Table 6.
The classification accuracy (OA (%)) of the linear classification of fused features with PCA transformation, with 60% and 40% of WHU-RS dataset as a training set.
| Method | 60% of WHU-RS Dataset as a Training Set | 40% of WHU-RS Dataset as a Training Set |
|---|---|---|
| ResNet50 last conv layer (PCA) + InceptionV3 avg pooling | 98.26 | 95.02 |
| ResNet50 last conv layer (PCA) + Xception avg pooling | 97.62 | 96.52 |
| DenseNet121 conv5_block16_concat (PCA) + Xception avg pooling | 97.01 | 95.69 |
| DenseNet121 conv4_block24_concat (PCA) + Xception avg pooling | 97.76 | 96.68 |
| InceptionV3 mixed_10 (PCA) + ResNet50 avg pooling | 96.27 | 95.85 |
| InceptionV3 mixed_8 (PCA) + ResNet50 avg pooling | 98.01 | 98.67 |
| InceptionV3 mixed_10 (PCA) + Xception avg pooling | 96.77 | 96.02 |
| InceptionV3 mixed_8 (PCA) + Xception avg pooling | 98.01 | 96.35 |
| DenseNet121 conv5_block16_concat (PCA) + ResNet50 avg pooling | 98.76 | 98.34 |
| DenseNet121 conv4_block24_concat (PCA) + ResNet50 avg pooling | 96.77 | 96.52 |
| Xception block14_sepconv2_act (PCA) + DenseNet121 avg pooling | 97.51 | 96.35 |
| Xception block14_sepconv1_act (PCA) + DenseNet121 avg pooling | 97.76 | 96.52 |
| DenseNet121 conv5_block16_concat (PCA) + InceptionV3 avg pooling | 96.27 | 97.51 |
| DenseNet121 conv4_block24_concat (PCA) + InceptionV3 avg pooling | 98.01 | 97.18 |