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Abstract
Colorectal cancer (CRC) is one of the most commonly diagnosed cancers with an 
estimated 1.8 million new cases worldwide and associated with high mortality rates 
of 881 000 CRC-related deaths in 2018. Screening programs and new therapies have 
only marginally improved the survival of CRC patients. Immune-related genes (IRGs) 
have attracted attention in recent years as therapeutic targets. The aim of this study 
was to identify an immune-related prognostic signature for CRC. To this end, we 
combined gene expression and clinical data from the CRC data sets of The Cancer 
Genome Atlas (TCGA) into an integrated immune landscape profile. We identified 
a total of 476 IRGs that were differentially expressed in CRC vs normal tissues, of 
which 18 were survival related according to univariate Cox analysis. Stepwise multi-
variate Cox proportional hazards analysis established an immune-related prognostic 
signature consisting of SLC10A2, FGF2, CCL28, NDRG1, ESM1, UCN, UTS2 and TRDC. 
The predictive ability of this signature for 3- and 5-year overall survival was deter-
mined using receiver operating characteristics (ROC), and the respective areas under 
the curve (AUC) were 79.2% and 76.6%. The signature showed moderate predictive 
accuracy in the validation and GSE38832 data sets as well. Furthermore, the 8-IRG 
signature correlated significantly with tumour stage, invasion, lymph node metas-
tasis and distant metastasis by univariate Cox analysis, and was established an in-
dependent prognostic factor by multivariate Cox regression analysis for CRC. Gene 
set enrichment analysis (GSEA) revealed a relationship between the IRG prognostic 
signature and various biological pathways. Focal adhesions and ECM-receptor inter-
actions were positively correlated with the risk scores, while cytosolic DNA sensing 
and metabolism-related pathways were negatively correlated. Finally, the bioinfor-
matics results were validated by real-time RT‑qPCR. In conclusion, we identified and 
validated a novel, immune-related prognostic signature for patients with CRC, and 
this signature reflects the dysregulated tumour immune microenvironment and has a 
potential for better CRC patient management.
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1  | INTRODUC TION

Colorectal cancer (CRC) is the third most commonly diagnosed can-
cer worldwide and ranks second in terms of cancer-related mortal-
ity.1 An estimated 1.8 million new cases and 881 000 CRC-related 
deaths were recorded in 2018 alone.1 Recent screening programs 
have reported a decrease in both the incidence and mortality of 
CRC,2 and new therapies have doubled the overall survival (OS) of 
patients with advanced CRC.3 However, the OS of CRC patients 
is still low as they are usually diagnosed at the advanced-stage.4,5 
Therefore, it is essential to identify novel therapeutic, prognostic 
and diagnostic biomarkers for CRC.

Immunotherapy is now part of the standard treatment regimen for 
many solid tumours,6 as the immune system is frequently dysregu-
lated in cancer patients and inextricably linked with tumour growth.7 
Anti-cancer immunotherapeutic approaches are classified into six 
categories: oncolytic virus therapy, adjuvant immunotherapy and 
cytokines, adoptive cell therapy, therapeutic vaccines, checkpoint 
inhibitors and monoclonal antibodies.8 However, insufficient immune 
response has long been a concern, especially for checkpoint inhibitors 
targeting the programmed death 1 (PD-1) and PD-1 ligands (PD-L1s) in 
CRC.9 Especially, use of immune checkpoint inhibitors (ICIs) has little 
or no clinical activity in most metastatic CRC patients.10 The response 
to ICI therapy depends on several key factors, including mutation load 
(high levels of tumour neoantigen), tumour-infiltrating lymphocytes 
and regulatory checkpoint receptors.11 As seen in CRC patients with 
microsatellite stability (MSS), the main obstacle for ICI is low tumour 
immunogenicity12,13 because of the presence of fewer neoantigens,14 
resulting in fewer infiltrating CD8 + T cells and fewer strongly positive 
for PD-1.15 This makes CRC become one of the tumours in which im-
munotherapy has been shown less effective, in relation to different 
classes. Therefore, it is essential to characterize the immune-related 
genes (IRGs) in CRC to optimize treatment.

