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Heavy metals in commercial fish
and seafood products and risk
assessment in adult population
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This work investigates the level of exposure to cadmium (Cd), mercury (Hg), and lead (Pb) via fish and
seafood products in adult population in Bosnia and Herzegovina (BiH). Metals content was determined
in seven commercial species of fish and seafood products widely available and consumed in BiH.
Analysis of Cd and Pb was performed by GFAAS (Graphite furnace atomic absorption spectrometry),
and analysis of Hg by FIAS AAS (flow injection cold vapour atomic absorption spectrometry) in
accredited laboratory for food analysis. The health risk was determined by the estimated weekly
intake, hazard index, target hazard quotients, and percent of tolerable weekly intake or percent

of benchmark dose lower confidence limit. Concentration above the maximum residue level (MRL)
set in the European Union was found in only one sample (Hg in mackerel). Cd content was generally
high in squid, approaching the corresponding MRL in two samples. The hazard index was close to 1

in bluefin tuna and mackerel, mostly due to Hg content. These two fish species should be consumed
in moderation, especially by pregnant women. While consumption of various fish and seafood on
average is not of significant concern, health risk could not be ruled out for high consumers.

Fish is considered a significant part of a healthy, well-balanced diet due to its exceptional nutritional properties
(high-quality proteins, vitamins, essential omega-3 fatty acids). Fish and seafood are unique dietary sources of
cardioprotective docosahexaenoic (DHA) and eicosapentaenoic (EPA) fatty acids. Thus, many public health
authorities recommend regular fish consumption equivalent to at least 1-2 serving per week in order to prevent
diet-related chronic diseases!~. Unfortunately, anthropogenic environmental impacts (industry, agriculture,
mining) significantly increase the naturally occurring amounts of heavy metals in the environment, including
the marine ecosystem. Consequently, marine organisms (fish, shellfish, crustaceans) can accumulate these metals
to potentially toxic concentrations. Often, fish and other seafood represent one of the main sources of exposure
to metals in the general population. Foods that contain toxic metals above the permitted levels are considered to
be harmful to human health and are banned for trade by many national and international regulations. Maximum
levels (MRL) of harmful substances in food in Bosnia and Herzegovina (BiH) are defined in the Regulation on
maximum levels for certain contaminants in food*. The same rules apply to food in the European Union®~.
Some of the toxic effects of heavy metals include: impaired renal (Pb, Cd, Hg) and liver (Pb and Cd) function,
decreased cognitive function (Pb, Hg), impaired reproductive capacity (Cd, Pb), hypertension (Cd), neurological
changes (Hg, Pb), teratogenic effects (Hg), and cancers (Cd)'*'2 Our previous work showed that the content of
heavy metals in certain samples of fish from the Neretva river (BiH) exceeds MRLs for some metals, and content
found in many commercially available fish could pose a health risk for high consumers!. The MRL value is a
single number for a certain pollutant that can only be used to truly determine if the product can be legally traded.
However, compliance with these values does not guarantee the safety of the food in case of more frequent con-
sumption. Therefore, risk assessment studies are conducted using different models of food consumption (average
intake, lower and upper limits of estimated intake) in different population groups. It is also important to stress
out that the compliance with the legal limits (MRL) and food safety, in general, is considered as the responsibility
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Species Country of origin | n | Average+SD | Range MRL® | Average+SD | Range MRL*® | Average+SD | Range MRL*
European hake Spain 0.003£0.001 | 0.002-0.004 |0.05 |0.023£0.002 |0.022-0.025 |050 |0.002+0.001 |0.001-0.002 |0.30
Atlantic bluefin tuna steak | Portugal 3 10.01£0.0 0.10 | 0213+0.096 |0.114-0.309 | 1.0 0.003£0.002 | 0.001-0.004 | 0.30
étali‘r‘lteiz)blueﬁ“ tuna Thailand 7 0.015£0.003 |0.01-002 |0.10 |0.062+0.028 |0.037-0.116 | 1.0 0.006+0.003 | 0.001-0.008 | 0.30
Atlantic mackerel Morocco 5 10.033+0.009 |0.021-0.047 [0.10 |0.192+0.247 |0.042-0.624 |0.50 | 0.007+0.005 | NDP-0.01 0.30
Patagonian squid Spain 5 064440252 |0.391-0918 | 1.0 0.02+£0.004 | 0.014-0.024 |0.50 |0.003£0.002 |0.001-0.006 | 0.30
Blue mussel Spain 5 ]0.062£0.009 |0.049-0.073 | 1.0 0.044+0.011 |0.026-0.055 |0.50 |0.161£0.072 |0.092-0.278 | 1.5
Black tiger shrimp China 4 [0.015+£0.002 |0.013-0.017 |0.5 0.058+0.023 | 0.029-0.078 | 0.50 | 0.014+0.008 | <0.001-0.022 | 0.5
Indian white prawn India 5 10.002+0.005 |0.015-0.027 | 0.5 0.037+0.018 | 0.008-0.056 | 0.50 | 0.013£0.008 |0.004-0.024 | 0.5

