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Abstract: Malaria remains a life-threatening disease in many tropical countries. Honduras has successfully
reduced malaria transmission as different control methods have been applied, focusing mainly on indoor
mosquitoes. The selective pressure exerted by the use of insecticides inside the households could modify
the feeding behavior of the mosquitoes, forcing them to search for available animal hosts outside the
houses. These animal hosts in the peridomicile could consequently become an important factor in
maintaining vector populations in endemic areas. Herein, we investigated the blood meal sources and
Plasmodium spp. infection on anophelines collected outdoors in endemic areas of Honduras. Individual
PCR reactions with species-specific primers were used to detect five feeding sources on 181 visibly
engorged mosquitoes. In addition, a subset of these mosquitoes was chosen for pathogen analysis by a
nested PCR approach. Most mosquitoes fed on multiple hosts (2 to 4), and 24.9% of mosquitoes had fed
on a single host, animal or human. Chicken and bovine were the most frequent blood meal sources (29.5%
and 27.5%, respectively). The average human blood index (HBI) was 22.1%. None of the mosquitoes were
found to be infected with Plasmodium spp. Our results show the opportunistic and zoophilic behavior of
Anopheles mosquitoes in Honduras.
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1. Introduction

Malaria is a human parasitic disease caused by four species of Plasmodia, and its main transmission
mechanism is through mosquito vectors of the genus Anopheles. Malaria continues to be a great burden on
the public health and economy of many tropical countries [1]. Along with other countries in Mesoamerica,
Honduras has established the goal of eliminating malaria by 2030 [2], a goal that seems within reach,
since the country has managed to substantially reduce vectorial transmission by more than 96% since
2004, reporting only 651 cases in 2018 [1]. The strategies implemented to achieve this goal have included
the timely diagnosis and treatment of symptomatic cases, surveillance of active foci, pharmacovigilance,
indoor residual spraying, and the use of long-lasting insecticide-treated mosquito nets in some regions.
Measures aimed at vector control have played a major role. Integrated vector control interventions for
Anopheles species are key components in achieving malaria elimination worldwide [3].

Twelve species of Anopheles have been officially registered by the Honduran health authorities in
entomological surveillance reports. According to these surveys, as well as international databases [4],
the most frequent and widely distributed species in the country is Anopheles albimanus. As a generalist
species which requires no specific habitat, An. albimanus can be widely dispersed, and is considered a
dominant vector in Central America [5–7]. This information has been confirmed by a recent publication
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describing seven Anopheles species from endemic areas in Honduras, where 74% of the mosquitoes
were identified as An. albimanus [8]. Other secondary vectors were also reported, but with a more
limited geographical distribution.

Differences in the distribution of dominant and secondary vector species, as well as their vector
capacity, contribute substantially to malaria endemicity. Vector capacity (i.e., the ability of a vector to
transmit a pathogen) is defined by the sum of several factors, such as anthropophilic behavior [9], intrinsic
mortality [10], indoor resting [11], biting hours [12], length of the gonotrophic cycle, and the gonotrophic
discordance [13]. A further key element determining vector capacity is the insect´s feeding behavior.
Some species of mosquitoes, for example, are opportunistic, and can feed on multiple sources (human and
animals), depending on hosts’ availability [14–16]. Feeding on mixed blood meals from different hosts
within a single gonotrophic cycle is also a common behavior for some Anopheles species [17]. This could
contribute to maintaining vector populations conducing to high vector densities, which could increase
malaria transmission in a given geographic area.

The two main insecticide-based interventions for malaria elimination implemented in Honduras
and many other countries are indoor residual spraying (IRS) and long-lasting insecticide treated nets
(LLIN) [18]. Despite their effectiveness, not only do these interventions neglect potential vectors that
feed and rest outdoors, but they can also contribute to a selective pressure that may translate into
behavior change. It has been shown that, under indoor insecticide pressure, mosquitoes are forced to
feed on animals in the peridomicile, adjusting their biting preference towards more available hosts [19].
The evaluation of the vector competence and identification of pathogen reservoirs requires a solid
understanding of the vector’s population dynamics after insecticide-based interventions, as well as the
preferences of vectors for specific hosts. In Honduras, no information is available regarding the food
sources of Anopheles species. To contribute to this knowledge, the present study aimed to investigate the
blood meal sources of anophelines resting outdoors, as well as the proportion of infected mosquitoes
in endemic areas of Honduras.