Gene microarrays and RNA-sequencing have identified several 
prognostic biomarkers for human cancers in recent years. For in-
stance, cytokines,16 heat shock protein beta 3,17 cyclin D1,18 clusterin19 
and RBP720 are established prognostic markers for CRC. In addition, 
non-coding RNAs such as microRNAs,21,22 long non-coding RNAs23,24 
and circRNAs25 are increasingly reported to be associated with the sur-
vival of cancer patients. Several immune-related prognostic signatures 
have also been established for multiple cancer types.26 For example, 
an IRG prognostic signature consisting of SPAG11A, PTH2R, IL17C, IL11, 
FAM3B, CTGF and AGTR1 was constructed based on TCGA data for 
papillary thyroid cancer.27 Wang et al28 analysed the gene expression 
profiles of TCGA patients with renal papillary cell carcinoma to estab-
lish a risk signature of 15 IRGs. Similar IRG-based prognostic signatures 
have been reported for gastric cancer,29 invasive ductal carcinoma30 
and ovarian cancer31 as well. Based on these studies, our aim was to 
establish an immune-related prognostic signature for CRC.

Here, we systematically analysed the immunogenomic landscape 
of CRC based on the gene expression profiles in TCGA and identified 
476 differentially expressed IRGs between tumour samples relative 
to normal tissues including 18 survival-associated IRGs. An IRG prog-
nostic signature including SLC10A2, FGF2, CCL28, NDRG1, ESM1, UCN, 
UTS2 and TRDC was constructed which showed moderate predictive 
ability for the overall survival of CRC patients in both the training and 
validation sets. Furthermore, this signature correlated with the tu-
mour stage, invasion, lymph node metastasis and distant metastasis, 
and was identified as an independent prognostic indicator for CRC. 
This IRG signature may reflect the immune dysregulation in the tu-
mour microenvironment and is a promising novel therapeutic target in 
addition to being an accurate prognostic biomarker for CRC.

2  | MATERIAL S AND METHODS

2.1 | Data acquisition and IRG selection

RNA-sequencing and clinical data of 568 CRC and 44 normal tissue 
samples were downloaded from TCGA database (https://portal.gdc.
cancer.gov/)32 as 15 August 2019. A total of 2,498 IRGs (Table S1) as-
sociated with human cancers were identified using the Immunology 
Database and Analysis Portal (ImmPort) database (https://www.
immpo​rt.org/home).33

2.2 | Identification of differentially expressed IRGs

The limma R package34 was used to identify IRGs that were differen-
tially expressed between the tumour and normal tissue samples, with 
false discovery rate (FDR) of < 0.05 and log2-fold change > 1 as the 
cut-off values. Gene Ontology (GO)35 and the Kyoto Encyclopedia 
of Genes and Genomes (KEGG) pathway analysis36 were conducted 
using the clusterProfiler R package37 to identify the functionally en-
riched genes and classify the gene clusters. FDR < 0.01 was consid-
ered statistically significant.

2.3 | Survival-associated IRG analysis

The survival-associated IRGs were screened using data from patients 
surviving at least 90  days and with known M stage (pM), tumour 
stage (pStage), T stage (pT) and N stage (pN) [according to American 
Joint Committee on Cancer (AJCC)]. Accordingly, the data set of 453 
patients was randomly assigned to the training (362 patients, 80% of 
all samples) and validation (91 patients, 20% of all samples) groups, 
and the survival-related IRGs were identified by univariate Cox anal-
ysis with the survival R package (P < .05).