Table 1. Heavy metal concentrations and maximum residue level —MRL (mg kg™ wet weight) in different fish
and seafood species. “MRL maximum residue level in EU*. °ND not detected.
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Figure 1. Hazard index (HI) values for one portion of fish or seafood per week.

of the food business operator (i.e. producer) by law. With this concept, the official food control has diminished
significantly and the number of food samples regularly tested is quite small. On the other hand, independent
(academic) research often reveals contaminant levels above the legal limits of randomly selected samples from
the market. These data are valuable for both food safety and public health authorities, as can be seen from e.g.
the European food safety authority (EFSA) reports on health risk assessment for European consumers, which
cite and relies on findings in these research papers.

The aim of this work was to determine toxic metals (Cd, Pb, and Hg) content in different fish and seafood
and to assess potential health risk based on previously estimated daily intake in the adult population in BiH'.
Data on toxic metal concentrations in this group of food from BiH market are scarce and total dietary study is
yet to be conducted in BiH. Hence, our results are valuable inputs for food regulatory agency as well as public
health authorities.

Results
The concentration of heavy metals in fish and seafood are presented in Table 1.

Hazard index (HI) values for individual species based on minimal recommended consumption of one portion
(150 g) of fish or seafood per week are shown in Fig. 1.

The THQ (target hazard quotients) and hazard index (HI) values calculated for different age and socio-
economic groups are presented in Fig. 2.

Estimated weekly intake of analyzed metals via fish and seafood consumption and % TWI (Tolerable Weekly
Intake) for Cd and Hg or %BMDL (Benchmark Dose Lower Confidence Limit) for Pb are presented in Table 2.

Discussion

Mercury and cadmium were detected in all analyzed samples (100%), while lead was detected in 33 samples
(89.2%). Metals content was in order Hg>Cd > Pb in most of the species, except blue mussel (Pb>Cd > Hg)
and Indian white prawn (Hg>Pb > Cd). Metals content in the vast majority of samples were well below
the MRL (Table 1). Mercury content above the MRL was found in only one sample of Atlantic mackerel
(0.624 mg kg™!). Cadmium content was close to the corresponding MRL in two samples of Patagonian squid
(0.918 and 0.896 mg kg™!) and was also quite high in the other three samples of the same species (0.591, 0.425
and 0.391 mg kg™). Cadmium content in Patagonian squid was much higher than in other analyzed species.
Similarly, Pb content was much higher in the blue mussel than in other analyzed species. Our results are in good
agreement with other published data from the European market!'>""7.

SCIENTIFIC REPORTS |

(2020) 10:13238 |

https://doi.org/10.1038/s41598-020-70205-9



www.nature.com/scientificreports/

1.0

0.9 -
0.8 -
0.7 -
0.6 -
HI 0.5 1
0.4 -

0.3

0.2 -
0.1

0.0 I

1.0

18-40 41-60 261
Age (years)

0.9 -
0.8
0.7
0.6 -
HI 0.5 -

b)

1

0.4

0.3
0.2

0.0 || — —

low medium high
Socio-economic status group

mTHQ (Cd)

HI

HI

5.5
5.0
4.5
4.0
3.5
3.0
25
2.0
1.5
1.0
0.5
0.0

5.5
5.0
4.5
4.0
3.5
3.0

2.0
1.5
1.0
0.5
0.0

OTHQ (Hg)

18-40 41-60 261
Age (years)

d)

|| — [
low medium high
Socio-economic status group

aTHQ (Pb)

Figure 2. Hazard index (HI) and target hazard quotient (THQ) values by age and socio-economic groups
calculate for average fish and seafood intake and geometric mean (a,b) or maximum (c,d) metal concentrations.

