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Abstract: To diagnose neurodegenerative diseases (NDDs), physicians have been clinically evaluating
symptoms. However, these symptoms are not very dependable—particularly in the early stages of
the diseases. This study has therefore proposed a novel classification algorithm that uses a deep
learning approach to classify NDDs based on the recurrence plot of gait vertical ground reaction
force (vGRF) data. The irregular gait patterns of NDDs exhibited by vGRF data can indicate different
variations of force patterns compared with healthy controls (HC). The classification algorithm in this
study comprises three processes: a preprocessing, feature transformation and classification. In the
preprocessing process, the 5-min vGRF data divided into 10-s successive time windows. In the
feature transformation process, the time-domain vGRF data are modified into an image using a
recurrence plot. The total recurrence plots are 1312 plots for HC (16 subjects), 1066 plots for ALS
(13 patients), 1230 plots for PD (15 patients) and 1640 plots for HD (20 subjects). The principal
component analysis (PCA) is used in this stage for feature enhancement. Lastly, the convolutional
neural network (CNN), as a deep learning classifier, is employed in the classification process and
evaluated using the leave-one-out cross-validation (LOOCV). Gait data from HC subjects and patients
with amyotrophic lateral sclerosis (ALS), Huntington’s disease (HD) and Parkinson’s disease (PD)
obtained from the PhysioNet Gait Dynamics in Neurodegenerative disease were used to validate
the proposed algorithm. The experimental results included two-class and multiclass classifications.
In the two-class classification, the results included classification of the NDD and the HC groups and
classification among the NDDs. The classification accuracy for (HC vs. ALS), (HC vs. HD), (HC vs.
PD), (ALS vs. PD), (ALS vs. HD), (PD vs. HD) and (NDDs vs. HC) were 100%, 98.41%, 100%, 95.95%,
100%, 97.25% and 98.91%, respectively. In the multiclass classification, a four-class gait classification
among HC, ALS, PD and HD was conducted and the classification accuracy of HC, ALS, PD and
HD were 98.99%, 98.32%, 97.41% and 96.74%, respectively. The proposed method can achieve high
accuracy compare to the existing results, but with shorter length of input signal (Input of existing
literature using the same database is 5-min gait signal, but the proposed method only needs 10-s
gait signal).

Keywords: gait analysis; pattern visualization; neurodegenerative diseases; deep learning; feature
extraction; recurrence plot; vertical ground reaction force (vGRF) data
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1. Introduction

Neurodegenerative diseases (NDDs), such as amyotrophic lateral sclerosis (ALS), Huntington’s
disease (HD) and Parkinson’s disease (PD), are caused by malfunctioning neurons in different regions
of the nervous system [1]. PD, the second most common NDD, is approximately 0.3% prevalent in the
general population; in the elderly people over 60 years, it is ~1%, and ~3% in elders over 80 years [2].
The PD incidence rate is 8–18 person per 100,000 people per year [2]. The median age at onset is 60
years, and the mean duration of the disease progression, from diagnosis to death, is around 15 years [2].
This disease and its incidence rate are 1.5–2 times prevalent in men than in women [2]. Moreover, PD
costs 2500 USD each year for medical treatments and up to 100,000 USD per patient for therapeutic
surgery [3]. ALS, the third most common NDD and most common motor neuron disease, has an
incidence about rate of 1.9 people per 100,000 people per year [4,5]. In America, 30,000 people suffer
from ALS, 30,000 from HD and o million from PD [6]. Because NDDs develop primarily in mid-to-late
life, the incidence rate is expected to rise with the increasing aging population. By 2030, one of five
Americans are expected to be over the age of 65, and over 12 million Americans may suffer from NDDs
30 years from 2020 [7]. Thus, early screening and treatments for NDDs should be achieved to meet the
growing demand on preventive medicine. NDDs can influence many kinds of body activities, such as
heart regulation, respiration, speech, mental functioning, balance and movement. Because general
motions such as flexion and extension of the two lower limbs are controlled by the central nervous
system, especially basal ganglia, the gait of the patient with an NDD may become abnormal (different
gait pattern from the healthy subject) owing to a malfunctioning motor neuron [8]. ALS, also called
motor neuron diseases, causes the death of neurons that control voluntary muscles; this condition
results in stiff muscles, muscles twitching and gradually worsening weakness attributable to muscles
decreasing in size [9–11]. HD is a hereditary disorder that results in the death of brain cells; thus,
lack of coordination, an unsteady gait and uncoordinated and jerky body movements will become
more apparent [12–14]. PD is a long-term degenerative disorder of the central nervous system; it
mainly affects the motor system, and its early symptoms include shaking, rigidity, slow movement and
difficulty of walking [15–17]. Thus, the gait is affected by NDDs. As a result, information about gait is
used to analyze movement in HC (HC) subjects and other subjects with different kinds of diseases.
The gait analysis is very useful in understanding movement disorders caused by NDDs and it can be
potentially used in presenting the non-invasive automatic classification method for NDDs.