K E Y W O R D S

bioinformatics, colorectal cancer, immunogenomic landscape, prognostic signature, TCGA

https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
https://www.immport.org/home
https://www.immport.org/home
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2.4 | Construction and verification of the 
immune signature

Based on the results of the univariate analysis, the immune-related 
prognostic signature was generated using a stepwise multivari-
ate Cox proportional hazards model with the survival package in R 
language. Here, a multivariate Cox proportional hazards regression 

model was used to solve the problem of multiple factors affecting 
the survival time of patients. In brief, we considered all the 18 IRGs 
that are significantly related to prognosis by univariate Cox analysis 
as influencing factors. After bringing them into multivariate Cox pro-
portional hazards model, significant IRGs will be retained during mul-
tiple computing. The weighted coefficients based on individual gene 
expression levels were used to calculate the risk score as follows:

Gene Sequences of primers Accession No.
Tm 
(°C)

Amplicon 
(bp)

SLC10A2 FOR: AGGTGCCGAACGGTTGCTT NM_000452.2 60°C 113

REV: AGCGGGAAGGTGAATACGACA 60°C

ESM1 FOR: CTTGCTACCGCACAGTCTCA NM_001135604.2 60°C 124

REV: GCCATGTCATGCTCTTTGCAG 60°C

GAPDH FOR: 
GGAAGCTTGTCATCAATGGAAATC

NM_002046 60°C 168

REV: TGATGACCCTTTTGGCTCCC 60°C

Abbreviations: FOR, forward; REV, reverse; Tm, Annealing temperatures.

TA B L E  1   The information of primers 
used in real-time RT–PCR

F I G U R E  1   Flow chart for the development and verification of an immune-related prognostic signature for CRC
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The patients in the training group were then stratified into the 
low- and high-risk groups according to median risk score values, 

and their survival was analysed using the Kaplan-Meier method 
and the log-rank test. The specificity and sensitivity of the risk 
score in predicting 3- and 5-year survival was determined by ROC 
analysis using the survival ROC R package, and the areas under 

Risk score=
∑

regression coefficient
(

genei
)

×expression value
(

genei
)

.

F I G U R E  2   Screening of differentially expressed immune-related genes (IRGs) in colorectal cancer (CRC). A, Volcano plot showing the 
differentially expressed IRGs in tumours vs normal tissue samples. Blue dots represent down-regulated IRGs, and red dots represent up-
regulated IRGs. B, Gene expression heat map of differentially expressed IRGs in CRC. C, Results of the gene ontology (GO) term enrichment 
study. D, Results of the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment study
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curve (AUC) were calculated. The immune signature was further 
validated using the entire TCGA (n = 453) and validation (n = 91) 
data sets, as well as the GSE38832 data set38 downloaded from the 
Gene Expression Omnibus (GEO) database.39 The latter included 
115 CRC samples and the survival information in accordance with 
the GPL570 (Affymetrix Human Genome U133 Plus 2.0 Array). 
Each data set was stratified into the low- and high-risk groups as 
described.

2.5 | Association of the immune signature and 
clinicopathological features

The correlation between patient survival and clinical factors includ-
ing age, gender, pM, pN, pT, pStage and risk scores was determined 
by univariate Cox analysis. Multivariate Cox regression analysis was 
then used to identify the independent prognostic factors for CRC. 
Prognostic nomograms were generated using the Cox regression 

F I G U R E  3   Construction of the immune-related prognostic signature in CRC. A, Forest plot of immune-related prognostic genes based 
on univariate Cox regression analysis. B, Kaplan-Meier plots of the immune-related signature showing worse survival in the high-risk group 
compared to the low-risk group (log-rank P-value < .0001). C, Time-dependent (ROC) curve of the immune-related signature for 1-, 3- and 
5-year overall survival. D, Distribution of the survival status, risk score and gene expression data of CRC patients in the training group

A

B

C

D
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coefficients with the rms R package, and the calibration plots to as-
sess the performance of these nomograms were drawn using the 
regplot R package.

