co-treatment with PARP-inhibitor olaparib revealed antagonistic effects indicating 
an active PARP to be necessary for MomC activity. Interestingly, although no direct regulation of p38 
and ERK1/2 were detected, active p38 kinase was required for MomC efficacy, while the inhibition of 
ERK1/2 increased its cytotoxicity. In conclusion, MomC shows promising activity against PCa, which is 
exerted via JNK1/2 activation and non-apoptotic cell death.

Secondary metabolites are natural organic compounds which, unlike primary metabolites, are usually not directly 
involved in the growth and survival of the individual organism. However, they may contribute to protective or 
interactive processes. Therefore, these molecules often reveal pronounced bioactivity. Secondary metabolites 
of marine invertebrates consist of a variety of small molecules belonging to different structural groups1,2. Here, 
pentacyclic guanidine alkaloids represent an important subgroup. A significant number of these compounds has 
been isolated from marine sponges belonging to the Monanchora family (for review see Refs.3,4). They exhibit 
a broad spectrum of bioactivities, including pronounced anticancer activities5–9. However, to date the number 
of studies analyzing these compounds is still limited, mainly due to the many challenges associated with the 
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collection of deep-sea sponges. Nevertheless, some cellular targets and processes mediating the bioactivity of 
marine derived pentacyclic guanidine metabolites have been identified4. One of the first representatives of this 
structural group, alkaloid ptilomycalin A was primarily isolated from Caribbean sponge Ptilocausis spiculifer as 
well as from a Red Sea sponge Hemimycale sp. in 198910, and later by our group from marine sponge Monanchora 
pulchra, collected in Russian Pacific Far East in 201311. This molecule as well as some related compounds were 
shown to induce DNA fragmentation and caspase-3/7 activation in cancer cells9. Remarkably, pentacyclic alka-
loid monanchocidin A12 induced cytotoxic autophagy, i.e. type II programmed cell death at low and lysosomal 
membrane permeabilization at higher concentrations in human germ cell tumor cells enabling the compounds 
to overcome drug resistance against standard therapies13. A global proteomic screening-based analysis revealed 
anti-migratory activity of monanchocidin A towards human cancer cells14.

Structurally related crambescidin alkaloids induced cell cycle arrest of human cancer cells via downregulation 
of CDK 2/6 and cyclins D/A, as well as simultaneous upregulation of several CDK inhibitors15,16. The compounds 
promoted the differentiation of K562 cells17 and blocked several ion channels18,19. Crambescidin alkaloids were 
found to inhibit cancer cell migration via alteration of cytoskeleton dynamics, suppression of cell-to-cell and 
cell-to-matrix adhesion, as well as inhibition of tight junctions formation20.

Recently, a new member of the pentacyclic guanidine alkaloid group, monanchoxymycalin C (MomC) 
(Fig. 1a), has been isolated from the marine sponge Monanchora pulchra by our group21. The compound was 
found to be cytotoxic to human cervical carcinoma HeLa cells at low micromolar concentrations, induced 
S-phase cell cycle arrest and was synergistic in combination with cisplatin21. In the current study, we evaluated 
MomC in human prostate cancer cell lines revealing different levels of drug resistance. We used a functional 
kinomics screening followed by validation experiments to explore the molecular targets and the mechanism of 
action of this alkaloid.

Figure 1.   Structure of monanchoxymycalin C (MomC) (a). Cytotoxicity profiles of MomC in different 
human prostate cancer and non-cancer cells lines (doxorubicin was used as a positive control) (b), effect of 
enzalutamide on MomC cytotoxicity in LNCaP cells (c, Chou–Talalay method), and colony formation assay (d).
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Materials and methods
Reagents and antibodies.  Anisomycin was purchased from NeoCorp (Weilheim, Germany); 
z-VAD(OMe)-fmk from Enzo Life Sciences (Farmingdale, NY, USA); annexin-V-FITC from BD Bioscience 
(San Jose, CA, USA); MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide), doxorubicin, 
CCCP (2-[2-(3-chlorophenyl)hydrazinylyidene]propanedinitrile), and propidium iodide (PI) from Sigma 
(Taufkirchen, Germany); cOmplete™ EASYpacks protease inhibitors cocktail and PhosSTOP™ EASYpacks from 
Roche (Mannheim, Germany); androgen receptor antagonist enzalutamide from Hycultec GmbH (Beutelsbach, 
Germany). The MEK inhibitor PD98059 was purchased from Merck Chemicals GmbH (Darmstadt, Germany), 
ERK1/2 inhibitors FR180204 and SCH772984 from Adooq bioscience (Irvine, CA, USA); PARP inhibitor olapa-
rib JNK1/2 inhibitor SP600125 and p38 inhibitor SB203580 from LC Laboratories (Woburn, MA, USA).