Gait analysis is used to assess and treat individuals with conditions that affect their ability to walk,
such as health, age, size, weight and speed. In previous studies, as shown in Table 1, research on gait
analysis has been developed using the series of stride, stance or swing intervals, ground reaction force
(GRF) and foot force. Wei Zeng and Cong Wang presented the gait dynamics method to classify NDDs
via the deterministic learning theory [18]. Using statistical features and different classification models,
Xia et al. proposed a classification method for gait rhythm between patients with neurodegenerative
diseases and control subjects [19]. Ertuğrul et al. developed shifted one-dimensional local binary
patterns to detect PD based on a vertical GRF (vGRF) [20]. Wu et al. measured signal fluctuations in
the gait rhythm time series of patients with PD using entropy parameters to compute the approximate
entropy (ApEn), normalized symbolic entropy and signal turns count parameter for stride fluctuations
measurement [21]. Generalized linear regression analysis and support vector machine (SVM) were
applied to perform nonlinear gait pattern classifications. Zhao et al. implemented dual-channel
long short-term memory (LSTM)-based multi-feature extraction on gait for diagnosis of NDDs [22].
They designed a dual-channel LSTM model to merge time series and force series recorded from
NDDs patients for whole gait understanding. Suleyman Bilgin researched about the impact of feature
extraction to classify ALS patients among those with NDDs and the HC subjects [23]. Compound force
signal, the input signal, was utilized for feature extraction using a 6-level discrete wavelet transform
with different types of wavelet techniques. The obtained features were validated using 20 trials for
5-fold cross-validation in linear discriminant analysis (LDA) and Naïve Bayesian classifier (NBC).
Pham (2017) proposed a novel method for gait analysis by transforming time series data sequence
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into images from which texture analysis methods and texture features of a gait can be extracted [24].
In addition, the existing literature only focused on two-classification (e.g., HC vs. ALS, HC vs. HD,
HC vs. PD), multiclass classification (e.g., HC vs. ALS vs. HD vs. PD) at the same time had never
been studies before. This study not only focused on two-class gait classification, but also focused on
multiclass (four-class) gait pattern classification.

Table 1. Summary of the neurodegenerative diseases (NDDs) gait classification literatures.

Literature
Summary of the Classification Algorithm

Feature Extraction Classifier Cross-Validation

[18] Radial basis function (RBF)
neural networks RBF neural networks All training all testing

and LOOCV

[19]

Mean, standard deviation,
max, min, skewness, kurtosis,
Lempel-Ziv complexity, fuzzy

entropy and Teager–Kaiser
energy feature

Support vector machine
(SVM), random forest
(RandF), multilayer

perceptron (MLP) and
k-nearest neighbor (KNN)

LOOCV

[20] shifted 1D-LBP

Bayes Network (BayesNT),
naïve Bayes (NB), logistic

regression (LR), MLP, Partial
C4.5 decision tree (PART),
RandF and functional tree

(FT)

10-fold cross-validation

[21]

Approximate entropy (ApEn),
normalized symbolic entropy

(NSE), signal turns count
(STC)

Generalized linear
regression analysis (GLRA)

and SVM
LOOCV

[22] Dual channel LSTM Dual channel LSTM LOOCV

[23] Discrete wavelet transform
(DWT)

Linear discriminant analysis
(LDA) and NBC

All training all testing
and LOOCV

[24]
Fuzzy recurrence plot (FRP) +

Gray-level co-occurrence
matrix (GLCM)

Least squares support vector
machine (LS-SVM) and LDA LOOCV

Less involvement of the raw physiological signal analysis during gait analysis and adoption
of state-of-the-art deep learning classifiers can be noted in the existing studies. In some literature
reports (presented in Table 1), NDDs gait classifications were developed using features such as series of
stride/stance/swing intervals, which are the processed features of the raw physiological signal [18,19,21].
To investigate new differences among HC and NDDs (ALS, HD and PD) was the first research aim of
this study. Deep learning classifiers, which can automatically construct representations of the data,
was an appropriate technology to investigate the difference in the raw physiological signal between
HC and NDDs (ALS, HD and PD). To transform the raw physiological signal into image-like features
and then to utilize deep learning classifiers to develop the NDDs classification algorithm was the
second research aim of this study. Thus, the recurrence plot was used to transform the vGRF into a
recurrence plot image. Convolutional neural network (CNN), a famous deep learning classifier, was
used to extract the features from the recurrence plots and classify the features of HC and NDDs (ALS,
HD and PD) gaits. The utilization of existing methods combination in the proposed method, such as
recurrence plot and CNN, is for transforming the raw physiological signal from 1-dimensional space
(time domain) to 2-dimensional space (spectrogram, time–frequency domain) and performing the
feature extraction in order to bring out the most important pattern visualization.
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Although some existing methods were employed in this research, the proposed method came out
with novel concept in gait analysis for NDDs identification based on extracted pattern visualization of
a raw physiological signal. The novelty of this research was to develop a sophisticated approach for
the NDDs classification using recurrence plot’s pattern visualization and a deep learning algorithm
instead of the statistical features [19–21] and machine learning algorithm [19–21,23,24] as previously
stated. The extracted pattern features were automatically generated using the deep learning algorithm.
Contrasting with the extracted statistical features, over the pattern visualization of the recurrence
plot, the gait abnormalities within the NDDs patients can be directly and effectively identified and
distinguished from the gaits of the HC. The main objective of this study is to develop a classification
method to help physicians in screening NDDs patients based on the vGRF data. In particular, this
method will help determine if any of the three types of NDDs (ALS, HD and PD) can interfere with
the patient’s ability to manage the propulsion of two feet. The method will also help determine if the
significant differences in vGRF denote specific diseases the patient suffers. The right foot (RF), left foot
(LF) and compound foot (CF) is obtained from the summation of RF and LF) force data of NDDs and
HC subjects are used as the input to the algorithm. Then, feature transformation using a recurrence
plot is applied to the input to create new features (gray-level texture image of recurrence plot) using
the existing ones. For classification improvement, the principal component analysis (PCA) was applied
to the gray-level texture image of recurrence plot by choosing the principal components (PCs) of the
features. The PCs of HC and NDDs subjects are divided into training and testing sets. The estimators
were built by training the training sets and by comparing the estimators with a test set of HC or NDDs
to be classified; some parameters of classification were generated. CNN has successfully been applied
in this study to extract the features and classify HC and NDDs in the classification stage (training and
testing phase). The proposed method can effectively classify gait patterns among HC, ALS, HD and
PD groups in neurodegenerative diseases.

2. Materials and Methods

In the proposed algorithm, the vGRF data of NDDs from the database of PhysioNet was
utilized [25]. The raw data were obtained using force-sensitive resistors, with the output roughly
proportional to the force under the foot [26]. The RF/LF/CF force data of HC, ALS, PD and HD was
used as the input of the algorithm. In the proposed algorithm, the first step was to perform data
preprocessing, remove corrupt data, and separate the original 5-min data into 10 s of consecutive data.
Thereafter, the feature transformation method was applied to transform the signal into the image-like
recurrence plot to emphasize and visualize the existing features. PCA was used to select and enhance
the important features to improve the classification result. The deep-learning-based algorithm was
applied to classify NDDs. A CNN was chosen as the classification model because it is efficient and
robust in image classification. Lastly, a cross-validation method was employed to validate the trained
model, leave-one-out cross-validation (LOOCV). Figure 1 shows the flowchart of the proposed method.