2.6 | Bioinformatics analyses

The biological relevance of the immune signature was determined 
by gene set enrichment analysis (GSEA) using the GSVA R package. 
FDR < 0.001 and a relationship coefficient of > 0.3 were used as the 
cut-offs for the included KEGG pathways. The association between 
the immune-related genes was analysed by the Spearman correlation 
coefficient. The protein-protein interaction network was based on 
the STRING database (https://strin​g-db.org/cgi/input.pl)40 and con-
structed using with an interaction confidence of 0.4 and 10 neigh-
bouring nodes. The differentially expressed transcription factors 
(TFs) were identified from the Cistrome database (http://cistr​ome.
org/),41 with FDR < 0.05 and log2-fold change > 1 as the criteria. TF 
correlation assay was performed using P < .001 and correlation coef-
ficient > 0.3 as the cut-offs. The association between CRC biomark-
ers like BRAF,42 NRAS42 and PIK3CA,43 and the immune prognostic 
signature was then determined. Finally, a competing endogenous 
RNA (ceRNA) regulatory network based on eight biomarkers was 
constructed using the TarBase (version 8)44 and LncBase (version 2)45 
databases, and visualized using Cytoscape software (version 3.7.2).46

2.7 | Clinical specimens

The expression of IRGs was clinically validated in 25 pairs of CRC and 
matched normal tissues surgically resected at the Second Affiliated 
Hospital of Zhejiang University School of Medicine from May 2018 
to June 2018. These patients had received no preoperative chemo-
therapy, radiotherapy or targeted therapy. The tissue samples were 
collected within 30 minutes of surgical resection, cleaned and cry-
opreserved in liquid nitrogen. All patients provided informed con-
sent, and the study was approved by The Human Research Ethics 
Committee of the hospital.

2.8 | Real-time quantitative polymerase chain 
reaction (RT‑qPCR)

Total RNA was extracted from the frozen tissue specimens using 
Trizol (#G3013, Servicebio) as per the manufacturer's instructions. 
The concentration and purity of the RNA were ascertained with a 
NanoDrop2000 spectrophotometer (ThermoFisher Scientific). Reverse 
transcription into complementary DNA (cDNA) was performed using 
a specific kit (#K1622, ThermoFisher Scientific) following the manu-
facturer's instructions. In brief, a total of 5 μg of total RNA (diluted to 
12 μL using RNase-free dH2O with 1 μL oligo(dT)18) were incubated at 
65°C for 5 minutes and cooling on ice. Then, a 8 μL reaction mixture 
containing 4 μL of 5 × Reaction Buffer, 2 μL Of 10 mmol/L dNTP Mix, 
1 μL of RiboLock RNAase inhibitor and 1 μL of RevertAi M-MuLV re-
verse transcriptase was added in above RNA mixture (20 μL in total). 
The samples were finally incubated in a PCR thermocycler for 60 min-
utes at 42°C and 5 minutes at 70°C. RT-qPCR was conducted in the 
StepOnePlus cycler (Applied Biosystems Inc) using FastStart Universal 
SYBR Green Master (#G3008, Servicebio). The PCR cycle parameters 
were as follows: pre-denaturation at 95°C for 10 minutes, followed by 
40 cycles at 95°C for 15 seconds and 60°C for 1 minute. Relative gene 
expression levels were measured using the comparative cycle thresh-
old (ΔΔCt) method and normalized to GAPDH. The sequences and ac-
cession numbers for primers used in real-time RT–PCR were shown in 
Table 1 (Servicebio). All samples were tested in triplicate.

2.9 | Statistical analysis

All statistical analyses were conducted using R language (version 
3.6.1). The Wilcoxon test was used to compare two independent non-
parametric samples, and the Kruskal-Wallis test was used for multiple 
independent samples. The Kaplan-Meier survival curves were com-
pared with the log-rank test. Independent prognostic factors related 
to survival were identified using the univariate and multivariate Cox 
proportional hazard regression analyses. The Spearman correlation 
coefficient was used to analyse the association among immune-re-
lated genes. P-value < .05 was considered statistically significant.