2. Materials and Methods

2.1. Mosquito Collection

Anopheline mosquitoes were collected between February and October 2019, at eight sites in five
departments in Honduras. Capture sites were located near small rural villages, in which agricultural
and fishing activities take place. Six out of the eight collection sites were located in three departments
near the Caribbean region with very humid tropical climates (Atlántida, Colón and Gracias a Dios),
while the other two sites were located in the dry central tropical region (Comayagua, El Paraíso)
(Figure 1, Supplementary Table S1). Of the six collection sites in the Caribbean region, two were
located in Gracias a Dios, a department commonly known as La Mosquitia, which is an ecological
region geographically isolated from the rest of the country by the Rio Plátano biosphere. Before the
entomological collection, the species of domestic animals present at each site within a radius of 200 m
from the collection sites were recorded. Major economic activities at the eight sites were also recorded.

Entomological collections were carried out using two methods. The first method used CDC light
traps with no other attractant but common light. Three to five traps were placed per site in the outdoor
structures of human dwellings, as well as in structures for domestic animals’ rest. CDC light traps were
set for 12 h between 6:00 p.m. and 6:00 a.m. Traps were separated a minimum of 50 m from each other.
The second method consisted of manual aspiration of the anophelines in outdoor areas were animals
were resting and outside the households, between 6:00 p.m. and 9:00 p.m. Mosquitoes at rest on
surfaces were aspirated using mouth aspirators with HEPA filters, model 612 (John W. Hock Company).
Each mosquito collection was conducted for one night at each site [20]. After each collection, the insects
captured by either method were placed in plastic bags and frozen at −20 ◦C. The following days,
anophelines were separated and placed in Petri dishes with silica gel, and then transported at room
temperature to the laboratory, where they were stored at −20 ◦C until morphological identification.
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Figure 1. Map of the sites where the mosquito collections were performed in five departments of Honduras.
(1) La Ceiba; (2) Iriona; (3) Sonaguera; (4) Tocoa; (5) El Paraíso; (6) Comayagua; (7) Tikirraya; (8) Kaukira.
Images from Google Earth.

2.2. Identification of Mosquito Species

The morphological identification of mosquito species was done using taxonomic keys for anophelines
of Central America, according to standard procedures [21]. Blood feeding status was visually assessed on
each mosquito by the appearance of the abdomen. Wings and legs were preserved as vouchers at the
entomological collection of the National University of Honduras (UNAH). Mosquitoes were individually
stored at −20 ◦C for further molecular tests.

2.3. DNA Extraction and Blood Meal Identification

Engorged mosquitoes of seven species from all collection sites were chosen for blood meal analysis.
DNA was extracted with the AxyPrep MAG Tissue-Blood gDNA Kit, Axygen® (Corning Incorporated,
Life Sciences, Tewksbury, MA, USA). Immediately before DNA extraction, mosquitoes were individually
macerated with a pestle in a 1.5 mL tube, with 50 µL of lysis solution included in the kit. Molecular
tests were carried out for each mosquito, in order to detect five possible food sources. Individual PCR
reactions were carried out for each animal blood source. Species-specific primers were used, as described
by Pizarro et al., to amplify short interspersed nuclear elements (SINEs) of Sus scrufa (pig), Gallus gallus
(chicken), Bos taurus (bovine) and Canis familiaris (dog) [22]. The detection of human DNA was carried
out using a region of the beta-globin gene [23]. Each experiment was performed using positive and
negative controls. Details of PCR conditions and components are described on Table 1.

Table 1. Primers, annealing temperature and product sizes of PCR reactions.

Host Forward Primer
Sequence (5′-3′)

Reverse Primer
Sequence (5′-3′)

Annealing
T◦ (◦C)

Product Size
(bp)

Human acacaactgtgtttcactagc gaaacccaagagtcttctct 60 210
Dog agggcgcgatcctggagac agacacaggcagagggagaa 58 83

Bovine tttcttgttatagcccaccacac tttctctaaaggtggttggtcag 60 98
Chicken ctgggttgaaaaggaccacagt gtgacgcactgaacaggttg 58 169

Pig gactaggaaccatgaggttgcg agcctacaccacagccacag 60 134
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PCR amplifications for bovine, pig, chicken and dog were carried out in a volume of 20 µL with
10 µL of Taq Master Mix 2X (Promega, Madison, Wisconsin), 0.8 µL of each primer (10 µM), 1–2 µL of
DNA, and nuclease-free water. PCR reactions for human DNA were performed in a volume of 20 µL
with 10 µL of Taq Master Mix 2X, 2 µL of each primer (10 µM), 2 µL of DNA, and nuclease-free water.