Figure 1. Flowchart of the proposed NDD detection algorithm using recurrence plot as the
feature transformation.
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2.1. Neurodegenerative Diseases Gait Dynamics Database

The vGRF database used in this research (PhysioNet Gait Dynamics in Neurodegenerative disease)
was made available online in the PhysioNet database by Hausdorff et al. [25]. The database comprised
64 recordings of information from 13 patients with ALS, 15 with PD, 20 with HD and from 16 HC
subjects. There were two types of data recorded in this database: 1) raw data of gait vGRF series
and 2) gait cycle patterns derived from the vGRF. The vGRF signal comprised LF force and RF force
data. Within the gait cycle patterns, the contents were left stride interval(s), right stride interval(s), left
swing interval(s), right swing interval(s), left swing interval (percent of stride), right swing interval
(percent of stride), left stance interval(s), right stance interval(s), left stance interval (percent of stride),
right stance interval (% of stride), double support interval(s) and double support interval (percent of
stride). Only the vGRF signal data were used in the analysis since the main research purpose is to
investigate new features from raw data. The classic processed gait patterns (such as left stride interval)
are not considered.

Table 2 shows the demographics of the database subjects, including gender, age, height, weight,
gait speed, and a measure of disease duration for ALS or severity for PD and HD. For the HC subjects,
an indicator of 0 is used. For the ALS patients, the value describes the duration in months since the
disease diagnosis. For the PD patients, the Hoehn and Yahr scale stages 1 through 5 is used [27],
where a higher scale represents more severe disease. For the HD patients, the total functional capacity
measure is applied, where a lower score exhibits more advanced functional impairment.

Table 2. Demographics of the subjects in PhysioNet Gait Dynamics in Neurodegenerative disease
database [25].

Class Gender Ages (Year) Height (m) Weight (kg) Gait Speed (m/s) Severity/Duration

Male/ Female (<50)/(50–70)/(≥70)

HC 2/14 11/4/1 1.83 ± 0.08 66.81 ± 11.08 1.35 ± 0.16 0
ALS 10/3 4/7/2 1.74 ± 0.10 77.11 ± 21.15 1.05 ± 0.22 18.31 ± 17.82 1

PD 10/5 1/7/7 1.87 ± 0.15 75.07 ± 16.9 1.0 ± 0.2 3 2

HD 6/14 13/5/2 1.84 ± 0.09 73.47 ± 16.23 1.15 ± 0.35 8 3

1 Duration in months since the disease diagnosis. 2 Hoehn and Yahr scale stages (1–5) in median quartile. 3 Total
functional capacity scale (0–13) in median quartile.

The vGRF signal data in this database was obtained using force-sensitive resistors in the insole,
with the output proportional to the force under the foot. The transducer of the insole was a conductive
polymer layer sensor with altered resistance when loaded. The sensor was selected based on various
reasons: thickness of < 0.05 in, temperature insensitivity, a fast-dynamic response, the ability to restrain
an overload and an electronically easy interface. Two 1.5 in2 force-sensitive resistors were used and the
sensors were taped to an insole used to place them inside the shoe. The insole was made from the
manila folder by tracing an outline of the foot onto it and then cutting out the tracing. One sensor was
located to the anterior portion of the insole, under the toes and the metatarsals, and the other sensor
was at the opposite end, under the heel. The two footswitches were connected in parallel and served
as one large sensor (the outputs from these two footswitches were added up). Then, the analog signal
was digitized and analyzed using software [26].
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2.2. Data Preprocessing

Time-Windowing Process (10-s Window Length)

The original data were collected for 5-min per subject. To eliminate the impact of the initial
walking period of each subject, the first 20-s length of data was removed. In the proposed algorithm,
window function, as a mathematical term that is zero-valued outside some selected interval to separate
the original data into several consecutive data sets, was used. In this step, the rectangular window
function [28], as denoted in and overlapping two neighboring time windows for 6.66-s, as depicted in
Figure 2,were applied to an original 5-min-long signal to obtain the 10-s-long successive signals. The
overlapping time window method was successfully applied in several studies [29–32].

Sensors 2020, 20, x FOR PEER REVIEW 6 of 22 

depicted in Figure 2,were applied to an original 5-min-long signal to obtain the 10-s-long successive 
signals. The overlapping time window method was successfully applied in several studies [29–32]. 

Figure 2. Illustration of overlapping 10-s time-window size for 6.66 s (2⁄3 of time-window size), 
including the corresponding recurrence plot of each 10-s window length compound foot (CF) vertical 
ground reaction force (vGRF) signal of healthy controls (HC) subject. 

Table 3. Number of vGRF data before and after data preprocessing. 

Class 
Number of vGRF Data 

Number of Subjects 
(Original) Samples of Time-Windowing Process (10-s) 

HC 16 1312 
ALS 13 1066 
PD 15 1230 
HD 20 1640 

Total 64 5248 
 
The total number of subject data was 64, with 16 data for HC, 13 data for ALS, 15 data for PD 

and 20 data for HD. However, after this time-windowing process was employed, 1312 data for HC, 
1066 data for ALS, 1230 data for PD and 1640 data for HD were obtained, which meant that 5248 data 
were available for the training model, as shown in Table 3. The number of vGRF data samples (𝑛) 
after data preprocessing can be calculated as: 𝑛 = ൬ℓ − 𝑇𝑊𝑑 + 1൰ ൈ 𝑇 (1) ℓ is the data length, 𝑇𝑊 indicates the time window length (10-s), 𝑑 is the distance between two 
windows data (2/3 of time-window size as the result of overlapping two neighboring time windows 
for 6.66-s) and 𝑇 is each group total samples. Each of HC, ALS, PD and HD subject has 5-min (300-s) 
length of data and the first 20-s of data were removed. The remaining data length is 280-s for each 
subject (ℓ =  280). The time window length is 10-s (𝑇𝑊 = 10) and the distance between two windows 
data is 3.33-s, since the overlap window for each signal is 6.66-s. There are (ଶ଼ିଵ)ଷ.ଷଷ + 1 = 82 data 
samples for each subject and finally, the total samples are 82 ൈ 16 = 1312 data samples for HC (16 
subjects), 82 ൈ 13 = 1066 data samples for ALS (13 patients), 82 ൈ 15 = 1230 data samples for PD 
(15 patients) and 82 ൈ 20 = 1640 data samples for HD (20 patients). 

