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Abstract: Collaborative representation (CR)-based classification has been successfully applied to
plant disease recognition in cases with sufficient training samples of each disease. However, collecting
enough training samples is usually time consuming and labor-intensive. Moreover, influenced
by the non-ideal measurement environment, samples may be corrupted by variables introduced
by bad illumination and occlusions of adjacent leaves. Consequently, an extended collaborative
representation (ECR)-based classification model is presented in this paper. Then, it is applied to
cucumber leaf disease recognition, which constructs a pure spectral library consisting of several
representative samples for each disease and designs a universal variation spectral library that deals
with linear variables superimposed on samples. Thus, each query sample is encoded as a linear
combination of atoms from these two spectral libraries and disease identity is determined by the
disease of minimal reconstruction residuals. Experiments are conducted on spectral curves extracted
from normal leaves and the disease lesions of leaves infected with cucumber anthracnose and brown
spot. The diagnostic accuracy is higher than 94.7% and the average online diagnosis time is short,
about 1 to 1.3 ms. The results indicate that the ECR-based classification model is feasible in the fast
and accurate diagnosis of cucumber leaf diseases.

Keywords: cucumber disease recognition; hyperspectral imaging; extended collaborative
representation (ECR); spectral library

1. Introduction

Plant diseases severely threaten the yield and quality of agricultural products. Rapid, accurate,
and reliable disease detection and identification is vital to disease prevention and control for sustainable
agriculture and food security [1]. Traditional methods rely on agronomists manually checking the
plant disease symptoms or visible signs of a pathogen with the naked eye [2,3] or professional analysts
performing physiological and biochemical analysis including molecular, serological, and deoxyribose
nucleic acid [4,5]. Meanwhile, the visual assessment method requires plant to show visible symptoms,
which is often used in the middle to late stage of infection [2]; besides, the diagnostic result is heavily
influenced by the subjective consciousness and empirical knowledge of observers. As for the method
of physiological and biochemical analysis, it is time-consuming and labor-intensive [6], and specific
operating environment as well as high level of expertise and operating skills of the analyst are highly
demanded to obtain reliable diagnosis results.

With the rapid development of computer vision and artificial intelligence, image processing
techniques have shown great potential in automatic disease diagnosis, which can overcome some defects
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of the above methods and mitigate the problem of lack of expertise in the field of agriculture [7]. By now,
numerous image processing-based diagnosis methods or systems have been developed by researchers
and have achieved great success [1,8–13]. For instance, based on image processing techniques and
artificial neural networks, Pawar et al. [1] proposed a real-time cucumber disease detection system that
consisted of five sequential procedures, including image acquisition, preprocessing, feature extraction,
creating database and classification, providing classification accuracy of 80.45% on cucumber downy
mildew, powdery mildew, and healthy plants. Zhang et al. [9] segmented diseased blade images by
the K-means clustering method, extracted the shape and color features from the lesions, and utilized
the sparse representation classifier to achieve rapid identification of cucumber diseases. Based on leaf
images, Sladojevic et al. [10] utilized deep convolutional neural networks to distinguish 13 different
types of diseases out of healthy leaves and achieved precision between 91% and 98%. In reference [11],
Ferentinos trained several convolutional neural network models using a large open database containing
of 58 classes, and realized disease diagnosis using simple blade images from healthy and diseased
plants. Jia et al. [12] segmented blade images by the edge detection method and OTSU method to
extract the diseased areas, and used neural networks to improve the recognition rate of cucumber
bacterial angular spot and downy mildew diseases. Singh [13] proposed a sunflower leaf disease
detection method using image segmentation based on particle swarm optimization and achieved
average classification accuracy of 98% on the visible light leaf images of six diseases. From the above
described methods, it can be seen that image processing technique-based methods basically rely on
extracting manifold features like the color, dispersion, texture, shape, gray levels, and connectivity
from the lesions in visible light blade images [3], and then, train classification models or directly
utilize the existing classifiers to identify the type of disease. However, there are no guidelines of
feature selection to decide which features are better that can be used [14]. Moreover, in the early
stage of infection, disease symptoms are often unobvious or even asymptomatic, causing visible light
image-based methods to hardly be used for disease early diagnosis.