TA B L E  2   The results of stepwise multivariate Cox proportional hazards model

Gene symbol Coef HR HR.95L HR.95H P-value Regulation

SLC10A2 0.638812 1.89423 1.202826 2.983063 .005834 Down

FGF2 0.386611 1.471984 1.234656 1.754931 1.63E-05 Down

CCL28 −0.09426 0.910051 0.851113 0.973069 .005796 Down

NDRG1 0.011524 1.011591 1.003183 1.020069 .006806 Down

ESM1 0.124352 1.132414 1.057736 1.212365 .000354 Up

UCN 0.377663 1.458871 1.157773 1.838275 .001364 Up

UTS2 0.254362 1.289639 1.028137 1.617652 .02781 Up

TRDC 0.129341 1.138078 1.015503 1.275449 .026111 Down

Note: Coef represents regression coefficient of each gene.
Abbreviations: HR, hazard ratio; HR.95H, high 95% confidence interval of HR; HR.95L, low 95% confidence interval of HR.

https://string-db.org/cgi/input.pl
http://cistrome.org/
http://cistrome.org/
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3  | RESULTS

3.1 | Construction of an immune-gene expression 
signature in CRC

Given the crucial role of the immune microenvironment in cancer 
development, we explored the prognostic value of IRGs in CRC 
(Figure 1). Screening of TCGA and ImmPort databases revealed 476 
IRGs that were differentially expressed in CRC compared to normal 
tissues, of which 177 were up-regulated and 299 down-regulated 
(Table S2; Figure 2A,B). The differentially expressed IRGs were sig-
nificantly enriched in GO terms related to complement activation, 
humoural immune response, protein activation, immunoglobulin-
mediated immune response, antigen binding, phagocytosis, immu-
noglobulin complex formation and cytokine activity (Figure 2C and 
Table S3), and in cytokine-cytokine receptor interaction, IL-17 sig-
nalling pathway, natural killer cell-mediated cytotoxicity, chemokine 
signalling pathway, Rap1 signalling pathway and MAPK signalling 
pathway (Figure 2D and Table S4).

Eighteen survival-associated IRGs were identified in the train-
ing group by univariate Cox analysis (Figure 3A), of which SLC10A2, 
FGF2, CCL28, NDRG1, ESM1, UCN, UTS2 and TRDC were further 
screened by the stepwise multivariate Cox proportional hazards 
model (Table 2). An eight-gene immune signature was constructed 
using the independent regression coefficients of each gene, and the 
risk score was calculated as (0.639 * level of SLC10A2) + (0.387 * 
level of FGF2) + (−0.094 * level of CCL28) + (0.012 * level of NDRG1) 
+ (0.124 * level of ESM1) + (0.378 * level of UCN) + (0.254 * level 
of UTS2) + (0.129 * level of TRDC). The risk scores were calculated 
for each patient in the training group from 0.02 and 24.80, and the 
patients were assigned to the high-risk or low-risk group based on 
the median risk score of 0.95. As shown in Figure 3B, patients with 
high-risk scores had significantly worse survival outcome than those 
with low-risk scores (log-rank test, P < .0001). Furthermore, the AUC 
of the risk score for 3-year and 5-year OS were 79.2% and 76.6%, 
respectively (Figure  3C). The survival status, risk scores and gene 
expression data of CRC patients in the training group are illustrated 
in Figure 3D.

3.2 | Validation of the immune-related signature

To validate the immune-related signature, its prognostic accuracy 
was further assessed in three independent cohorts, including the 
validation group, TCGA data set and the GSE38832 data set. The 
OS was significantly longer for patients in the low-risk vs the high-
risk group in the validation cohort (n = 91; log-rank test, P =  .006, 
Figure  4A), and the predicted 3-year and 5-year OS was 75.5% 
and 82.2%, respectively (Figure 4B). The TCGA data set (n = 453) 
also validated the prognostic accuracy of the immune-related sig-
nature (log-rank test, P <  .0001, Figure 4C), with respective AUCs 
of 77.7% and 77.5% for 3-year and 5-year OS. Thus, the 8-IRG im-
mune signature predicted OS of CRC patients with superior accuracy 

(Figure  4D). Consistent with this, significantly longer OS was also 
seen for patients in the low-risk group of the GSE38832 data set 
(n  =  115) compared to those in the high-risk group (log-rank test, 
P = .016, Figure 4E). Furthermore, the risk scores were significantly 
different in both groups (Wilcoxon test, P < .0001, Figure 4F).