There were several benefits regarding the use of the time-windowing process. First, it was useful 
to obtain more data for the deep learning model to obtain an accurate prediction. Second, use of the 
time-windowing process meant shorter signal data were gained. In the real-life situation, this is 
related to the patient’s convenience while performing data collection. If a 5-min length of data is used 

Figure 2. Illustration of overlapping 10-s time-window size for 6.66 s (2⁄3 of time-window size),
including the corresponding recurrence plot of each 10-s window length compound foot (CF) vertical
ground reaction force (vGRF) signal of healthy controls (HC) subject.

The total number of subject data was 64, with 16 data for HC, 13 data for ALS, 15 data for PD and
20 data for HD. However, after this time-windowing process was employed, 1312 data for HC, 1066
data for ALS, 1230 data for PD and 1640 data for HD were obtained, which meant that 5248 data were
available for the training model, as shown in Table 3. The number of vGRF data samples (n) after data
preprocessing can be calculated as:

n =
(
` − TW

d
+ 1
)
× T (1)

Table 3. Number of vGRF data before and after data preprocessing.

Class
Number of vGRF Data

Number of Subjects (Original) Samples of Time-Windowing Process (10-s)

HC 16 1312
ALS 13 1066
PD 15 1230
HD 20 1640

Total 64 5248

` is the data length, TW indicates the time window length (10-s), d is the distance between two
windows data (2/3 of time-window size as the result of overlapping two neighboring time windows for
6.66-s) and T is each group total samples. Each of HC, ALS, PD and HD subject has 5-min (300-s) length
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of data and the first 20-s of data were removed. The remaining data length is 280-s for each subject
(` = 280). The time window length is 10-s (TW = 10) and the distance between two windows data is

3.33-s, since the overlap window for each signal is 6.66-s. There are (280−10)
3.33 + 1 = 82 data samples

for each subject and finally, the total samples are 82 × 16 = 1312 data samples for HC (16 subjects),
82× 13 = 1066 data samples for ALS (13 patients), 82× 15 = 1230 data samples for PD (15 patients)
and 82× 20 = 1640 data samples for HD (20 patients).

There were several benefits regarding the use of the time-windowing process. First, it was useful
to obtain more data for the deep learning model to obtain an accurate prediction. Second, use of
the time-windowing process meant shorter signal data were gained. In the real-life situation, this is
related to the patient’s convenience while performing data collection. If a 5-min length of data is used
to obtain sufficient data, the patients need to walk for at least 5 min, which can be time-consuming
and inconvenient for NDDs patients. The potential for the patient to be injured, because of the fall
risk factor, is increased if the data collection time is longer. In case of the 10-s-long data, patients will
only need to walk for 10 s and will also get the reliable prediction of the disease faster (rapid NDDs
detection algorithm). Third, in shorter vGRF signals, more detailed texture and pattern visualization
of gait abnormalities can be observed.

2.3. Recurrence Plot

A recurrence plot was utilized as the feature transformation method. The recurrence plot is a
good visualization tool for capturing hidden dynamics of nonlinear time series. The original signal
was transformed into a two-dimensional image by the recurrence plot [33]. The useful and important
information from a complex signal or complex system can be displayed, and the texture patterns can
also be further analyzed. For the recurrence plot used in the proposed algorithm, the principle is
explained as follows: Let X = { x1 , x2, . . . , xn−1 , xn } be a set of force series in a record of gait force
signal, where n denotes the data point. A recurrence plot can be constructed as follows:

P(i, j) =

∣∣∣xi − x j
∣∣∣

max(X)
(2)

where P(i, j) is a pixel with the coordinates (i, j) in a recurrence plot, for i = 1, 2, . . . , n, and
j = 1, 2, . . . , n. P(i, j) is similar or close to a state pair (xi, x j) in meaning. The data were normalized
by dividing with the maximum value of X so that all the pixel values will be ranged from 0 and 1.
If the value of xi and x j are more similar, the pixel shown on the recurrence plot will be closer to black;
in contrast, if the value of xi and x j differ, the pixel shown on the recurrence plot will be closer to
white. With the recurrence plot, a gray-level image can be obtained, which represents the complexity
and regularity of the input signal by the rendered colors and the texture pattern. The not-so-obvious
periodic features of the original signal can also be emphasized and visualized.

The data of each subject in each group that had already been processed by the time-windowing
process as the input signal to construct a recurrence plot. As shown in Figure 3, the different texture
patterns can be observed through the recurrence plots of different types of groups (HC, ALS, PD and
HD), which indicate that the generated images were suitable to be classified by deep learning algorithms.
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Figure 3. Image feature extracted using the recurrence plot of the right foot vGRF signal of healthy control and neurodegenerative diseases subjects at 10-s
time-windowing size (image resolution: 227× 227). (a) Healthy subject (HC); (b) amyotrophic lateral sclerosis patient (ALS); (c) Parkinson’s disease patient (PD);
(d) Huntington’s disease patient (HD).
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2.4. Principal Component Analysis

The main idea of a PCA is to perform dimensionality reduction of a dataset containing a major
number of interrelated variables while resisting as much as possible of the variation present in the
dataset [34]. This is acquired by transforming the dataset into a new set of variables, the principal
components (PCs), which decorrelates the variables that are ordered.