Age group (years) Socio-economic status group
Weekly intake 18-40 41-60 261 Low Medium High
Cd (ug kg™ b.w.) 0.199 0.106 0.389 0.274 0.166 0.214
Cd (%TWI) 7.95 4.23 15.6 11.0 6.65 8.55
Hg (ug kg™’ b.w.) 0.142 0.075 0.277 0.196 0.119 0.152
Hg (%TWTI) 10.9 5.80 21.3 15.0 9.12 11.7
Pb (ug kg™' b.w.) 0.055 0.029 0.108 0.076 0.046 0.059
Pb (%BMDL,,) 3.68 1.96 7.20 5.08 3.08 3.96
Pb (%BMDL,,) 8.76 4.67 17.1 12.1 7.33 9.43

Table 2. Estimated weekly intake of metals (ug kg™ b.w. and %TWI or %BMDL) based on geometric mean
concentration in different age and socio-economic groups. TWI tolerable weekly intake, BMDL,, benchmark
dose lower confidence limit (for cardiovascular Pb effects), BMDL,, benchmark dose lower confidence limit

(for chronic kidney Pb effects).

The target hazard quotient (THQ) is a ratio of the potential exposure to a contaminant and the acceptable
level of the same contaminant at which no adverse effects are expected (see the “Risk assessment evaluation” for
details on the calculation). The hazard index (HI) is computed as the sum of THQs for individual metals and
used to assess the total potential health effect due to exposure to a mixture of metals. It is generally accepted that
HI> 1.0 indicates that the adverse health effects are possible. Hazard index (HI) calculated on the basis of the
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mean metal concentration in different species and one portion of fish per week (Fig. 1) was close to 1 for tuna
steak (HI=0.92) and mackerel (HI=0.84), thus these two species should be consumed in moderation. This should
especially be advised to pregnant women (and children) since the main contribution to the overall HI was due
to Hg content in both of these species. While most of the food-based dietary guidelines recommend higher fish
and seafood intake for pregnant women to provide an adequate dietary intake of DHA and iodine, which have a
well-established role in the development of the central nervous system of the fetus, special advice on the type of
fish to be limited because of relative high methylmercury content and its neurotoxic effect on fetus are also often
provided'®. Furthermore, the fish to be limited or avoided during pregnancy usually include fresh tuna, while
different national guidelines for pregnant women list mackerel as either a safe fish to be eaten freely (e.g. Sweden,
Norway, Denmark) or as fish to be limited (e.g. USA, UK, France, Italy)'®. Our results suggest that both fresh
tuna and mackerel consumption should be limited to not more than one portion per week during pregnancy.

Total HI, calculated on the basis of the geometric mean concentrations of metals and mean fish and seafood
consumption rate, were below 1 in all consumer groups, with the highest contribution of Hg (Fig. 2a,b). Among
different age groups, the highest risk was found for consumers older than 61 years of age (HI=0.61), followed
by group 18-40 years of age (HI=0.31). In respect to socio-economic status, the highest risk was found for
consumers with low status (HI =0.43), followed by consumers with high status (HI=0.33). Since at least some
of the consumers within groups have higher exposure due to their choice of fish and seafood species, as well as
higher than average consumption rate, maximum metals concentrations were used for the worst-case scenario
calculation. In this case, the total HI was higher than 1 (Fig. 2), thus health risk could not be neglected in high
consumers irrespective of their age or socio-economic status.