PCR cycling conditions for the amplification of DNA from non-human sources were as follows:
one cycle at 95 ◦C for 10 min, followed by 35 cycles at 95 ◦C for 30 s, annealing temperatures as shown
in Table 1 for 30 s, 72 ◦C for 30 s, and a final cycle at 72 ◦C for 7 min. Human DNA amplifications
were as follows: one cycle at 94 ◦C for 5 min, 40 cycles at 94 ◦C for 1 min, 60 ◦C for 1 min, 72 ◦C for
1 min, and one cycle at 72 ◦C for 10 min. Amplification products were separated and visualized by
electrophoresis in 2% agarose gel with ethidium bromide.

The number of each anopheline species and their corresponding blood meal source was
recorded. In addition, the human blood index (HBI) was calculated as the crude mean proportion
of individuals of each species found to contain human blood—including those with multiple blood
meal sources—divided by the total number of positive blood-fed mosquitoes [24,25]. The number of
mosquitoes containing blood from a single host was also recorded. Mosquitoes that had fed from two
or more hosts were classified as mixed blood meals.

2.4. Quantitative Interaction Network

A quantitative interaction network plot and an interaction matrix plot were constructed to generate
graphic images, showing relationships between Anopheles species and host preferences. Both graphics
were constructed using plotweb and viswed functions of Bipartite package of R, with default parameters [26].

2.5. Detection of Plasmodium spp. DNA

In order to detect the parasite’s DNA in engorged mosquitoes, a subset of anophelines from
Gracias a Dios was chosen randomly. This department was selected because it is the main hotspot of
malaria transmission in the country. In total, 36 specimens were analyzed: 25 Anopheles albimanus and
11 An. crucians.

Detection of malaria parasites was based on amplification of the 18s rRNA gene of the genus
Plasmodium spp. through a nested PCR approach as described in previous studies [27]. Briefly, the first
PCR was carried out in a volume of 25 µL, with 12.5 µL of Taq Master Mix 2X, 1 µL of primers rPLU1
and rPLU5 (10 µM), 5 µL of DNA, and nuclease-free water. A second PCR used 1 µL of primers rPLU3
and rPLU4 (10 µM), was performed under the same conditions as above, but using 1 µL of DNA from
the first reaction as a template.

Both PCR reactions were carried out as follows: one cycle at 94 ◦C for 4 min, followed by 35 cycles
at 94 ◦C for 30 s, 55 ◦C (PCR 1) and 62 ◦C (PCR 2) for 1 min, 72 ◦C for 1 min, and a final extension at 72 ◦C
for 4 min.

Positive and negative DNA controls of Plasmodium vivax and P. falciparum were included within
each experiment. Amplification products were separated and visualized by electrophoresis in 1%
agarose gels with ethidium bromide.

3. Results

3.1. Description of the Collection Sites

Bovines, dogs, pigs and chickens were observed around households at all collection sites. All departments,
except for Gracias a Dios, have significant agricultural and livestock production, with rice, sugar cane and
banana as the main crops. Subsistence animal husbandry is common, with many families owning chickens
and pigs, and cattle to a lesser extent. On the other hand, the main economic activity of Gracias a Dios
inhabitants is fishing.
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3.2. Blood Meal Identification

Overall, 311 anopheline females were collected. Of these, only 181 (58.2%) female mosquitoes of
seven Anopheles species were visible engorged and separated for analysis (Table 2). Overall, 130 (41.8%)
female mosquitoes were not visibly blood-fed. The DNA of five potential vertebrate hosts was amplified
for all the engorged mosquitoes. The most frequent blood meal sources were Gallus gallus (chicken)
(29.5%) and Bos taurus (bovine) (27.5%). Canis familiaris (dog) was the least preferred host (11.9%). Forty
anophelines of four species were positive for human blood, with an average HBI of 22.1%. The highest
HBI was found in Anopheles darlingi (55%), followed by An. albimanus and An. pseudopunctipennis, with
an HBI of 25% each. An. vestitipennis showed an HBI of 4.4%. In three species (An. crucians, An. neivai
and An. punctimacula), the presence of human blood could not be demonstrated.