The PCA method in this research is defined mathematically using the following steps (described
as a flowchart in Figure 4): Consider that a matrix, X = [P1; P2; P3; . . . ; Pi]

T, is constructed by the
gray-level texture images of all NNDs and HC, where P is a row vector consisting of the pixels of a
gray-level texture image of NDDs or HC and i is the number of gray-level texture images of all NDDs
and HC. The PC is built using the equation:

C = XTX (3)

It is also called a covariance matrix of the matrix X to subsequently find its eigenvalues and eigenvectors.
Then, the W matrix, an m×m matrix of weights whose columns are the eigenvectors of C, is obtained.
Finally, the matrix of extracted feature F can be described as the full PCs’ decomposition of X and can,
therefore, be shown as:

F = XW (4)

Because PCA was applied as the feature enhancement and the input was an image, the full PCs of
each sample was selected to maintain the important texture and pattern features for visualization.
The purpose of using PCA as the feature enhancement in this proposed method is to enhance the
between-class separability and minimize the within-class separability of datasets. It was intended to
improve the classifier performance in classifying the data points into the correct group.

Figure 4. Flowchart of new feature extracted reconstruction using principal component analysis (PCA)
as feature enhancement purpose.

2.5. Convolutional Neural Network

A CNN is composed of one or more convolutional layers (often with subsampling and pooling
layers), which is then followed by one or more fully connected layers as in a basic multilayer neural
network (deep learning) [35]. The architecture of a CNN is built to benefit from the 2D structure of
the input (image or signal). This is accomplished by local connections and involves weights followed
by any pooling function that results in translation-invariant features. Another advantage of CNN is
that it is simpler to train and has significantly fewer parameters than other fully connected networks
with the same number of hidden layers. The main reason for using a CNN in the proposed method is
to distinguish the difference between the gray-level texture image representation of vGRF from HC
and NDDs (ALS, HD and PD) subjects. The concept of using recurrence plot and CNN to extract and
classify NDDs vGRF data are never found in our literatures. A pre-trained AlexNet [36] was used in
this study in order to meet a balance point between classification accuracy performance (significant
improved compare to the classical CNN such as LeNet [37]) and computation time (much less time
consumption compared to the state-of-the art CNN such as GoogLeNet [38] or ResNet [39]).

A pretrained AlexNet CNN was utilized from MATLAB R2018a Deep Learning ToolboxTM in the
system [36]. Kirzhevsky et al. trained a large and deep convolutional neural network, called pretrained
AlexNet, with 1.2 million high-resolution images into 1000 different labels on multiple GPUs. The
error rate was approximately 1.7%. As the result, the pretrained AlexNet has learned rich feature
representations for a wide range of images as the input. The architecture comprises 25 layers, including
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an input layer, five convolution 2D layers, seven ReLU (activation function) layers, two cross-channel
normalization layers, three max-pooling 2D layers, three fully connected layers, two dropout layers
(for regularization), a softmax layer (normalized exponential function) and an output layer. The input
of the pretrained AlexNet in the proposed method is the gray-level texture images of the vGRF data
yielded by the recurrence plot. There are two methods in fine-tuning a pretrained AlexNet: transfer
learning and feature extraction. The feature extraction method was selected because it is an easy way
to apply the pretrained networks without spending much time (i.e., faster than the transfer learning
method) and many attempts for training. This method only applies to earlier fully connected layers
and uses an SVM for classification. Earlier layers characteristically extract fewer, shallower features,
have higher spatial resolution and a larger total number of activations. On the contrary, deeper layers
contain higher-level features, constructed by the lower-level features of earlier layers. The proposed
feature extraction method only utilized 20 layers out of 25 layers’ pretrained AlexNet CNN, from input
layer (total input = 5248 images) to the fully connected layer ‘fc7′, in order to get the higher-level
features (depicted in Figure 5).
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The convolutional layer plays the most important role in how CNNs work. This layer is composed
of a set of kernels (learnable filters) as parameters, which contain a small receptive field, but are
prolonged through the full depth of the input. When the data pass through the convolutional layer,
each kernel is convolved across the spatial dimensionality of the input (width and height of the
input volume), calculating the dot product and producing a 2D activation map. The filters in the
convolutional layers are edge detectors and color filters. The ReLu (rectified linear unit) layer utilizes
the non-saturating activation function f (x) = max(0, x), such as sigmoid σ(x) = (1 + e−x)−1, to the
output of the activation generated by the previous layer. Another vital concept in CNNs is pooling,
which is usually referred to as nonlinear downsampling. The aim of the pooling layer is to perform a
dimensionality reduction and to minimize the number of parameters and the complexity of model
computation. This layer takes action in the input of each activation map and scales the input dimension
using the “MAX” function, hereafter called the max-pooling layer. Eventually, after some convolutional
and max-pooling layers, the fully connected layers will attempt to generate class scores from the
previous activations to be used for classification; the same roles that they play in traditional forms
of artificial neural networks. Neurons in this layer have connections to all activations from the
previous layer.

2.6. Cross-Validation

Cross-validation is a statistical method used to assess and compare learning algorithms by dividing
data into two groups: one used to learn or train a model (training set) and the other used to validate
the model (testing or validation set) [40]. The training and testing sets must cross over in consecutive
rounds such that each data point has an opportunity to be validated. There are two main purposes
for applying cross-validation: First, the performance of the learned model from available data using
one algorithm can be investigated. In other words, it is used to quantify the generalizability of an
algorithm. The second purpose is to evaluate the performance of two or more different algorithms to
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discover the best algorithm for the available data or, alternatively, to compare the performance of two
or more variants of the parameterized model. Leave-one-out cross-validation (LOOCV) is a special
case of k-fold cross-validation, where k equals the number of data points. In other words, in each
iteration, almost all the data points, except for a testing data point, are used for learning (training), and
the model is validated on that single data point. An accuracy estimation obtained using LOOCV is
known to be almost unbiased, but it has high variance, inferring unreliable estimates.