Cadmium content (mean concentration) in all analyzed samples would result in a weekly intake of
0.106-0.389 pg kg™ b.w. (Table 2). The contribution to TWI for Cd in the same population groups was 4.23% to
15.6%. Cadmium weekly intake from fish and seafood (fish + molluscs + crustaceans) reported for adult Belgian
population in 2010 (0.083 kg™' b.w., 3.33% TWI)* was close to the lowest intake in our study. Considering indi-
vidual species in our sample, Cd was the critical metal (metal with the highest %TWI) in the Patagonian squid.
Based on our results, an adult person (70 kg b.w.) would reach the TWI for Cd byweekly consumption of 272 g
of squid, whereas more than tenfold amount of other analyzed species would be needed for the same Cd intake.
However, it is important to take into consideration that fish and seafood are usually not one of the major dietary
Cd sources. According to EFSA, the main sources of Cd in a diet are the staple foods (wheat, rice, and potatoes),
which provide about 40-50% of the ingested metal?*?', and habitual tobacco smoking is a significant additional
source of this metal®>. Hence, our data suggest that fish and seafood, especially squid should be considered as
relevant dietary Cd sources.

Mercury content (mean concentration) in all analyzed samples would result in a weekly intake of
0.075-0.277 pg kg™' b.w. (Table 2). The contribution to TWI for Hg was 5.80-21.3%. According to European
Food Safety Authority (EFSA) report from 2015%, estimated mean weekly exposure to Hg from fish in different
European countries ranged from < 0.1 (the Netherlands) to 1.6 pg kg™ b.w. (Portugal) (for an adult with b.w. of
60 kg). Our results were within this range and closer to the lower boundary. Mercury was the critical metal in
all species except the Patagonian squid and the blue mussel in our sample. An adult person (70 kg b.w.) would
reach the TWI for Hg by weekly consumption of 427 g of bluefin tuna steak, 474 g of mackerel, 1.5 kg of canned
tuna, 1.6 kg of black tiger shrimp, 2.5 kg of Indian white prawn or 4.0 kg of European hake. Since fish and seafood
is virtually exclusive source of methylmercury®*, these intake rates can be considered as the safe limits for fish
and seafood in our sample.

Content (geometric mean concentration) of Pb in our sample corresponds to a weekly intake of
0.029-0.108 ug kg™* b.w. (Table 2). The contribution to BMDL,, was 1.96-7.20%, and contribution to BMDL,,
was 4.67-17.1%. Lead was the critical metal in the blue mussel. This is in accordance with the EFSA report in
which bivalve molluscs had the highest incidence of lead contamination in the “fish and seafood” category, with
the mean Pb content of about 0.2 mg kg™ (0.161 mg kg™ in our mussel samples)?. Based on the mean con-
centration in our sample, an adult person (70 kg) would reach TWI for Pb by weekly consumption of 274 g of
blue mussel. Although EFSA reports that the main sources of Pb exposure for the adult population are food and
drinking water, fish and seafood group contributes with only about 1% to the total dietary Pb intake on average,
but with considerable variation (between countries and on the individual level) depending on dietary habits®. In
respect to this, our results suggest that blue mussel could be an important dietary Pb source if consumed regularly.

Limitations of the study. Although the here presented study is the first of this kind in BiH, it is not with-
out limitations. The authors acknowledge that the sample size was limited and the results should be interpreted
as preliminary. The heavy metals intake was estimated based on the concentrations found in a total sample,
while the actual intake of various species from this food group was not known. Due to these limitations, as well
as natural and expected temporal variations in contaminant levels in food, further studies are needed. The inclu-
sion of a larger sample and survey data on the actual consumption rate of individual species of fish and other
seafood is recommended.

Conclusion

Heavy metals (Cd, Hg, and Pb) were detected in almost all analyzed fish and seafood samples, with the highest
concentrations recorded for Hg. The highest HI close to 1 were found for fresh bluefin tuna and canned mackerel,
mostly due to Hg. Hence, these two species should be consumed in moderation (not more than one portion per
week for pregnant women). For an adult consumer (70 kg b.w.), TWI for Cd and Pb would be reached by weekly
consumption of 272 g of squid and 274 g of the blue mussel, respectively. On average, a diet that includes a variety
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Figure 3. Geographical location of Bosnia and Herzegovina.

of fish and seafood in observed, as well as recommended consumption rates is unlikely to pose a significant risk
due to Cd, Hg and Pb intake in the adult population. The health risk for high consumers could not be ruled out.

Due to the study limitations, these results should be interpreted as preliminary. Further research to addition-
ally validate our results is recommended.