Monanchoxymycalin C.  Monanchoxymycalin C (MomC, Fig. 1a) was isolated from the marine sponge 
Monanchora pulchra (Lambe, 1894) collected during scientific expedition of the research vessel “Academic Opa-
rin” (September 2016; Chirpoi Island; 46° 23, 8 N; 150° 47, 8 E) as reported previously. The structure of MomC 
was determinated on the basis of spectroscopic data21. MomC was identified by comparison of its 1H and 13C 
NMR data with the previously published21. The purity of MomC was verified by HPLC, 1H and 13C NMR spec-
troscopy. For the experiments, a sterile solution of MomC in 100% DMSO was used.

Cell lines and culture conditions.  Human prostate cancer cell lines PC-3, DU145, LNCaP, 22Rv1, and 
VCaP, human prostate non-cancer cells RWPE-1 and PNT2, as well as human non-cancer fibroblasts cells 
MRC-9 were purchased from ATCC (Manassas, VA, USA). For the experiments the cell passage ≤ 50 was used. 
PC-3, DU145, LNCaP, 22Rv1, and PNT2 cells were cultured in 10% FBS/RPMI medium (RPMI medium supple-
mented with Glutamax™-I (gibco® Life technologies™, Paisley, UK), 10% FBS (gibco® Life technologies™) and 1% 
penicillin/streptomycin (gibco® Life technologies™). VCaP and MRC-9 cells were cultured in 10% FBS/DMEM 
medium (RPMI medium supplemented with Glutamax™-I (gibco® Life technologies™, Paisley, UK), 10% FBS 
and 1% penicillin/streptomycin). RWPE-1 cells were cultured in Keratinocyte Serum Free Medium (K-SFM) kit 
(gibco® Life technologies™, Paisley, UK, Cat. #17005-042) supplemented with BPE and hEGF and 1% penicillin/
streptomycin). The cell lines were recently authenticated by Multiplexion GmbH (Heidelberg, Germany). In all 
the experiment the control cells were pre-treated/treated with an equal amount of vehicle (DMSO).

Flow cytometry analysis.  The experiment was performed as previously reported22. 22Rv1 cells were 
seeded in 6-well plates (0.2 × 106 cells/well in 2 mL/well). Following overnight incubation the cells were pre-
treated with 100 µM z-VAD(OMe)-fmk for 1 h in 2 mL/well of fresh media. Censequantly, the cells were treated 
with the investigated drugs for 48  h and harvested by trypsinisation. Cells were immediately stained with 
annexin-V-FITC and propidium iodide and further analyzed using FACS Calibur instrument (BD Bioscience, 
San Jose, CA, USA). The results were quantified using the Cell Quest Pro software v. 5.2.1. (BD Bioscience).

MTT assay.  The experiment was performed as reported before23. 6,000 cells/well were seeded in a 96-well 
plate. Cells were incubated overnight and treated with MomC or vehicle (DMSO) in 100 μL/well of correspond-
ing fresh culture media. Cells were consequently incubated with MTT solution (3-(-4,5-dimethylthiazol-2-yl)-
2,5-diphenyltetrazolium bromide) for 2–4 h. The culture media was removed and the plates were dried for 1 h. 
To dissolve the formazan crystals the 50 µL/well of 100% DMSO were added and the optical density was meas-
ured using a spectrophotometer Infinite F200PRO reader (TECAN, Männedorf, Switzerland).

Light microscopy.  Cells were seeded in the 96-well plate and treated with the investigated drugs or vehicle 
for 48 h as described for MTT assay (see above). Microphotographs of the alive cells were taken using Axiovert 
25 (Carl Zeiss, Göttingen, Germany) microscope, AxioCam MRc camera (Carl Zeiss) and AxioVision software 
v. 4.8.2 SP3 (Carl Zeiss) at 100 × magnification as previously reported24. The original images were croped and 
the figures were further prepared using the CorelDRAW X7 software v. 17.1.0.572 (Corel Corporation, Ottawa, 
Canada).

Colony formation assay.  Colony formation assay was performed as previously reported24. 22Rv1 or PC-3 
cells were seeded in ø 6 cm TC Petri dishes (Sarstedt, Numbrecht, Germany; 1 × 106 cells/dish in 5 mL/dish) 
and treated with indicated concentration of MomC for 48 h. Then, 100 alive cells were seeded in 6-well plates 
im 2 mL/well and incubated for 14 days. Surviving colonies were fixed with 100% MeOH, stained with Giemsa 
solution and counted by naked eye.