3. Experimental Results

The experiments were executed using MATLAB R2018a software on an NVIDIA GeForce GTX
1060 6 GB computer with 24 GB RAM. The experiment results consist of included two-class and
multiclass classifications. Two-class classification results are classification of the NDD and the HC
groups and classification among the NDDs. The classification accuracy for (HC vs. ALS), (HC vs. HD),
(HC vs. PD), (ALS vs. PD), (ALS vs. HD), (PD vs. HD) and (NDDs vs. HC) The multiclass classification,
a four-class gait classification among HC, ALS, PD and HD was conducted. The classification algorithm
in this study comprises three processes: a preprocessing, feature transformation and classification.
In the preprocessing, two different window length: 10-s and 5-min were selected as the time window
of the gait signal for classification. The objective of selecting a 10-s window is to develop an NDDs
gait classification with short observation signal length; the objective of selecting a 5-min window is to
compare the performance to that of the existing literature. In the feature transformation process, the
time-domain vGRF data are modified into an image using a recurrence plot. The principal component
analysis (PCA) is used in this stage for feature enhancement. Lastly, the convolutional neural network
(CNN), as a deep learning classifier, is employed in the classification process and evaluated using
the leave-one-out cross-validation (LOOCV). The average execution time of this study is shown in
Table 4. The accuracy (acc.), sensitivity (sens.), specificity (spec.) and an AUC value of the proposed
method were measured as the parameters for evaluation. The definition of the evaluation parameters
is provided in [41].

Table 4. Average execution time of the proposed method.

Proposed Action Methods
Execution Time (s)

10-s Length
(5248 Input Samples)

5-min Length
(60 Input Samples)

Feature transformation using recurrence plot 51.676 1.381
Feature enhancement using PCA 550.350 1.945

AlexNet CNN model training and testing using LOOCV 38,198.402 23.702

When selecting between two or more diagnostic tests, Youden’s index is generally applied to
evaluate the effectiveness of an overall diagnostic test [42]. Youden’s index is a function of sensitivity
and specificity, where the index ranges between 0 and 1, with a value close to 1 means that the
diagnostic test effectiveness is relatively high and the test is perfect, and a value close to 0 represents
limited effectiveness, where the test is useless. The Youden’s index (J) is described as the sum of the
two fractions indicating the measurements correctly diagnosed for the diseased group (sensitivity) and
HC (specificity).

J = (sensitivity + speci f icity) − 1 (5)

This index was employed to select better classification results among the LF, RF and CF of
vGRF data. The classification results are given in two parts: 1) two-class classification and multiclass
classification. In two-class classification, the results include classification of the NDD and HC group,
classification among the NDDs and classification among the NDDs. The multiclass classification
includes the classification among the HC, ALS, PD and HD at the same time. Even though the
application of the CNN in the multiclass classification has been used in different domains of medical
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research such as in [43–47], the multiclass classification is the novelty of this study and existing
literature did not do the multiclass classification.

3.1. Two-Class Classification

The two-class classification in this study includes three sub-study. There are (1) classification
of the NDD and healthy controls group, (2) classification among the NDDs, (3) classification of All
NDDs in one group and healthy controls Group. The purpose of studying classification of the NDD
and healthy controls group is to examine the performance of the proposed algorithm to certain NDD
(ALS, HD, PD). The objective of classification among the NDDs is to check how the proposed method
perform with various NDDs classification. Finally, all NDDs data were combined into one class and
discriminate with that of the HC class.

3.1.1. Classification of the NDD and Healthy Controls Group

In this classification situation, there were three kinds of different classification tasks, such as ALS
vs. HC, HD vs. HC and PD vs. HC. There were 12 ALS, 20 HD and 14 PD patients as well as 16
HC subjects who were observed in all classification situations, but the input signal for the proposed
method was dependent on the window size in the time-windowing process. For the 10-s time-window
size, there were 1312 data windows of HC, 984 data windows of ALS, 1148 data windows of PD and
1640 data windows of HD, which was a total of 5084 data. For the purpose of comparison, the 5-min
time-window size was also employed. The detailed classification results are given in Tables 5 and 6.

3.1.2. Classification among the NDDs

In this study, a concept for classification among the NDDs was developed, for example, ALS vs.
HD, PD vs. ALS and HD vs. PD. The main purpose of this classification was to provide intra-class
separation efficiency (the NDD group: ALS, HD and PD), i.e., whether ALS, HD and PD could be
easily separated or not. It was concluded that the ALS group could be readily distinguished from the
HD and PD groups. HD and PD were not easy to separate. The HD vs. PD classification performance,
accuracy, sensitivity, specificity and AUC value, were less compared to ALS vs. HD and PD vs. ALS in
5-min time-window size. This occurred because HD and PD disorders are caused by the degeneration
of basal ganglia, and the gait abnormality symptoms of HD and PD patients are almost identical [48].
However, this issue can be surmounted by the proposed algorithm using 10-s time-window size. The
complete classification results of this classification situation are shown in Tables 5 and 6. Tables 5 and 6
can reveal that the proposed algorithm can perform good in the classification between HC and any one
of NDDs or classification between NDDs.

3.1.3. Classification of All NDDs in One Group and Healthy Controls Group

In NDDs vs. HC classification, the ALS, HD and PD patients’ vGRF datasets were merged in one
group, for which the total number of NDD datasets was dependent on the time-windowing size. The
experimental results for this classification situation are shown in Tables 5 and 6.

3.2. MultiClass Classification

The multiclass classification is closer to the clinical application, since the physician will not have
preliminary information about whether the patient is suffering from ALS, HD or PD. The whole vGRF
dataset was divided into four classes, based on the patients with the diseases (ALS, HD and PD) and
healthy subjects. LOOCV was also applied in the multiclass classification for evaluation and validation
approaches. The detailed classification results are presented in Table 7 and Figure 6.
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Table 5. Summary results for all two-class classification using leave-one-out cross-validation (LOOCV) for 10-sec time-window size.