The hyperspectral imaging (HSI) technique simultaneously obtains information at the
two-dimensional spatial image level and spectrum level with wavelengths from 400 to 2500 nm,
which not only can reflect the plant surface changes but also the inner physiology and composition
changes [15] caused by biotic plant stresses, such as diseases, pests, and weeds. Thus, it has been
increasingly used for plant disease diagnosis, even in the cases of unobvious or invisible symptoms [6]
during recent decades. For instance, López-López et al. [16] calculated the canopy temperature and
vegetation indices from the high-resolution hyperspectral and thermal imagery of almond, and then,
applied linear discriminant analysis and support vector machine (SVM) methods to their combination
to distinguish the severity levels of red leaf blotch. Rumpf et al. [17] used SVM and spectral vegetation
indices to early detect sugar beet diseases, achieving classification accuracies up to 97% for the
discrimination between healthy sugar beet leaves and diseased ones. Yuan et al. [18] conducted
autocorrelation analysis on spectral features, disease-sensitive bands, and new disease indices to
generate an optimized spectral feature set, and based on which, tea anthracnose detection is realized
by developing a framework combining unsupervised classification and adaptive two-dimensional
thresholding. Gao et al. [19] used the sequential feature selection algorithm to select the spectral
feature wavelengths and utilized neural networks to classify the early ripeness of strawberry based on
the selected spatial feature images. Tian et al. [20] extracted the chromaticity moments-based texture
features of the filtered diseased leaf images in several characteristic wavelengths and used SVM to
classify cucumber downy mildew and powdery mildew.

By analyzing the existing visible and HSI-based methods, it can be found that machine learning
techniques (such as SVM, artificial neural network, ensemble learning, etc.) have been more and
more widely used in disease diagnosis and obtain superior performance than traditional means.
They establish or learn models from the empirical data using computers and when faced with new
situation or data, the learned models will give the corresponding judgement [21]. For classification
tasks like image classification, face recognition, as well as plant disease identification, it is commonly
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believed that machine learning techniques require sufficient training data per subject that can span
the variations of testing samples. However, acquiring appropriate and useful agricultural data is
usually laborious and time-consuming [22]; only a few training samples per subject can be offered
in many practical cases, thus, the trained models derived from insufficient training samples lack
good ability of generalization and hence, may be unsuitable for testing samples with unsatisfactory
performances. For this problem, an ECR-based classification model is presented and then, cucumber
disease recognition is used as a proof-of-concept. In more detail, we extract the spectral curves of the
pixels in the lesions of diseased leaves as samples. Since each sample can be regarded as a superposition
of a pure spectral curve and a linear variable introduced by illumination and occlusions (this paper
mainly considers the common linear variations), we cast them as a linear combination of atoms from
a pure spectral library and a variation spectral library, respectively. The former spectral library is
utilized to distinguish from different types of diseases based on the corresponding collaborative
representation coefficients, while the latter alleviates the influence of the linear variations.

The rest of this paper is organized as follows. Section 2 introduces the Materials and Methods.
More specifically, Section 2.1 describes how the inoculation experiment is conducted; Section 2.2
describes the acquisition and preprocessing of hyperspectral images; Section 2.3 briefly reviews the
related collaborative representation (CR)-based classification model [23]; by extending CR to ECR,
an ECR-based classification model is presented in Section 2.4; Section 2.5 uses cucumber disease
recognition as a proof-of-concept for the ECR-based classification model; Section 2.6 briefly introduces
the experiment setup. The experimental results and analyses of cucumber disease recognition are
given in Section 3. Section 4 concludes the paper.