The expression level of the IRGs was validated in 25 matched 
tissue pairs by qRT-PCR ESM1 and SLC10A2 showed the maximum 
differential expression between CRC and normal tissues, and con-
sistent with the results of the bioinformatics analysis, ESM1 was sig-
nificantly elevated and SLC10A2 was significantly down-regulated 
(P < .05) in the tumours (Figure S1A,B).

3.3 | The IRG signature confers additional 
prognostic power for CRC patients

As shown in Figure 5A, clinical factors including age, pStage, pT, 
pN, pM and the immune risk score were closely associated with pa-
tient survival. Multivariate Cox regression analysis further showed 
that the IRG signature is an independent prognostic indicator for 
OS (P  <  .001, Figure  5B and Table  3). Expression profiles of the 
eight IRGs are shown in Figure  5C, and the risk score increased 
with advanced tumour parameters (Figure 5D). Furthermore, the 
expression level of CCL28 was significantly associated with pT 
(P =  .048), that of ESM1 with pT (P =  .008) and pStage (P =  .01), 
UTS2 with pM (P  =  .039), and TRDC with pN (P  =  .012), pM 
(P < .0001) and pStage (P < .0001, Figure 6A). We next created a 
nomogram that integrated clinicopathological characteristics with 
the IRG signature as a quantitative tool for predicting OS of CRC 
patients (Figure 6B). As shown in the calibration plots in Figure 6C, 
the nomogram performed with moderate accuracy compared to 
an ideal model.

3.4 | Biological revenant and regulatory 
network of the IRG signature in CRC

The potential association between the IRG signature and biologi-
cal functions was assessed by GSEA using samples from TCGA data 
set. We found 28 KEGG pathways that were significantly correlated 
to either the low- or high-risk CRC patient group (Figure S2A and 
Table  S5). Pathways modulating cancer-related functions such as 
focal adhesions, the actin cytoskeleton, ECM-receptor interactions 
and endocytosis were positively correlated with the risk scores, 
while cytosolic DNA sensing, linoleic acid metabolism, arachidonic 
acid metabolism and ether lipid metabolism pathways were nega-
tively correlated.

The potential correlation between the IRGs and other cancer-re-
lated genes was also evaluated. As shown in Figure S2B, there was a 
significant negative correlation between UCN and FGF2 (Spearman's 
correlation coefficient  =  −0.31), while the IRGs were weakly cor-
related with other genes. The interactions of the proteins encoded 
by these genes were next analysed (Figure S2C), and the Cistrome 
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database further showed that UCN, FGF2 and CCL28 were regu-
lated by transcription factors (Figure  S2D). Finally, the expression 
of several CRC biomarkers was assessed in the tumours from the 
low- and high-risk groups. BRAF, NRAS and PIK3CA were differen-
tially expressed, indicating that the IRG signature is closely related 
to CRC progression (Figure 7A–C). Based on the above, a complex 
ceRNA network regulating IRGs was constructed using the TarBase 
and LncBase databases (Figure 7D).

