Skip to main content
. 2020 Jul 14;20(14):3906. doi: 10.3390/s20143906

Table 3.

The classification accuracy (OA (%)) of the linear classification of fused features with Principal Component Analysis (PCA) transformation, with 80% and 50% of UC-Merced dataset as a training set.

Method 80% of UCM Dataset as a Training Set 50% of UCM Dataset as a Training Set
ResNet50 last conv layer (PCA) + InceptionV3 avg pooling 97.14 97.33
ResNet50 last conv layer (PCA) + Xception avg pooling 97.62 97.43
DenseNet121 conv5_block16_concat (PCA) + Xception avg pooling 97.86 96.67
DenseNet121 conv4_block24_concat (PCA) + Xception avg pooling 97.86 96.57
InceptionV3 mixed_10 (PCA) + ResNet50 avg pooling 97.62 96.57
InceptionV3 mixed_8 (PCA) + ResNet50 avg pooling 98.33 97.43
InceptionV3 mixed_10 (PCA) + Xception avg pooling 95.95 95.14
InceptionV3 mixed_8 (PCA) + Xception avg pooling 98.57 97.62
DenseNet121 conv5_block16_concat (PCA) + ResNet50 avg pooling 97.14 96.67
DenseNet121 conv4_block24_concat (PCA) + ResNet50 avg pooling 96.9 95.24
Xception block14_sepconv2_act (PCA) + DenseNet121 avg pooling 96.67 96.48
Xception block14_sepconv1_act (PCA) + DenseNet121 avg pooling 98.57 96.29