Skip to main content
. 2020 Jul 14;20(14):3906. doi: 10.3390/s20143906

Table 6.

The classification accuracy (OA (%)) of the linear classification of fused features with PCA transformation, with 60% and 40% of WHU-RS dataset as a training set.

Method 60% of WHU-RS Dataset as a Training Set 40% of WHU-RS Dataset as a Training Set
ResNet50 last conv layer (PCA) + InceptionV3 avg pooling 98.26 95.02
ResNet50 last conv layer (PCA) + Xception avg pooling 97.62 96.52
DenseNet121 conv5_block16_concat (PCA) + Xception avg pooling 97.01 95.69
DenseNet121 conv4_block24_concat (PCA) + Xception avg pooling 97.76 96.68
InceptionV3 mixed_10 (PCA) + ResNet50 avg pooling 96.27 95.85
InceptionV3 mixed_8 (PCA) + ResNet50 avg pooling 98.01 98.67
InceptionV3 mixed_10 (PCA) + Xception avg pooling 96.77 96.02
InceptionV3 mixed_8 (PCA) + Xception avg pooling 98.01 96.35
DenseNet121 conv5_block16_concat (PCA) + ResNet50 avg pooling 98.76 98.34
DenseNet121 conv4_block24_concat (PCA) + ResNet50 avg pooling 96.77 96.52
Xception block14_sepconv2_act (PCA) + DenseNet121 avg pooling 97.51 96.35
Xception block14_sepconv1_act (PCA) + DenseNet121 avg pooling 97.76 96.52
DenseNet121 conv5_block16_concat (PCA) + InceptionV3 avg pooling 96.27 97.51
DenseNet121 conv4_block24_concat (PCA) + InceptionV3 avg pooling 98.01 97.18