2. Materials and Methods

2.1. Inoculation Experiment

In this study, a vigorous cucumber variety in China named ‘Lufeng’ was used as the object.
We purchased the cucumber seeds from a commercial seed store located near Jiangsu Academy of
Agricultural Sciences in Nanjing (China). The experiment was conducted between March and May 2019.
We cultivated about 120 cucumber plants in our greenhouse; when they grew to have three real leaves,
55 healthy cucumber plants with similar growth state were selected for experiments. Among these,
5 plants were randomly selected and constituted the healthy control group (group A). The rest formed
the inoculation group, in which, 25 plants were inoculated with Corynespora cassiicola (group B),
while the remaining 25 plants were inoculated with anthracnose (group C). For each plant, 2 real leaves
were inoculated. The strains of Corynespora cassiicola and anthracnose used in experiments were
purchased from the Agricultural Culture Collection of China. The inoculation was carried out by
artificially making small wounds on leaves using a sharp blade and then, covering the wounds with
small mycelia blocks. To avoid cross-infection, plants in group A, B, and C were separately placed
in different artificial environment boxes of the same type, with the relative humidity being kept as 90%,
while two temperatures (28 ◦C for 16 h and 24 ◦C for 8 h) alternated with each other.

2.2. Hyperspectral Image Acquisition and Preprocessing

About 24 h after inoculation, the hyperspectral images of any two leaves of each plant in group A
and all the inoculated leaves in group B and C were acquired every 24 h using an indoor push-broom
HSI system GaiaSorter (Dualix spectral imaging, Chengdu, China), which was composed of two
imaging units (391–1045 and 1000–2500 nm), a horizontal electronically controlled translation stage
(HSIA-T1000), an image acquisition software (SpecView), eight halogen lamps (HSIA-LS-T-H) with
400 W, and an equipment shell made of a steel plate [5]. A schematic diagram of the hyperspectral
image acquisition system is shown in Figure 1. Here, we only collected the raw hyperspectral images
corresponding to 391–1045 nm because the acquisition of hyperspectral images corresponding to
1000–2500 nm would take a relatively longer time and our manpower was very insufficient. The lens
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was about 25 cm above the leaf surface and the exposure time was set as 7.5 ms. The spatial and spectral
resolution of the collected raw hyperspectral image was 1394 × 1024 pixels and 2.8 nm, respectively.
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Affected by the uneven distribution of light intensity, the dark current of the sensors,
and atmospheric turbulence, the raw hyperspectral images contained some noise, which were
eliminated through black and white correction in Equation (1):

I =
Iraw − Idark

Iwhite − Idark
× 100% (1)

where Iraw and I were the raw and corrected hyperspectral images, respectively; Idark was the dark
calibration image obtained by covering the lens cap (0% reflectivity); Iwhite was the white calibration
image obtained by scanning the standard Teflon white board (99% reflectivity). It is worth noting
that if our data are used for comparisons with other research, a further correction with formula of
I × 99% is needed. The corrected hyperspectral images were used for further analysis. In the groups
inoculated with diseases, if one leaf had no visible signs of infection, we ignored it and did not extract
any pixels from it. For the infected plants in group B, we avoided the pixels near the edges of disease
spots and randomly extracted 4000 spectral curves of pixels inside the disease spot by hand. The same
operation was performed on group C. As for the healthy plants in group A, 4000 spectral curves of
pixels were manually and randomly extracted from the corrected hyperspectral images. The basic
information of the groups was briefly described in Table 1. Each spectral curve owned 256 elements
corresponding to the 256 wavebands from 391–1045 nm, with an interval of 2.8 nm. Unless otherwise
stated, for each group, 10 spectral curves were randomly selected from the well extracted 4000 spectral
curves for training the recognition model, and the remaining were used for testing and verifying. Then,
each spectral curve was vectorized to a 256-dimensional column vector and considered as a sample.
In total, there were three types of treatments with 30 training samples that constitute a training set and
11,970 testing samples that constitute a testing set. For each experiment below, the training and testing
sets are regenerated in the above manner each time.

Table 1. A brief description of the groups.