Table 2. Blood meal origins and Human Blood Index (HBI) in seven Anopheles species.

Sus
scrufa

Bos
taurus

Gallus
gallus

Homo
sapiens

Canis
familiaris HBI (%)

An. albimanus 30 43 54 27 15 25.2
An. darlingi - 15 17 11 11 55
An. crucians 2 1 - - 1 -
An. neivai - 4 1 - - -

An. pseudopunctipennis - - - 1 - 25
An. punctimacula - 2 - - - -
An. vestitipennis 4 2 - 1 2 4.4

Total 36 67 72 40 29 22.1

Anopheles albimanus showed the highest range of blood meal sources (n = 5) (Figure 2). In An. darlingi
and An. vestitipennis four hosts were demonstrated. Three different hosts were detected for An. crucians.
Two blood meal sources were detected in An. neivai, while in An. punctimacula, only bovine blood was
found. Human blood was detected in one specimen of An. pseudopunctipennis.Insects 2020, 11, x 6 of 13 
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Figure 3 shows a network and matrix of interactions between the anopheline species and their
blood meal sources.
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Figure 3. (a) Quantitative interaction networks, and (b) interaction matrix of blood-meal sources for
seven Anopheles species. Network is based on the analysis of blood-meal source for 181 specimens.
PSEU = An. pseudopunctipennis; DARL = An. darlingi; NEIV = An. neivai; PUNC = An. punctimacula;
ALBI = An. albimanus; VEST = An. vestitipennis; CRUC = An. crucians.

The diversity of hosts was also analyzed according to geographic location (Figure 4). There were
some differences in the proportion of blood sources between four species of anophelines with more
than 20 individuals. Three Anopheles species with less than 20 individuals were not analyzed due to
the low number of specimens. Anopheles albimanus mosquitoes from five collection sites were analyzed.
The proportion of mosquitoes that fed on chicken was higher in Comayagua, whereas the most frequent
blood meal source in El Paraíso was pig. Specimens of An. darlingi were collected only in Atlántida
and Colón. In both localities, the most frequent blood meal sources were bovine and chicken.Insects 2020, 11, x 7 of 13 
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In addition, 29.8% of the blood meals were of unidentified origin (Table 2, Figure 2). This means that 54
of 181 visibly engorged females did not amplify for any of the five vertebrate hosts tested. The largest number
of cryptic meals was observed in Gracias a Dios (n = 42) for An. albimanus, An. crucians and An. vestitipennis.
For the latter two species, the blood source of most individuals could not be identified (Figure 4).

3.3. Number of Host Blood Meals

A total of 181 blood-fed Anopheles mosquitoes were analyzed for blood meal sources. Data summarized
in Table 3 show the number and percentages of single-host blood meals and mixed blood meals from seven
anopheline species. Most mosquitoes had fed on more than one host. The percentage of anophelines fed
from a single animal source was 24.9%, while 27.6% fed on two different animal sources. Mosquitoes fed
from three and four different animals were also detected in a smaller proportion. It is remarkable that 40%
of the females of An. darlingi fed on four different blood sources. Only six specimens showed human blood
as the only meal source: four An. albimanus, one An. vestitipennis and one An. pseudopunctipennis.

Table 3. Number of single-host blood meals, mixed blood meals and blood meals of unknown origin
from seven anopheline species.

n Single
(n = 1) % Mixed

(n = 2) % Mixed
(n = 3) % Mixed

(n = 4) % Unknown %

An. albimanus 107 27 25.2 42 39.3 20 18.7 1 0.9 17 15.9
An. darlingi 20 3 15.0 5 25.0 3 15.0 8 40.0 1 5.0
An. crucians 20 4 20.0 0 0.0 0 0.0 0 0.0 16 80.0
An. neivai 5 3 60.0 1 20.0 0 0.0 0 0.0 1 20.0

An. pseudopunctipennis 4 1 25.0 0 0.0 0 0.0 0 0.0 3 75.0
An. punctimacula 2 2 100.0 0 0.0 0 0.0 0 0.0 0 0.0
An. vestitipennis 23 5 21.7 2 8.7 0 0.0 0 0.0 16 69.6

Total 181 45 50 23 9 54

Further analyses were done to determine if females without visible engorgement had also ingested
blood from a vertebrate host. Thus, 58 mosquitoes of seven species were randomly selected and
analyzed, resulting in 10.3% (6/58) amplifying for at least one host. Three mosquitoes (5.2%) had fed
on bovine, while three others had fed on pig, chicken or dog. No human DNA was detected in any of
these mosquitoes.