Western blotting.  The experiment was performed as previously described25. In brief, 1 × 106 cells/dish cells 
were seeded in ø 6 cm Petri dishes in 5 mL/dish of media. Cells were incubated overnight followed by treat-
ment with indicated concentrations of MomC or anisomycin for 48 h. Cells were harvested by scraping, washed 
(2 × ice cold PBS), and lysed. The samples were shortly frozen and centrifuged at 10,000g. The protein concen-
trations in the supernatants were determined by Bradford assay. The samples (20–30 μg/lane) were separated 
using SDS-PAGE method in gradient Mini-PROTEAN® TGX Stain-FreeTM gels (Bio-Rad, Hercules, CA, USA) 
at 200 V. The proteins were transferred to a PVDF membrane, the membranes were blocked and consequantly 
incubated with the primary and secondary antibodies. The signals were detected using the ECL chemilumines-
cence system (Thermo Scientific, Rockford, IL, USA). All procedures were performed according to the manufac-
turers’ protocols. β-Actin was used as a loading control. For the list of used antibody see Supplementary Table S1. 
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The original images were croped and the figures were further prepared using the CorelDRAW X7 software v. 
17.1.0.572 (Corel Corporation, Ottawa, Canada).

Kinase activity profiling.  Kinase activity profiling was performed as described before26. For profiling ser-
ine-/threonine kinases, STK-PamChip® arrays and a PamStation®12 (PamGene International, ‘s-Hertogenbosch, 
The Netherlands) were used according to the manufacturer’s protocols. In brief, each array contains 140 indi-
vidual peptide phospho-sites that are analogues of substrates for the corresponding serine-/threonine kinases. 
The whole cell lysates were prepared using M-PER Mammalian Extraction Buffer (Pierce, Waltham, Massa-
chusetts, USA) containing Halt Phosphatase Inhibitor (Pierce) and EDTA-free Halt Protease Inhibitor Cocktail 
(Pierce). 1 µg of protein and 400 µM ATP were mixed and applied per each array. Sequence-specific peptide 
phosphorylation was detected using anti-phospho-Ser/Thr antibodies during the reaction followed by detection 
with secondary polyclonal swine anti-rabbit Immunoglobulin-FITC antibody (PamGene International). For the 
signal record a CCD camera and the Evolve software v. 1.0 (PamGene International). The quality of signals were 
controlled. For further data analysis the final signal intensities were log2-transformed and further proceeded 
using the BioNavigator software v. 6.0 (BN6, PamGene International).

Determination of drug combination effects.  The effects (synergistic, antagonistic, or additive) of 
MAPK inhibitiors (PD98059, SCH772984, SP600125, SB203580), PARP inhibitior olaparib, androgen recep-
tor antagonist enzalutamide, or antioxidant N-acetyl-l-cysteine (NaC) on the cytotoxic activity of MomC was 
deterimed using the Chou-Talalay method27,28. The experiments were performed as described before9,25. For 
combinational experiment with enzalutamide the LNCaP cells were co-treated with different concentrations of 
MomC and enzalutamide in 100 µL/well for 48 h. For all the other experiments the 22Rv cells were pre-treated 
with the different concentrations of inhibitors or vehicle for 1 h in 50 µL/well, then 50 µL/well of MomC solution 
in media were added and the plates were incubated for another 48 h. 0.1% FBS/RPMI media was used to evalu-
ate an effect on NaC on MomC cytotoxicity; for all the other inhibitors regular 10% FBS/RPMI media was used. 
The cytotoxicity was measured by MTT assay and then proceeded with CompuSyn software v. 1.0 (ComboSyn 
Inc., Paramus, NJ, USA). The calculated combinational index (CI) > 1.1 indicates an antagonistic effect of the 
inhibitor on MomC cytotoxicity (red dots); CI = 0.9 ~ 1.1 refers to additive effect (clear dots); CI < 0.9 suggests 
synergism (green dots). Fraction affected (Fa) and CI values are shown in Supplementary Tables S2–S7.

Cell fractionation.  The isolation of the cytosolic proteins was performed using the Cell Fractionation Kit 
(Cat. No ab109719, abcam, Cambridge, MA, USA) as reported before22. In brief, 22Rv1 cells were treated for 
48 h and harvested by scratching. The further procedures were performed following the previously described 
protocol29. Generated cytosolic fraction was concentrated using Amicon® Ultra-2 Centrifugal Filter device (Cat. 
No. UFC203024, Merck, Darmstadt, Germany). Cells treated with 50 µM of CCCP for 48 h were used as a posi-
tive control.

Determination of intracellular ROS levels.  The levels of intracellular ROS were evaluated using a cell-
permeable CM-H2DCFDA reagent (Molecular probes, Invitrogen, Eugene, OR, USA). The experiment was per-
formed as previously reported22,25. In brief, the cells were plated in 12-well plates (0.2 × 106 cells/well; 1 mL/
well of media). The cells were incubated overnight and pretreated with CM-H2DCFDA (4 µM; 0.5 mL/well) for 
30 min at 37 °C in the dark. Then, the cells were treated with the indicated concentrations of MomC or H2O2 
(200 µM) for 6 h in pre-warmed PBS (1 mL/well). Afterwards the cells were trypsinized and immediately ana-
lyzed using FACS Calibur instrument and the Cell Quest Pro v.5.2.1. software.