Groups Disease Type Number of Plants Number of Spectral Curves

A Healthy 5 4000

B Corynespora
cassiicola 25 4000

C Anthracnose 25 4000
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To preliminarily reduce the adverse impact of irrelevant information while retaining effective
sample information for the subsequent disease recognition as much as possible [24], we first
preprocessed the spectral curve samples. Since preprocessing methods often have a significant
influence on disease recognition results and different methods have their own types of interference
that they are good at dealing with, for example, Savitzky-Golay convolution smoothing (SG) can
effectively remove random noise while preserving image details and profile information; multiplicative
scatter correction (MSC) can handle the problem of scattering effect; derivative spectrum can eliminate
baseline and other background interference [25], and etc. Given that, one should choose an appropriate
method according to the specific situation [24] and possible sources of noise generated in the acquisition
process. Among the commonly used spectral preprocessing methods, the effects of SG, MSC, moving
average smoothing (MAS), second derivative computed by SG, and standard normal variate (SNV)
are evaluated in Section 3 and the related parameters of the above methods are listed in Table 2.
After preprocessing, the principal component analysis (PCA) method was utilized to reduce the
dimensionality of spectral curve samples to cut down the subsequent calculation and time costs.
Besides, the reflectance of different wavelengths may contain some redundant information and PCA
can get rid of the redundancy and retain sample information as much as possible by increasing the
sampling density. The dimension-reduced samples were used for further analysis.

Table 2. Parameter settings for different preprocessing methods.

Methods Window Width Polynomial Order The Ideal Spectra

MAS 7 / /
SG 7 3 /

MSC / / The mean of all spectral curves

2.3. The Related Work—CR-Based Classification Model

Since ECR is a simple extension of CR, here, we first briefly introduce the CR-based classification
model [23]. Denote all the training samples of k diseases as the matrix Y = [Y1, Y2, · · · , Yk] ∈ Rd×n,
where the submatrix Yi ∈ Rd×ni stacks the ni training samples of the ith class of disease, d is the length
of each sample, and n is the total number of training samples. Assuming that y is a a testing sample,
it is firstly collaboratively represented as the linear combination of all the columns of Y, as follows:

y = Ya + ε (2)

where a is the CR coefficient and ε is the reconstruction error. Then, the testing sample y will be
classified to the class which leads to a minimum reconstruction error:

j∗ = argmin
j

||y−Yδ j(a)||22 (3)

where δ j(a) is obtained by preserving the coefficients corresponding to the jth class and set the rest
coefficients to zeros; j∗ is the obtained class label of the testing sample y.

Though the CR-based classification method is a smart and excellent classification model [26–28],
the premise of its success is that there are enough training samples for each class, otherwise it may fail
to achieve high classification accuracies [29]. However, in practical scenarios, there may be insufficient
training samples for each class due to the limitation of manpower, time, and collection environment.
Under these circumstances, the CR-based classification model may not be able to span the variations of
testing samples and thus could not ensure good classification performance.

2.4. The ECR-Based Classification Model

To overcome the drawback of the CR-based classification model and inspired by the studies
in references [30] and [31], this paper presents an ECR-based classification model. It aims at a reduction
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in the required training sample for each class and an alleviation of the adverse impact of linear
interferences in samples. The ECR-based classification model is composed of two sequential procedures:
an offline stage that offline constructs two dictionaries and an online recognition stage that determines
the identity of the testing sample, which are respectively described in detail as follows (in Section 2.4,
the symbols and meanings of variables are the same as in Section 2.3).

2.4.1. The Offline Preparation of Dictionaries

Assuming each sample is a superimposition of a pure sample and a disturbing variable, a pure
dictionary DP and a variation dictionary DV are firstly created to well collaboratively represent the
former and the latter, respectively. Let the mean vector of Yi be ci =

1
ni

Yihi, where hi is a ni-dimensional
column vector of all ones. The pure dictionary DP and the variation dictionary DV are offline constructed
according to the same method from Gao et al. [31]:

DP = [c1, c2, · · · , ck] ∈ Rd×k (4)

DV =
[
Y1 − c1hT

1 , · · · , Yk − ckhT
k

]
∈ Rd×n (5)

These two dictionaries are stored in a computer for recall in the subsequent online recognition
stage, which is described below.