4  | DISCUSSION

The tumour microenvironment includes immune cells that are key 
players in tumour progression,47 and variously modulate inflamma-
tion48 and metastasis.49 Thus, both immunology-cancer interface 
and the microenvironment have a major impact on the diagnosis 
and treatment of cancers, including CRC.50 Resistance to CRC 
immunotherapy is the result of poorly antigenic tumour cells dis-
playing PD-1 and PD-L1.14 We systematically evaluated the immu-
nogenomic landscape of CRC tumours based on gene expression 
profiles in TCGA database and constructed an immune-related 
prognostic signature including SLC10A2, FGF2, CCL28, NDRG1, 
ESM1, UCN, UTS2 and TRDC. The AUC values for 3-year and 5-year 
OS of this prognostic signature were 79.2% and 76.6%, respec-
tively, indicating moderate predictive accuracy. Furthermore, the 
signature correlated with tumour stage, invasion, lymph node 
metastasis and distant metastasis, and is an independent predic-
tor for the OS of CRC patients. This IRG signature likely reflects 
immune dysregulation in the tumour microenvironment and is a 
novel prognostic biomarker of CRC.

High throughput molecular analyses, gene expression databases 
and bioinformatic tools have enabled systematic profiling of immune 
signatures in cancers. For example, Yang et al29 built a prognostic 

model for gastric cancer consisting of immune-related genes includ-
ing TNFRSF18, PBK, MICB, ITGA6, TLR5, PNMA1, LBP, CXCR4, C6 and 
NRP1, which accurately distinguished between patients with poor 
and satisfactory OS. Similarly, Bao et al identified an independent 
prognostic signature for invasive ductal carcinoma30 that consisted of 
FLT3LG, SPIB, KLRB1, BATF, IGHA1, TIMM8A and QRSL1. In this study, 
we identified an immune-related signature comprising SLC10A2, 
FGF2, CCL28, NDRG1, ESM1, UCN, UTS2 and TRDC for CRC. N-myc 
downstream-regulated gene 1 (NDRG1) was reported that it can play 
a key regulatory role in signalling pathways related to tumour pro-
gression, especially in tumour metastasis. Mi et al51 determined that 
NDRG1 inhibits epithelial-mesenchymal transition (EMT), migration 
and invasion by interacting and promoting caveolin-1 ubiquitination 
in human CRC cells. Another study also proved that knockdown of 
NDRG1 can promote EMT progress of CRC via NF-κB signalling.52 
ESM1 that can be secreted into saliva, blood and urine is considered 
a candidate biomarker for CRC.53 The ceRNA- and TF-mediated reg-
ulatory networks further identified FGF2, CCL28 and UCN in CRC 
progression. FGF2 is associated with increased CRC responsiveness 
to irinotecan54 and is also a member of a gene hub associated with 
cetuximab insensitivity in CRC.55 In addition, CCL28 was previously 
identified as part of a prognostic signature that accurately predicted 
the OS of patients with CRC.56 Sun et al57 also identified CCL28 as 
a critical prognostic factor for CRC using GEO gene expression data 
and the rank aggregation method.

In human cancer studies, none of the single biomarkers can be 
used to detect cancers achieved the required specificity and sensi-
tivity.58 When analysing one or two typical biomarkers, conflicting 
results are often obtained, leading to incorrect cancer diagnosis and 
unsuccessful treatment. Because it is known that several pathways 
and biological processes in tumour cells have changed, the concept 
of ‘single marker’ in cancer is incorrect.59 Some studies have reported 
extensive combinations of serum biomarkers in various cancers. The 

F I G U R E  4   Verification of the immune-related signature in three independent cohorts. A, Kaplan-Meier plots of the immune-related 
signature in the validation group. B, Time-dependent receiver operating characteristics (ROC) curve of the immune-related signature in the 
validation group. C, Kaplan-Meier plots of the immune-related signature in The Cancer Genome Atlas (TCGA) data set. D, Time-dependent 
ROC curve of the immune-related signature in TCGA data set. E, Kaplan-Meier plots of the immune-related signature in the GSE38832 
database. F, Risk score distribution in low- and high-risk groups

Factors

Univariate Cox analysis Multivariate Cox analysis

Hazard ratio (95% CI) P-value Hazard ratio (95% CI) P-value

Age 1.036 (1.012-1.061) .003 1.050 (1.024-1.075) <.0001

Gender 0.991 (0.614-1.600) .972 0.723 (0.436-1.197) .207

pStage 2.597 (1.964-3.434) <.0001 1.545 (0.644-3.707) .330

pT 3.554 (2.195-5.753) <.0001 2.394 (1.367-4.192) .002

pN 2.249 (1.696-2.982) <.0001 1.163 (0.706-1.917) .553

pM 5.440 (3.334-8.877) <.0001 1.553 (0.468-5.159) .472

Risk score 2.205 (1.775-2.739) <.0001 1.849 (1.473-2.320) <.0001

Abbreviations: 95% CI, 95% confidence interval; pM: pathological metastasis stage; pN, 
pathological lymph node stage; pT, pathological tumour stage.