Statistical analysis.  The data was analyzed using GraphPad Prism software v. 7.05 (GraphPad Prism soft-
ware Inc., La Jolla, CA, USA). The values are presented as mean ± SEM. One-way ANOVA test followed by 
Sidak’s multiple comparison test was used for group comparison. Differences were considered to be statistically 
significant: *p < 0.05; **p < 0.01; ***p < 0.001. All experiments were performed in triplicates.

Results
MomC is cytotoxic to human drug‑resistant prostate cancer cells.  The cytotoxic activity of MomC 
(Fig. 1a) was investigated in the five prostate cancer cell lines PC-3, DU45, 22Rv1, VCaP, and LNCaP, possessing 
varying resistance profiles to standard therapies, as well as prostate non-cancer cell lines RWPE-1 and PNT2, 
and non-cancer human fibroblasts MRC-9 (Fig. 1b). Cytotoxicity was found in all cells tested at micro- or sub-
micromolar concentrations following 48 h of treatment (Fig. 1b). At the same time, no significant selectivity 
towards cancer cells was observed in the in vitro experiments (Fig. 1b). PC-3 and DU145 cells are known to 
be unresponsive to androgen receptor (AR)-targeting therapy due to a lack of AR expression30, while AR splice 
variant seven mediates resistance of 22Rv1 and VCaP cells due to a loss of the androgen binding site30. Of note, 
AR-V7 induces an activation of the AR pathway independently of androgen binding31. Thus, AR targeting drugs 
such as abiraterone and enzalutamide are mostly ineffective31. LNCaP is a hormone dependent cell line harbor-
ing the natural expression of the full length AR (AR-FL)30. Interestingly, the cytotoxic activity of MomC corre-
lated with the AR expression as follows: LNCaP (AR-FL+, AR-V7−) > 22Rv1 and VCaP (AR-V7+, AR-FL+) > PC-3 
and DU145 (AR-FL−, AR-V7−) (Fig. 1b). Of note, the cytotoxic activity of MomC correlated with the AR status 
of the different cell line. Thus, highest sensitivity was observed in hormone sensitive LNCAP cells (AR-FL+/
AR-V7−) while hormone-independent (i.e. AR-FL− (PC3, DU145) or AR-V7+ (VCAP, 22Rv1) were slightly more 
resistant. Moreover, in line with this we have shown that the inhibition of AR activity in hormone-dependent 
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LNCaP cells by treatment with enzalutamide (AR antagonist) could antagonize the MomC cytotoxic activity 
(Fig. 1c). Therefore, we speculate that in prostate cancer cells MomC cytotoxicity correlates with AR activity.

Colony formation of human prostate cancer cells was examined as a model for potential anti-metastatic 
activity of MomC. At non-cytotoxic concentrations the compound reduced the colony formation of 22Rv1 and 
PC-3 cells. Remarkably, active concentrations for PC-3 cells were 2- to 50-fold less than the cytotoxic IC50 for 
the corresponding cell lines (Fig. 1d).

MomC induces non‑apoptotic cell death of PCa cells.  The mechanisms of MomC-induced cell death 
were further investigated in drug-resistant 22Rv1 cells. 22Rv1 cells are known to be androgen-independent due 
to the expression of AR-V7, and therefore resistant to hormonal therapy30. Two apoptotic hallmarks, PARP cleav-
age and cleaved caspase-3, were detected after 48 h of MomC treatment (Fig. 2a), whereas anti-apoptotic protein 
survivin was downregulated (Fig. 2a). However, the morphology of the cells treated with MomC was mark-
edly different from those treated with anisomycin (a well-established inducer of “classical” caspase-dependent 
apoptosis32,33 or cisplatin. Thus, regular apoptotic features such as cell shrinking, membrane blebbing, and apop-
totic bodies formation were not detected in MomC-treated cells (Fig. 2b); in contrast, cell rounding and swelling 
was observed under the treatment (Fig. 2b).

Furthermore, an increased annexin-V-FITC+/PI+ and annexin-V-FITC−/PI+ cell populations under the MomC 
treatment were observed by flow cytometry indicating fraction of late apoptotic and necrotic cells. Note, PI+ 
staining indicates a loss of the cellular membrane integrity, being a feature of non-apoptotic cell death. At the 
same time, no significant increase of the Annexin-V-FITC+/PI− cell population (early apoptosis) was detected in 
the MomC-treated samples, while in contrast this cell fraction was observed secondary to anisomycin treatment 
(positive control) as expected (Fig. 2c). In order to determine the role of caspases in this process, a co-treatment 
with well-established pan-caspase inhibitor z-VAD(OMe)-fmk was applied. Interestingly, the inhibitor did not 
influence the cytotoxic effects of MomC, while the activity of anisomycin was significantly reduced. Expectedly, 
z-VAD(OMe)-fmk pretreatment resulted in an increase of the alive cell population and a decrease of the early 
and late apoptotic cell population of anisomycin treated cells (Fig. 2c). These results indicate that MomC-induced 
cell death was exerted via non-apoptotic mechanisms and independently from caspase activities.