Classification Tasks

10-sTime Window Size

Acc. (%) Sens. (%) Spec. (%) AUC J (Youden’s Index)

LF RF CF LF RF CF LF RF CF LF RF CF LF RF CF

ALS vs. HC 100 100 100 100 100 100 100 100 100 1 1 1 1 1 1
HD vs. HC 98.41 98.04 97.56 98.54 97.59 98.51 98.25 98.60 96.41 0.9839 0.9810 0.9746 0.9679 0.9619 0.9492
PD vs. HC 100 100 100 100 100 100 100 100 100 1 1 1 1 1 1

ALS vs. HD 100 100 100 100 100 100 100 100 100 1 1 1 1 1 1
PD vs. ALS 95.64 95.95 94.21 94.07 94.59 92.95 97.63 97.65 95.78 0.9585 0.9612 0.9437 0.9170 0.9224 0.8873
HD vs. PD 97.11 97.25 94.98 96.81 96.54 93.54 97.51 98.24 97.14 0.9711 0.9739 0.9534 0.9432 0.9478 0.9068

NDD vs. HC 98.86 98.91 98.93 99.01 99.04 99.44 98.38 98.53 97.43 0.9870 0.9878 0.9844 0.9739 0.9757 0.9687

Note: bold and underlined were selected by Youden’s index criteria as the best classification result and model.

Table 6. Summary results for all two-class classification using LOOCV for 5-min time-window size.

Classification Tasks

5-min Time Window Size

Acc. (%) Sens. (%) Spec. (%) AUC J (Youden’s Index)

LF RF CF LF RF CF LF RF CF LF RF CF LF RF CF

ALS vs. HC 96.55 96.55 86.21 100 100 90.91 94.12 94.12 83.33 0.9706 0.9706 0.8712 0.9412 0.9412 0.7424
HD vs. HC 77.78 83.33 77.78 83.33 93.75 92.86 72.22 75 68.18 0.7778 0.8438 0.8052 0.5555 0.6875 0.6104
PD vs. HC 93.55 90.32 80.65 100 100 90.91 88.89 84.21 75 0.9444 0.9211 0.8295 0.8889 0.8421 0.6591

ALS vs. HD 87.88 90.91 81.82 100 100 100 83.33 86.96 76.92 0.9167 0.9348 0.8846 0.8333 0.8696 0.7692
PD vs. ALS 71.43 71.43 71.43 76.92 73.33 70.59 66.67 69.23 72.73 0.7179 0.7128 0.7166 0.4359 0.4256 0.4332
HD vs. PD 82.86 77.14 68.57 79.17 75 69.57 90.91 81.82 66.67 0.8504 0.7899 0.6812 0.7008 0.5682 0.3624

NDD vs. HC 89.06 92.19 85.94 97.67 95.74 93.33 71.43 82.35 68.42 0.8455 0.8905 0.8088 0.6910 0.7809 0.6175

Note: bold and underlined were selected by Youden’s index criteria as the best classification result and model.
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Table 7. Summary results for multiclass classification using LOOCV.

Classification Tasks
LF + 10-s Time Window Size RF + 10-s Time Window Size CF + 10-s Time Window Size

Acc. (%) Sens. (%) Spec. (%) AUC Acc. (%) Sens. (%) Spec. (%) AUC Acc. (%) Sens. (%) Spec. (%) AUC

HC 98.99 97.26 99.57 0.9841 99.10 97.56 99.62 0.9859 98.51 97.79 98.76 0.9827
ALS 98.32 93.81 99.47 0.9664 98.15 92.68 99.55 0.9611 97.90 92.59 99.26 0.9592
HD 97.41 97.68 97.28 0.9748 97.45 97.80 97.28 0.9754 96.21 95.24 96.65 0.9595
PD 96.74 93.17 97.83 0.9550 96.49 93.09 97.54 0.9531 95.60 90 97.31 0.9366

Note: ALS = amyotrophic lateral sclerosis, HC = healthy control, HD = Huntington’s disease and PD = Parkinson’s disease.
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Figure 6. Confusion matrix for multiclass classification using LOOCV.
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4. Discussion

The gait analysis of different subjects is discussed in this section based on the texture analysis of
the recurrence plot. In the original vGRF signal data, it was not easy to observe some key features
by naked eye. However, after the signal was transformed into the recurrence plot, different periodic
features in the original signal could be extracted and shown as different texture patterns on the plot.
The different texture patterns between each kind of NDD and HC subjects can be easily pointed out.
With the method of recurrence plotting, the special features of the original vGRF signal in each type
of subject can be emphasized and visualized into a plot. It brings the benefit of the follow-up deep
learning algorithm CNN, which is outstanding for image recognition.

4.1. Healthy Control

The texture patterns in the recurrence plots of HC subjects depicted in Figure 3a are orderly and
regular. As shown in figure, there are roughly two different kinds of black squares in the plot, one is
a bigger black square and the other is the smaller black square. The larger black squares represent
the stance phase during the gait cycle, and the smaller black squares represent the swing phase. Both
kinds of squares appear repeatedly and regularly in the plot, and the side length is almost the same in
the whole the plot, whether the squares are bigger or smaller. This means that each stance interval
and each swing interval of the original signal are consistent and regular, which corresponds with the
characteristics of healthy people.

4.2. Amyotrophic Lateral Sclerosis

The texture patterns are much more complicated in the recurrence plots of ALS subjects, as shown
in Figure 3b. There are also two kinds of black squares, a bigger one and a smaller one, which represent
the stance phase and the swing phase, respectively. However, in the plots of ALS subjects, the size
of bigger black squares is obviously bigger than those of HC subjects, which means that the stance
intervals of ALS subjects are longer than the stance interval of HC subjects in comparison. Furthermore,
there are clear “cross-like” patterns appearing in the bigger black squares, showing the feature of a
double peak in the stance phase of the original signal.

4.3. Parkinson’s Disease

The recurrence plots of PD subjects, shown in Figure 3c, are similar to those of HC subjects.
However, by careful observation, it can be seen that the black square in the plot of HD patients is
irregular. There are no obvious two kinds of black squares that can be pointed out. This means that the
stride intervals and the swing intervals of PD subjects are more irregular than the HC subjects.