TA B L E  3   The univariate and 
multivariate Cox analysis for risk signature 
and clinical factors
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combination of serum biomarkers with nucleic acids including free 
DNA, mRNA, microRNA and circulating tumour DNA (ctDNA) is be-
coming a diagnostic tool for malignant tumours.60 In breast cancer, 
several recurrence prediction models including multi-gene panels, 
such as Oncotype DX, EndoPredict, BCI and Curebest 95GC, were 
established.61 Therefore, above results may give us a hint: the com-
bination of several biomarkers from different biological pathways can 
lead to better understanding of cancer progression and prognostic sig-
nificance in solid cancers. However, the toxic side effects and other 

adverse reactions of multiple target genes therapy are uncertain, thus 
it is worth our serious considerations.

The prognostic IRGs in our study were enriched in 28 KEGG 
pathways, including cancer-related pathways such as focal adhe-
sions, the actin cytoskeleton, ECM-receptor interactions and endo-
cytosis. The actin cytoskeleton of cytotoxic lymphocytes is a major 
mediator of immune synapse formation and maturation,62 cell mi-
gration and immune surveillance.63 Focal adhesion is an essential 
step in cell migration, and the extracellular matrix (ECM) and its 

F I G U R E  5   Association of the immune-related signature with clinicopathological characteristics. A, Forest plot of risk scores and other 
clinical factors based on a univariable Cox regression analysis. B, Forest plot of risk scores and other clinical factors based on a multivariate 
Cox regression analysis. C, Expression profiles of the eight immune-related genes. D, Box plots showing risk score distribution of different 
clinical factors

F I G U R E  6   Expression of immune-related genes (IRGs) associated with clinicopathological features, and construction of a nomogram for 
survival assessment. A, Associations between the different IRGs and clinicopathological features. B, Nomogram integrating the immune-
related signature to clinicopathological characteristics. C, Plots displaying the calibration of each model comparing predicted and actual 3- 
and 5-year overall survival. The graph relative to the 45° line showing the model relative to perfect prediction
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secreted cytokines play key roles in the immune escape of human 
tumours.64 The activation of several metabolism-related pathways 
such as cytosolic DNA sensing, linoleic acid metabolism, arachidonic 
acid metabolism and ether lipid metabolism negatively correlated 
with the CRC risk scores. Thus, the IRG gene signature is biologically 
significant in CRC.

Our study has some limitations that should be addressed in fu-
ture studies. First, transcriptomic analysis cannot reflect the molecular 

mechanisms underlying the immunobiology of CRC, which may be 
better elucidated by proteomics and/or metabolomics. Second, the 
robustness of our IRG signature must be verified in a large prospective 
clinical study. Finally, our findings have to be validated by in vitro and 
in vivo functional assays to further our understanding of the biological 
role of this IRG signature in CRC.

In conclusion, we identified and validated a novel immune-related 
prognostic signature for patients with CRC, which likely reflects the 

F I G U R E  7   Correlation of immune-related genes with biomarkers and construction of a competing endogenous RNA (ceRNA) network for 
colorectal cancer. A, BRAF gene expression in risk groups. B, NRAS gene expression in risk groups. C, PIK3CA gene expression in risk groups. 
D, The regulatory network of ceRNAs based on immune-related genes
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immune dysregulation in the tumour microenvironment and is a po-
tential prognostic biomarker and therapeutic target.
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