MomC‑induced alterations of protein tyrosine kinases activity.  Protein kinases catalyze the phos-
phorylation of specific proteins thereby modulating their activity. They play a critical role in numerous can-
cer-related events34. Unsurprisingly, they have become targets for anticancer therapeutics with many of them 
being clinically approved to date34. Since serine-/threonine kinases (STK) play a critical role in processes of cell 
death and survival, we systematically analyzed the STK activity performing functional kinomics35. We used 
the PamTechnology® (https​://www.pamge​ne.de, Fig. 3a) which allows the identification of kinases specifically 
activated or inhibited by the drug. For the experiment, a short drug exposure time of 2 h was chosen, to ensure, 
that only specific primary effects of MomC on the kinome of prostate cancer cells were identified, while the 
number of measured secondary effects resulting from cell death related processes was minimized. The results 
are presented as a log2 of signal intensity per peptide for each treatment group in Fig. 3b and summarized in 
Fig.  3c. The data indicate overall increased STK activity in MomC-treated samples compared to the control 
group (Fig. 3c, 3d). Note, no significant treatment-induced inhibition of phosphorylation was observed for any 
peptide tested (Fig. 3d).

Analyses of upstream kinases potentially influenced by MomC predicted the activation of several kinases 
belonging to the family of mitogen-activated protein kinase (MAPK), namely p38, JNK1/3, and ERK1/2—all 
known to be involved in different cancer-related processes34,36. In addition, a cardiac myosin light chain kinase 
(caMLCK), RSK-like pseudokinase 1 (RSKL1), and Y-linked protein kinase (PRKY) were predicted to be acti-
vated (Fig. 3e).

caMLCK is a kinase which is important for muscle contraction (in particular heart)37. There is few infor-
mation on its role in cancer. Thus, a related kinase—i.e. non-muscular myosin light chain kinase (nmMLCK) 
was reported to be overexpressed in prostate cancer38. However, its role in cancer development and treatment 
seems to be controversial39. RSKL1 is a RSK-like pseudokinase 1, also known as ribosomal protein S6 kinase C1 
(RPS6KC1). It may be involved in transmitting sphingosine-1 phosphate (SPP), which is an important cellular 
messenger40. Additionally, it can bind to peroxiredoxin-3 and may help to transport it to mitochondria and early 
endosomes41. However, no relation of this kinase with cancer progression or treatment prognosis was reported, 
even though the mutations of the correspondent gene were detected in several human cancers42. The activation of 
PRKY was predicted as well. The close analogue of this kinase, PRKX plays an important role in differentiation, 
epithelial morphogenesis, and is also involved in angiogenesis43. However, to the best of our knowledge, there is 
no known cellular function of PRKY as well as any reports on its expression in cancer cells.

Validation of kinome analysis data.  All top-5 ranked kinases belong to the family of mitogen-activated 
protein kinases (Fig. 3e). Thus, p38, JNKs, and ERKs were predicted to be predominantly activated by MomC in 
cancer cells (Fig. 3e). In order to validate these findings, Western blotting analyses were performed for different 
MomC treatment periods (up to 48 h) (Fig. 4a). Indeed, a dose- and time-dependent activation of JNK1/2 was 
observed starting as early as 6 h after treatment initiation. In contrast, no caspase-3 activation was found at that 
time. Of note, no alterations of ERK1/2 or p38 activation were detected—even after 48 h of treatment. An inhibi-
tion of both phosphorylated and total p38 was attributed to cytotoxic processes, starting to be pronounced 12 h 
after treatment initiation (Fig. 4a).

Depending on the nature of the stimulus and the model used an activation of JNK1/2 and other MAPKs may 
exert either pro-apoptotic or pro-survival function44. In order to determine the specific effects in the prostate 
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cancer cells, we performed co-treatment of the cells with an established JNK1/2 inhibitor SP600125. Due to the 
weak but still detectable cytotoxicity of SP600125 alone in 22Rv1 cells, a Chou-Talalay method was implemented. 

Figure 2.   Western blotting analysis of apoptosis-related proteins (a) and morphological changes (b) in 
22Rv1 cells treated with MomC, anisomycin (Aniso), or cisplatin (Cis). Analysis of 22Rv1 cells treated with 
MomC ± z-VAD(OMe)-fmk (zVAD) using flow cytometry analysis and annexin-V-FITC/PI double staining (c). 
The full-length blots are presented in Supplementary Fig. 1S.
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Figure 3.   Functional kinome profiling of serine/threonine kinases (STK) in 22Rv1 cell treated with MomC for 
2 h. Proteins were extracted and analyzed using STK-PamChip® (sequence-specific peptide phosphorylation 
assay) and anti-phospho-STK antibodies (a). Heat-map plot (b), box plot (c), or volcano-plot (d) were 
constructed. Red squares indicate substrate peptides which have significantly higher phosphorylation 
(log2(p) > 1.3, dotted line) compared to control (d). Upstream analysis of kinases affected under the treatment 
(e). Normalized kinase statistic > 0: higher kinase activity in MomC-treated cells; specificity score > 1.3 (white to 
red bars): statistically significant changes (e).
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This method is often applied for the evaluation of the effects of two or more drug used in combination (i.e. 
synergistic, additive, or antagonistic effect)28. It uses an isobologram equation for calculation of combinational 