4.4. Huntington’s Disease

The recurrence plots of HD subjects are the most arbitrary and irregular plots of the NDDs,
indicated in Figure 3d. There are also two kinds of squares that can be observed. The first kind has a
clear cross-like pattern within. It represents the stance phase with the feature of a clear double peak.
The other kind, without the cross-like pattern, represents the swing phase. The size of these two kinds
of squares is similar, which shows that there is no clear difference between the length of the stance
interval and the length of the swing interval for the HD subjects.

4.5. Classification Performance Comparison to Other Literature Based on PhysioNet Gait Dynamics in
Neurodegenerative Disease Database

In order to examine performance of the proposed algorithm, four literatures [18,19,22,24] are
selected to compare the algorithm performance. [18,19,22,24] adopted PhysioNet Gait Dynamics in
Neurodegenerative disease [26] which is the same as this study. [18] employed stance and swing
intervals series of left and right foot to do the two-class classifications (including classification of ALS
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vs. HC, HD vs. HC and PD vs. HC). [22] utilized two kinds of data as input, gait pattern data (stance
and swing intervals series of left and right foot) and gait force data (vGRFs). Two-class classification
including HC vs. ALS, HC vs. HD, HC vs. PD and NDDs vs. HC were compared using LOOCV as the
cross validation. [19] adopted five independent gait parameters including, stance interval of LF and
RF, stride interval of LF and RF and double support interval, were selected. Two-class classification
comparison of ALS vs. HC, PD vs. HC, HD vs. HC and NDD vs. HC using LOOCV were presented.
In [24], only RF gait force signal was chosen as the input of the algorithm. [24] presented sensitivity,
specificity, AUC value, and the accuracy of HC vs. HD, HC vs. PD and HC vs. ALS classifications using
LOOCV as the evaluation method. The comparison of [18,19,22,24] to the proposed algorithm is given
in Figures 7–10. The proposed method obtained a satisfactory performance of NDDs classification
compared with [18,19,22,24]. In summary, the proposed method outperforms [18,19,22,24] in HC vs.
ALS, HC vs. PD and NDDs vs. HC classification. In HC vs. HD classification, the proposed method
cannot achieve the accuracy as high as that of the [19,24] (98.85% vs. 100%). However, for the length of
the input data, the proposed method only used 10-s length data with high classification performance,
it indicates that the proposed method can be categorized as an effective and rapid NDDs screening
algorithm. It is also more appropriate for patient data collecting, the patients do not need to walk in a
certain long period of time (5-min) so the fall incidence can be minimized.

4.6. Limitations of the Proposed Method

Even though the proposed method obtained importance-performance evidence, there are some
limitations that has to be improved. Limited number of data were used as the input of the proposed
method and it was from the existing online database, to collect clinical data from HC and NDDs subjects
is the future work of this study. The other major drawback is the deployment of the patients’ age and
disease severity level were not investigated well. These factors will influence the emergence of different
gait abnormalities that affect the gait pattern visualization and the classification performance of deep
learning algorithm. Based on these limitations, there are several major directions for improvement
that could be carried out. First, since the performance obtained using the proposed method used an
existing database, clinical data should also be obtained for the purpose of verification and to resolve
the limitations of the current database (the limited number of NDD patients). Second, long-term data
collection for monitoring NDDs progression is meaningful for the treatment of the NDD patient since
the gait pattern of NDD patients should be changed in the long-term disease progression. Third, in
order to assure the clinical meaning, the NDD gait phenomenon based on a gray-level texture image
should be discussed with physicians. Fourth, other input data (such as kinetic data, temporal data, step
length and cadence) and classifiers should be applied in order to confirm and compare the effectiveness
of pattern visualization and recognition based on the use of a gray-level texture recurrence plot image
in NDD detection applications.
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Figure 7. HC vs. ALS comparison result between the proposed method and existing literature. (1) 5-min data length; (2) 10-s data length; (3) 5-min data length; least
squares support vector machine (LS-SVM).

Figure 8. HC vs. HD comparison result between the proposed method and existing literature. (1) 5-min data length; (2) 10-s data length; (3) 5-min data length, LS-SVM.
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Figure 9. HC vs. PD comparison result between the proposed method and existing literature. (1) 5-min data length; (2) 10-s data length; (3) 5-min data length, LS-SVM,
(4) 5-min data length, linear discriminant analysis (LDA).

Figure 10. HC vs. NDD comparison result between the proposed method and existing literature. (1) 5-min data length, (2) 10-s data length.
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5. Conclusions

A novel deep-learning-based NDD detection algorithm using a recurrence plot based on vGRF
signal data were developed. Pattern visualization and recognition of the recurrence plot image-like
made it possible to successfully differentiate between the gait phenomenon of NDD patients and HC.
After the original signal was transformed, feature enhancement using PCA was applied to increase
the between-class separability and reduce the within-class separability. In order to evaluate the CNN
classification process, LOOCV was performed, and four parameters were generated, including accuracy,
sensitivity, specificity and the AUC value. The classification accuracy for (HC vs. ALS), (HC vs. HD),
(HC vs. PD), (ALS vs. PD), (ALS vs. HD), (PD vs. HD) and (NDDs vs. HC) were 100%, 98.41%,
100%, 95.95%, 100%, 97.25% and 98.91%, respectively. In the multiclass classification, a four-class gait
classification among HC, ALS, PD and HD was conducted and the classification accuracy of HC, ALS,
PD and HD were 98.99%, 98.32%, 97.41% and 96.74%, respectively. The proposed method can achieve
high accuracy compare to the existing results, but with shorter length of input signal (Input of existing
literature using the same database is 5-min gait signal, but the proposed method only needs 10-s gait
signal). As a result, the proposed method was able to achieve the highest performance for more than
98.41% of the parameters being evaluated and achieved superior performance in comparison to NDD
detection state-of-the-art methods found in the literature.
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