Matherials and methods

Sample selection. Bosnia and Herzegovina (BiH) is a continental country with a narrow exit to the Adri-
atic Sea (Fig. 3). Despite this fact, most fish and seafood eaten in BiH are bought in grocery stores, usually frozen
or canned, probably because it is more easily accessible throughout the year. Thus, we purchased our samples
(n=37) from retail in June 2019. We chose different fish and seafood species widely available and consumed by the
local population. The toxic metals content was determined in samples of European hake (Merluccius merluccius,
Linnaeus 1758)—frozen, Atlantic bluefin tuna (Thunnus thynnus, Linnaeus, 1758) - frozen and canned, Atlantic
mackerel (Scomber scombrus, Linnaeus, 1758)—canned, Patagonian squid (Loligo gahi, Orbigny, 1835)—frozen,
blue mussel (Mytilus galloprovincialis, Lamark 1819)—frozen, black tiger shrimp (Penaeus monodon, Fabricius
1798)—frozen and Indian white prawn (Penaeus indicus, H. Milne Edwards, 1837)—frozen.

Materials. All chemicals used during the analytical procedure were of ultrapure grade. Nitric acid (68%) and
hydrochloric acid (35%) were purchased from Fisher Scientific (UK). Sodium borohydride granules were from
Merck Millipore (USA). Matrix modifiers for THGA-AAS (palladium nitrate 2 g/L, magnesium nitrate 10 g/L,
and di-ammonium hydrogen phosphate 25 mg/L) were from CARLO ERBA Reagents (Italy). Metals standard
solutions (Pb and Cd 1,000 mg/l in HNO; 0.5 mol/I Certipur and Hg 1,000 mg/l in HNO; 2 mol/l Certipur) were
from Merck Millipore (USA), and Mussel tissue (elements) ERM certified Reference Material was from Sigma-
Aldrich (UK). Samples digestion was performed in the Berghof microwave oven with PTFE vessels.

Ultrapure MilliPore water (Mili-Q Direct 8) was used in all operations. Sample analysis was performed on
PinAAcle 900T PerkinElmer AAS with THGA graphite furnace and flow injection for atomic spectroscopy
(FIAS) system.

Sample preparation. The analysis of metals content was performed in an accredited laboratory for
food analysis at the Veterinary faculty in Sarajevo, BiH. Samples were prepared according to standards EN
13804:2013* and EN 13805:2014”. In brief, an accurately weighted aliquot (0.50+0.1 g) of a homogenized
sample (edible part) was transferred in the PTFE vessels for microwave digestion and 6 mL of nitric acid was
added. Frozen samples were thawed to room temperature before homogenization. Digestion was performed in
the microwave oven by temperature-controlled program: heating to 160 °C for 5 min, holding time 5 min, ramp
time 1 min to 190 °C, holding time 15 min, cooling to 100 °C for 10 min. After cooling to room temperature the
content of the vessel was transferred to a volumetric flask (20 mL) and diluted with ultrapure water to the mark.
This solution was used for the analysis of Pb and Cd, while it was further diluted with 3 mol/L hydrochloric acid
(1:10) for determination of Hg content.
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Metal | ERM certified concentration (mg/kg) | Found concentration (mg/kg) | %RSD | LoQ (mg/kg) | Recovery (%)
Cd 0.336 0.30 0.15 0.002 89.3
Hg 0.071 0.072 0.03 0.02 101
Pb 2.18 1.788 0.09 0.01 82.0

Table 3. Analytical method parameters. RSD relative standard deviation, LoQ limit of quantification.

Toxic metals analysis. The content of Pb and Cd was measured by GFAAS (Graphite Furnace Atomic
Absorption Spectrometry) with a mixture of matrix modifiers [NH,H,PO, and Pd(NO;), for Pb; NH,H,PO,
and Mg(NO,), for Cd], according to the EN 14084:2003%. The content of Hg was determined by FIAS technique
with NaBH, and 3 mol/L HCl according to the in-house validated method (wavelength 253,65 nm; slit 0,7 nm;
cell temperature 100 °C; pump speed 120; carrier gas flow 100 ml/min). The content of metals was quantified
from the calibration curve.