Figure 4.   Validation of kinome analysis data was performed using Western blotting (a). The full-length blots 
are presented in Supplementary Fig. 2S. Cells treated with 10 µM anisomycin (Aniso) were used as a positive 
control. Cytotoxic effects of MomC and JNK1/2 inhibitor SP600125 alone and in combination (effect = 0 
corresponds to 100% cell viability; effect = 1 corresponds to 0% cell viability) (b). Combinational index (CI) 
values calculated using Chou–Talalay method (c, d).
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index (CI). Hence, we created a heat-map of cytotoxic activity of MomC and SP600125 alone and in combination 
(Fig. 4b). Further analysis of the data revealed an antagonistic effect of SP600125 on MomC-induced cytotoxicity 
in 22Rv1 cells at the whole range of concentration of the investigated marine alkaloid (Fig. 4c). Thus, an activa-
tion of JNK1/2 under the treatment was determined to be a pro-cytotoxic stimulus.

Role of ROS and PARP in MomC‑induced cells death.  As JNKs activation may result from oxidative 
stress45 we examined ROS levels in MomC-treated 22Rv1 cells. Indeed, an upregulation of ROS was detected 
after 6 h of treatment (Fig. 5a). Moreover, pre-treatment of the cells with an established antioxidant N-acetyl-l-
cysteine (NaC) significantly antagonized cytotoxic effects of MomC (Fig. 5b). Thus, ROS activation significantly 
contributes to the anticancer activity of the investigated marine alkaloid. In line with this, we detected a release of 
cytotoxic mitochondrial proteins to cellular cytoplasm, e.g. cytochrome C and apoptosis inducing factor (AIF), 
which was correlating with the induction of cell death hallmarks (caspase-3- and PARP-cleavage) (Fig. 5c). This 
indicates MomC-induced mitochondria membrane permeabilization, which could be either a reason or a result 
of the elevated ROS production46. An excessive intracellular ROS may induce ssDNA break, which could, how-
ever, further be repaired by PARP, thereby rescuing a cancer cell from DNA damage-induced apoptosis47. There-
fore, we examined the effect of PARP inhibitor olaparib on MomC activity. However, the expected synergistic 
effect of olaparib was not observed, but on the contrary, a pronounced antagonistic effect was detected (Fig. 5d). 
Of note, a similar effect was previously reported for ROS-induced non-apoptotic cell death, executed via con-
secutive induction of JNKs and sustained PARP1 activation45.

Role of other MAPK in MomC‑induced cytotoxicity.  Next, we evaluated the impact of the pathways 
involving other MAPKs, predicted to be activated by kinome analysis (Fig. 3e), but without significant changes 
in the validation Western blotting analyses (Fig.  4a). Therefore, we applied p38 inhibitor SP203580 as well 
as ERK1/2 inhibitors FR180204 and SCH772984 in combination with MomC. Additionally, MEK1 inhibitor 
PD98039 was used. MEK1/2 kinase is known to directly and exclusively phosphorylate ERK1/248. Thus, inhibi-
tion of MEK1/2 ultimately results in ERK1/2 inactivation48, and PD98039 is often used as an indirect ERK1/2 
inhibitor. Due to the slight cytotoxic effects of these inhibitors alone, the Chou-Talalay method was used. We 
observed an antagonistic effect of SP203580 (p38i) on MomC activity in 22Rv1 cells (Fig. 6a). On the other hand, 
we detected synergistic effects of FR180204 (ERKi, Fig. 6b), SCH772984 (ERKi, Fig. 6c), as well as of PD98039 

Figure 5.   Effect of MomC on ROS production (a) and mitochondria integrity, indicated by release of the 
mitochondrial proteins to cytoplasm (c). The full-length blots are presented in Supplementary Fig. 3S. NaC 
(1 mM, MTT assay) (b) and olaparib (Chou–Talalay method) (d) could effectively antagonize the cytotoxic 
effect of MomC.



10

Vol:.(1234567890)

Scientific Reports |        (2020) 10:13178  | https://doi.org/10.1038/s41598-020-69751-z

www.nature.com/scientificreports/

(MEK/ERKi, Fig. 6d) on the activity of the investigated alkaloid. This suggests that p38 kinase is involved in the 
cellular processes which are important for the MomC-induced cytotoxicity, whereas ERK1/2 mediates rather 
pro-survival processes (Fig. 6a–d).

Discussion
In the current study, we demonstrate cytotoxicity of recently isolated marine alkaloid MomC in PCa cells reveal-
ing different levels of resistance to approved standard therapies including taxanes and AR-targeting drugs such 
as abiraterone and enzalutamide. Effects were mediated by caspase-independent cytotoxic processes and exerted 
via activation of JNK1/2, a member of the mitogen-activated protein kinases (MAPKs).