3.4. Parasite DNA Detection

None of the 36 Anopheles mosquitoes analyzed tested positive for Plasmodium spp. DNA.

4. Discussion

The identification of mosquito feeding preferences is important in order to understand the relevance
of non-human blood-meal sources on maintaining vector populations. It also helps to evaluate changes
in mosquito behavior in response to indoor interventions. Surveillance protocols and mosquito control
interventions focus primarily on endophilic and endophagic vectors, underestimating the influence
of those that feed and rest outdoors. It has been suggested that hosts in peridomiciliary areas could
contribute significantly to maintaining high densities of mosquito populations, and consequently could
contribute to malaria transmission, especially in countries where much effort has been invested in indoor
vector control [16,28].

In this study, mosquitoes were collected outside households, and under the structures where
domestic animals spend the night. This approach, although limited—as it did not include mosquitoes
resting indoors—was adequate to meet our goal of collecting mosquitoes that had fed on animals in
the peridomicile, as well as those that had fed on humans and were resting outdoors. A large majority
of blood meals (204/244) were of animal blood, and less than 17% (40/244) were of human origin.
The average human blood index (HBI) was 22.1%. These findings are similar to those previously
published in Mexico, where the host selection patterns of An. albimanus collected indoors and outdoors
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were analyzed [29]. Due to the design of our study, it is not possible to elucidate whether mosquitoes
that had fed on human blood did so indoors and then went outside to rest, or if they had actually
fed on humans outdoors. In this study, human blood was not found in An. crucians, An. neivai or
An. punctimacula, species considered as secondary vectors and predominantly zoophilic [30,31]. Since
mosquitoes were caught outdoors at night, the probability of having sourced their blood meal from
humans is lower in relation to the number of animals available in the peridomicile. Therefore, a greater
affinity for animals as blood source could be explained by the availability of hosts, collection frequency,
trapping method and trapping location [32]. Given the low number of specimens captured from the
three species, these hypotheses need to be confirmed later with a larger number.

Some Anopheles species have shown a strong preference for humans as blood source, particularly
in Africa [33,34], while other species display higher blood-host plasticity [15,35]. Not all species have
a high preference for human blood. As shown by Massebo et al., some species exhibited zoophagic
behavior, despite the large human populations available compared to that of domestic animals [36].
In contrast, several studies have demonstrated that some anophelines select their hosts depending on
their availability, and not due to strict species tropism. Orsborne et al. conducted a systematic review
and meta-regression of three major malaria vectors in Africa, and showed that HBI was more associated
with location of mosquito captures than with mosquito species [19]. A study conducted in Cameroon
concluded that when Anopheles rufipes finds alternative hosts to feed, its anthropophagic behavior
decreases [37]. Another study involving Anopheles stephensi in India found that resting mosquitoes were
more prevalent in cattle sheds than in human houses. Here, the authors propose that the determining
factor of this behavior was the easy availability of blood meal sources [38].

Our results show that chicken and cattle were the most frequent blood meal sources. This is
not surprising, since these are the most commonly found animals in the country’s rural households
of Honduras, with the exception of La Mosquitia, where cattle are unusual. Our findings indicate
that the anopheline species analyzed did not show a well-defined preference for any particular host.
These data seem to support the premise that blood meal intake reflects host availability rather than
host preference [39,40], and provide evidence that these vectors tend to be exophagic, exophylic and
zoophagic [41].