Quality control/quality assurance. Quality control was performed by analysis of one aliquot of refer-
ence material, as well as one laboratory reagent blank with each batch of samples. All the samples were analyzed
in duplicate and metals content was presented as an average. The differences between duplicates were <6.14%.
Analytical method parameters are shown in Table 3. Blank did not contain detectable concentrations of meas-
ured metals. The recovery was calculated as the percentage of the true (certified) concentration of a metal in the
certified reference material recovered during the analytical procedure. The recovery values were in the range of
80-110% (Table 3), which is acceptable for the levels of the target analytes, indicating the absence of a significant
analytical bias.

Precautionary measures were taken to prevent possible contamination of the samples. All glassware was
cleaned by soaking in 1% nitric acid overnight and rinsing with ultrapure water before use.

Risk assessment evaluation. The risk assessment was estimated based on the Target Hazard Quotient
(THQ), hazard index (HI) and contribution to the Tolerable Weekly Intake or Benchmark Dose.

THQ represents the ratio of exposure level to a substance over a specified period to reference dose (RfD) of
that particular substance. Thus, THQ > 1 indicates potential health hazards associated with the consumption of
certain food. THQ values were calculated by the formula given by U.S. EPA®:

EF-ED-FIR.-C _3
- 10

THQ= ———
Q= Ri>-BW.TA

(1)
where EF is the exposure frequency (365 days year™!), ED is the exposure duration equivalent to the average
human lifetime (70 years)®, FIR is the fish and seafood ingestion rate (g day*), C is the metal concentration in
fish tissue (mg kg™), RfD is the oral reference dose for contaminant (mg kg™ day™"), BW is the average body
weight (70 kg for adults), and TA is the exposure time for non-carcinogens (365 days year™! ED). The oral refer-
ence dose for Cd, Hg, and Pbis 1 x 10,1 x 10 and 3.5 x 107> mg kg™! day™}, respectively*"*2. The RfD value
for methylmercury was used since in fish and seafood this metal is almost exclusively present in methylated form
(90% of total Hg content)*?. Since official data on dietary habits of the BiH population is not available, we used
the fish and seafood ingestion rates (FIR) reported by Gicevic et al.'*. They found that mean ingestion rate was
18.4,9.8, and 36.0 g day™' for age groups 18-40, 41-60 and > 61 years, respectively and 25.4, 15.4, and 19.8 g day™!
for socio-economic status groups “low”, “medium” and “high”, respectively. The geometric mean concentrations
of analysed metals in all samples (0.108 mg kg™! for Cd, 0.077 mg kg™! for Hg and 0.030 mg kg™! for Pb) and
maximum concentrations (0.918 mg kg™ for Cd, 0.624 mg kg™ for Hg and 0.278 mg kg™ for Pb) were combined
with different fish and seafood consumption rates reported for different age and socio-economic status groups
in order to assess the estimated daily intake of metals.

To evaluate the potential risk of adverse health effects from a mixture of toxic metals the hazard index (HI)
was calculated as the sum of THQ for each metal:

HI = THQ¢q + THQg, + THQpy, (2)

When HI < 1.0, it is unlikely that there will be obvious adverse effects, while HI > 10 indicates high risk and
chronic or even acute effect™.

Estimated weekly intake of metals via fish and seafood was also compared to corresponding Tolerable Weekly
Intake (TWI) for Cd (2.5 pg kg™' b.w.)*! and Hg (1.3 pug kg™* b.w.)*®. Since EFSA and other food safety authori-
ties no longer recommend the use of previously established TWI for Pb, we used two BMDL (Benchmark Dose
Lower Confidence Limit) values for Pb: BMDL,, (0.63 ug/kg b.w.) and BMDL, (1.5 pg/kg b.w.) for chronic kidney
effects and cardiovascular effects®®. The contribution to the TWI (%TWI) or BMDL (%BMDL) was calculated
for mixed seafood consumption using formula:

EWI

% TWIor % BMDL = ——— .
TWI - BW

100 (3)

where EWI is estimated weekly intake of a metal (ug week™), calculated as a product of the geometric mean
concentration of each metal (ug g™!) and weekly fish and seafood consumption (g).
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Data availability
The datasets generated and/or analyzed during the current study are available from the corresponding author
on reasonable request.
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