Protein kinases modify target proteins by phosphorylation resulting in changes of enzyme activity, cellular 
location and interaction with other proteins. Due to this key function they play an important role in cancer 
development and growth49. Among them, MAPKs are a prominent family well known to be involved in various 
cancer-related biological processes as well as development of drug resistance and depletion of oncogene-induced 
senescence34. For instance, c-Jun N-terminal protein kinases (JNKs)—a subset of MAPK—affect cell survival and 
death, proliferation, migration, differentiation and inflammation processes by interaction with different nuclear 
and non-nuclear proteins50. Typical JNKs’ targets include c-Myc, p53, 14-3-3, Elk1, histone H3, histone H2AX, 
Bcl-2 family members, as well as several components of AP-1 (activator protein-1; a transcription factor) such 
as c-Jun and ATF2 (reviewed in Ref.50). In cancer, JNKs have been described to be a “double-edged sword”. Thus, 
in addition to a well-established and most often observed pro-apoptotic activity, anti-apoptotic functions were 
reported as well44. The effect of JNKs on cell viability seems to be dependent on the death stimulus’ nature, cell 
type, duration of activation, and the status of the other signaling pathways44.

In prostate cancer, crucial effects on tumor growth have been assigned to specific members of the MAPK 
family36,51,52 and tight interactions with AR-signaling have been demonstrated53,54—in particular, a crosstalk 
between AR and JNK55. Thus, activation of the AR pathway led to the suppression of JNK activation followed 
by inhibition of apoptosis in PCa cells55. In contrast, an active JNK was required to maintain the sensitivity of 
human PCa cells to androgens and androgen-receptor targeting drugs56. Moreover, anti-apoptotic activity of 
androgens in PCa were at least in part exerted via inhibition of JNKs57. Hence, JNK suppression contributes to 
androgen-mediated survival of PCa cells57. In addition, JNK inactivation or deletion promoted the development 
of aggressive androgen-independent metastatic prostate cancer in vivo. Thus, JNK inhibition seems to be an 
unfavorable event in prostate cancer therapy58. First clinical data confirm these findings. Thus, a higher intra-
tumoral expression of active phospho-JNKs correlated with a survival advantage of prostate cancer patients59.

To date, both, intrinsic and extrinsic mediated apoptosis, as well as non-apoptotic/necrotic cell death 
have been reported following JNKs activation in PCa cells. While Bcl-2 phosphorylation and degradation, 

Figure 6.   Analysis of the effect of ERK1/2 inhibitors FR180204 (a) and SCH772984 (b), MEK1/2 inhibitor 
PD98059 (c), or p38 inhibitor SB203580 (d) on MomC activity (Chou–Talalay method).
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mitochondrial cytochrome C release and caspase-9 activation are involved in the intrinsic pathway60, extrinsic 
apoptosis is exerted by modulation of the TNFα- or FasL-Fas-mediated pathways51,61. In addition, endoplasmic 
reticulum (ER) targeting was described to result in JNKs activation resulting in apoptosis of prostate cancer 
cells (via Ca2+ release induced JNK activation followed by the cleavage of executioner caspases; or ER stress 
induced IRE-1/ASK1/JNK signaling followed by intrinsic apoptosis)51. Non-apoptotic cell death was reported 
to be initiated under excessive ROS and executed via JNK-mediated PARP1 activation which ultimately lead to 
the cell death45.

In prostate cancer, approximately ten JNK-activating natural compounds (e.g. jungermannenone B62, capil-
liposide C63, guttiferone F64 and others51) have been identified to date and were reported to induce cell cycle 
arrest and apoptosis in vitro. Of note, for some of these substances, i.e. curcumin and costunolide, synergism 
with standard chemotherapeutics used in the treatment of prostate cancer was observed (reviewed in Ref.51). 
In our study, the kinome screening identified MAPKs as potential direct or indirect targets of the marine natu-
ral compound MomC in PCa cells. Indeed, validation experiments revealed an activation of JNK1/2, which 
was relevant for MomC-induced cytotoxicity. Remarkably, this activation was observed shortly after treatment 
initiation and prior to cell death related events. Moreover, inhibition of JNKs activity by SP600125 effectively 
antagonized MomC cytotoxicity. Hence, JNK1/2 activation is not the result of the other cell death related events 
(e.g. caspases activation), but rather its initiator.

