Skip to main content
. 2020 Jul 8;20(14):3816. doi: 10.3390/s20143816

Table 3.

Performance comparisons on the test set of MJU-Waste. For each method, we report the IoU for waste objects (IoU), mean IoU (mIoU), pixel Precision for waste objects (Prec) and Mean pixel precision (Mean). See Section 4.3 for details.

Dataset:
MJU-Waste (Test) Backbone IoU mIoU Prec Mean
Baseline Approaches
FCN-8s [17] VGG-16 75.28 87.35 85.95 92.83
PSPNet [21] ResNet-101 78.62 89.06 86.42 93.11
CCNet [22] ResNet-101 83.44 91.54 92.92 96.35
DeepLabv3 [23] ResNet-50 79.92 89.73 86.30 93.06
DeepLabv3 [23] ResNet-101 84.11 91.88 89.69 94.77
Proposed Multi-Level (ML) Model
FCN-8s-ML VGG-16 82.29 90.95 91.75 95.76
(+7.01) (+3.60) (+5.80) (+2.93)
PSPNet-ML ResNet-101 81.81 90.70 89.65 94.73
(+3.19) (+1.64) (+3.23) (+1.62)
CCNet-ML ResNet-101 86.63 93.17 96.05 97.92
(+3.19) (+1.63) (+3.13) (+1.57)
DeepLabv3-ML ResNet-50 84.35 92.00 91.73 95.78
(+4.43) (+2.27) (+5.43) (+2.72)
DeepLabv3-ML ResNet-101 87.84 93.79 94.43 97.14
(+3.73) (+1.91) (+4.74) (+2.37)