The more frequent hosts detected in An. darlingi were chicken and cattle, followed by humans and
dogs. This result differs from what has been reported for this species in South America, where a more
anthropophilic behavior appears to be the most common, albeit combined with opportunistic zoophilic
feeding [14,16,25,42]. Differences (genetic and/or behavioral) between An. darlingi populations from
Mesoamerica and South America could be explained by geographic isolation [8]. On the other hand,
the results we obtained for An. albimanus are in agreement with previous reports from other Latin
American countries, which highlight zoophagic and opportunistic preferences [24,29]. Unfortunately,
studies on blood meal sources of malaria vectors in the Americas are outdated, scarce, or simply
non-existent. Thus, some of the results presented here are not readily comparable with the literature.
This highlights a knowledge gap in this field that should be addressed.

Most of the mosquitoes proved to be feeding on more than one host (2 to 4), and only 24.9%
of mosquitoes were feeding on a single host species, animal or human. Many reports show similar
behavior of feeding on multiple human hosts [43,44], or different animal species in Africa [15,37,45–47],
Asia [48], Oceania [44], and Latin America [9,14,16,25,29]. Reports of blood meals of single-host origin
in engorged anophelines are less frequent [49]. Consequently, our results support the phenomenon of
gonotrophic discordance [13], indicating that two or more successive blood meals are common within
a single gonotrophic cycle for Anopheles species in Honduras; a potential reproductive strategy to
increase fecundity [50].

Out of a total of 181 visibly engorged mosquitoes, less than half (n = 54, 29.8%) did not amplify for
any of the five animal blood sources analyzed. We can offer two possible explanations for this result.
Firstly, host DNA could have been degraded by rapid digestion [51]. This explanation is unlikely, given
that mosquitoes were collected and killed only a few hours after feeding, and the DNA of the hosts
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appears to be stable for a long time [52,53]. A second and more plausible explanation is the existence
of other available animal hosts from which mosquitoes obtain their blood meals. This phenomenon
has been widely described, both in the Amazon basin [4] and Africa [35,54,55]. It is worth noticing that
a majority of unidentified blood meal sources was observed in specimens from La Mosquitia (Gracias
a Dios), specifically in An. crucians and An. vestitipennis. Since this geographical region is a protected
biosphere with little human intervention, there exist a highly diverse wild fauna accessible to mosquito
bites. Testing for only five blood meal sources is a limitation to our study. Future investigations
should consider the use of generic primers from mammals or other groups of animals and subsequent
sequencing, to discover unusual wild hosts.

A strength of the present study lies on the analysis of 58 female mosquitoes without visible
engorgement. A recent publication investigated the presence of host DNA in 217 visibly unfed Anopheles
mosquitoes from Madagascar, and the authors found that 74% had fed on a mammal [56]. Since almost
all studies on vector meal preferences utilize visually engorged mosquitoes, it is reasonable to expect
an underestimation of the proportion of host sources. Of the seven Anopheles species we analyzed,
10.3% were positive for at least one host (bovine, pig, chicken or dog). We recommend that future
studies do not preclude visibly unfed mosquitoes from blood meal analysis.

Finally, we were unable to detect Plasmodium DNA in the analyzed specimens. Several studies have
been successful to detect Plasmodium spp. antigens in the engorged females of many anopheline species
in highly endemic settings [14,34,37,38,57]. In this study, 36 mosquitoes were tested for Plasmodium
DNA, but none were positive. This is likely due to the low incidence of malaria cases in the studied
communities [1] (Supplementary Table S1). To increase sensitivity in Plasmodium detection, further
studies should increase the number of mosquito specimens, as well as include vectors found inside the
households (i.e., endophilic and endophagic vectors).

5. Conclusions

An analysis of the blood meals of mosquitoes resting outdoors revealed that all the anopheline
species feed mainly on domestic animals commonly found in the country: chicken, pigs, bovines,
and dogs. The exception of this finding was in La Mosquitia, where the main food sources remain
unidentified. Two or more successive blood meals were also common within each gonotrophic cycle,
a behavior strategy that could increase insect fecundity. There does not seem to be a clear preference
for any host among the anopheline species analyzed. These results support the hypothesis that malaria
vectors in Honduras exhibit opportunistic feeding behavior and underscore the need for additional
mosquito-control measures focusing on the peridomestic environment. Such integrated approach
would yield more comprehensive data to inform malaria elimination efforts in the country.

Supplementary Materials: The following are available online at http://www.mdpi.com/2075-4450/11/7/450/s1,
Table S1: Anopheles specimen collection sites in Honduras and number of malaria cases during 2018.
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