Remarkably, we previously reported the cytotoxic activity of MomC in human cervical carcinoma HeLa 
cells21. In that study an apoptosis-like character of the MomC-induced cell death was suggested21. Interest-
ingly, in both, cervical21 and prostate cancer cells (Fig. 2a–c) apoptotic hallmarks such as cleavage of caspase-3 
and PARP were observed. However, more precise and detailed examinations suggested cancer cell elimination 
rather by non-apoptotic mechanisms, at least in PCa: this non-apoptotic character was indicated by (i) distinct 
morphology of the treated cells (cell rounding and swelling, lack of shrinking and blebbing, lack of apoptotic 
bodies formation), (ii) independence of the cytotoxic effect from caspase activity, (iii) increase of late apoptotic 
and necrotic cell fraction under MomC treatment, while no early apoptosis was detected. In fact, the detected 
caspase-3- and PARP-cleavage were most likely unspecific events secondary to other cell death related processes 
(e.g. mitochondria or lysosomal membrane permeabilization). Of note, the mechanism of the induced cytotoxic 
effects may be cell-specific and therefore distinct in the different models. The mode of MomC action in the human 
cervical carcinoma HeLa cells therefore awaits further examination and clarification.

Notably, we observed an upregulation of cytotoxic ROS and mitochondrial damage under drug exposure. In 
addition, active PARP was required for MomC-induced cytotoxic activity. Thus, the increased ROS production 
did not cause the classical apoptotic cell death mediated by the induction of ssDNA breaks, but rather a specific 
JNKs activation resulting in further PARP activation. Indeed, previous reports demonstrate that excessive ROS 
production leads to JNK activation followed by sustained PARP activation45. Consequences are a quick depletion 
of cellular NAD+ resulting in ATP production failure and cell death of a non-apoptotic character65. Indeed, our 
findings indicate that MomC exerts its activity this way.

Interestingly, the cytotoxic activity of MomC in PCa correlated with the AR status of the cell lines, suggest-
ing a functional AR pathway to contribute to the execution of the cytotoxic program. This can at least be partly 
explained by a cross-talk between AR and JNK. Indeed, JNK activation was reported to be downregulated with 
an increasing grade of PCa57. In addition, antiapoptotic activity of androgens in both androgen-dependent and 
-independent PCs was found to be executed via downstream blocking of JNK activation55,57.

p38 and ERK1/2 are additional MAPK involved in different cellular processes, which mediate either pro-
cytotoxic or pro-survival processes depending on the stimuli and cellular context36,49,66. In prostate cancer, the 
activation of p38 by chemotherapy or other stress stimuli negatively regulates cell cycle progression, inhibits 
migration and promotes apoptosis (reviewed in Ref.36). In contrast, in non-stress conditions p38 is critical for 
hypoxia-reoxygenation induced androgen-independent activation of AR, therefore contributing to the hormone 
resistance of PCa67. Moreover, an active p38 kinase contributes to survival, clonogenicity, migratory and invasive 
properties of PCa cells36. The role of ERK1/2 kinase in prostate cancer is described to be more univocal. Thus, it’s 
basal activity as well as activation are associated with advanced malignancy, initiation of prostate cancer develop-
ment and cancer cell invasion36. Moreover, ERK1/2 activation is associated with promotion of AR-signaling and 
increased PSA expression36. In patients, active ERK1/2 was found to be associated with advanced disease with 
the highest levels reported for metastatic castration-resistant PCa (mCRPC). First signs of clinical activity were 
reported for MEK/ERK inhibition and a phase II clinical trial examining the activity of trametinib in mCRPC 
is currently recruiting (NCT02881242)68.

In our experiments, the kinome analysis predicted p38 and ERK1/2 to be also regulated by MomC; however, 
no significant changes of the phosphorylated forms were observed in validation experiments. Of note, a distinct 
level of active p-ERK1/2 was detected in non-treated (control) cells, with no obvious further regulation under 
treatment. However, cellular processes controlled by ERK1/2 even at its basal activity level may counteract the 
activity of MomC. Thus, several ERK inhibitors synergized with MomC increasing its cytotoxic effects. Therefore, 
MEK/ERK inhibitors can be considered for a combinational use with MomC in future drug development. In 
contrast, an inhibition of p38 activity by p38 inhibitor SP203580 antagonized cytotoxic activity of MomC. At 
the same time, p38 was not activated under the MomC treatment. Hence, p38 activity (even without additional 
activation) may be important for successful execution of the MomC-induced cytotoxic program. Finally, it 
should be noted that a possible activation of caMLCK, predicted by kinome analysis, may cause a stimulation 
of heart muscle contraction. This potential side effect needs to be carefully monitored in in vivo experiments 
and future clinical trials.
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Conclusions
Distinct from other natural compounds marine pentacyclic guanidine alkaloid MomC effectively kills PCa by 
induction of caspase-independent non-apoptotic cell death. The mitogen-activated protein kinase JNK1/2 was 
identified as one of the primary molecular targets with an early activation prior to other processes involved in 
MomC mediated cell death. Although no change of p38 and ERK1/2 activity was detected, p38 was shown to be 
important for cytotoxic activity of MomC, whereas inhibition of ERK1/2 increased cytotoxic effects of the marine 
compound. In conclusion, MomC is a promising novel JNK1/2 targeting marine compound for the treatment of 
advanced, drug resistant prostate cancer.
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