2.4.2. The Online Recognition Stage

Given a testing sample y of unknown identity, it is firstly decomposed as a linear combination of
atoms from dictionaries DP and DV, based on the ECR model, as follows:

y = yP + yV + ε = DPα+ DVβ+ ε (6)

where yP ≈ DPα represents the pure sample component of y, yV ≈ DVβ denotes the disturbing
variable superposed on yP, ε is a small reconstruction error term. α = [α1,α2, · · · ,αk] ∈ Rk×1 and
β = [β1, β2, · · · , βn] ∈ Rn×1 are the ECR coefficient vectors corresponding to DP and DV, respectively.
They can be easily obtained by solving the following l2-norm regularized least square problem:[

α̂
β̂

]
= argmin

α,β

‖y− [DP, DV ]

[
α
β

]
‖

2
2 + µ‖

[
α
β

]
‖

2

2

 (7)

where µ is a manually tuned parameter that balances the reconstruction fidelity term and the
regularization term. The solutions α̂ and β̂ are the estimations of α and β, and they can be analytically
derived as: [

α̂
β̂

]
=

(
DTD + µI

)−1
DT y (8)

where D = [DP, DV ] is the cascade of DP and DV. Based on the ECR coefficient vector
[
α̂T, β̂T

]T
,

the identity i∗ of the testing sample y is determined by evaluating which class results in the minimum
reconstruction residual, as follows:

i∗ = argmin
i

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣y− [DP, DV ]

[
δi(α̂)

β̂

]∣∣∣∣∣∣
∣∣∣∣∣∣2
2

(9)

where δi(α̂) is a column vector obtained by preserving the coefficients of α corresponding to the ith
class and setting the remaining to zeros.

To show the ECR-based classification model more concisely, the detailed steps are summarized as
Algorithm 1.
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Algorithm 1. The ECR-based classification model

Input: the testing sample y, the training samples Y = [Y1, Y2, · · · , Yk] ∈ Rd×n, parameter µ.
Output: the identity i∗ of the testing sample y.
The offline preparation of dictionaries:
1: Construct pure dictionary DP and variation dictionary DV using Equations (4) and (5), respectively.
2: Store dictionaries DP and DV in a computer for recall.
The online recognition:
1: Represent y as y = DPα+ DVβ+ ε and solve ECR coefficient vectors α and β using Equation (8).
2: Determine the identity of y by Equation (9).

2.5. Cucumber Leaf Disease Recognition Using the ECR-Based Classification Model

As a proof-of-concept, we apply the ECR-based classification model to cucumber leaf disease
recognition in this section. In practical cucumber production, collecting suitable and useful disease
data is time-consuming, labor-exhaustive, and controlled environment-demanding. Moreover, the
acquisition environment such as illumination condition and occlusions from adjacent leaves may
introduce linear variations and then, overlay the pure spectral curves of pixels in hyperspectral
leaf images. As a result, each spectral curve sample obtained in Section 2.2 can be regarded as
a superimposition of a pure spectral curve and a linear variation. Due to the above two reasons, there
may be insufficient training spectral curve samples per type of disease. Under this circumstance, we try
to verify the feasibility and effectiveness of ECR-based classification model on cucumber leaf disease
recognition. Firstly, the pure dictionary DP and the variation dictionary DV are constructed base on
Equations (4) and (5) using the training spectral curve samples (here, “dictionary” can also be called
“spectral library”). Then, they are used to collaboratively represent the pure spectral curves and the
linear variations, respectively. By doing this, not only the adverse impact of linear interferences but also
the requirement for the number of training samples can be reduced. Given any query spectral curve
sample whose disease type is unknown, it should be firstly decomposed using the spectral libraries DP

and DV. Then, the ECR coefficient vector is calculated by solving a l2-norm regularized least square
problem (7), and afterwards, is utilized to identify the disease type by evaluating which disease leads
to the minimum reconstruction residual in terms of Equation (9). The detailed description of cucumber
disease recognition using the ECR-based classification model is summarized in Figure 2, which is
divided into two parts: an offline stage for the preparation of two spectral libraries and an online stage
for cucumber disease recognition.

2.6. Parameter Settings

To assess the performance of the ECR-based classification model on cucumber disease recognition,
several experiments were conducted on the hyperspectral images of healthy leaves and leaves infected
with anthracnose and Corynespora cassiicola in Section 3. We also compared with the performances
of five other commonly used classic classifiers or recognition methods: SVM, K-means clustering
(K-means), and linear discriminant analysis classifier (LDA), random forests (RF), and the extended
sparse representation classifier (ESRC) [30]. According to experimental experiences, the regularization
parameter µ in the ECR and ESRC methods is set as 0.001; the number of decision trees in RF is set as
200; the kernel function used in SVM is a radial basis kernel function defined by:

K(x, y) = exp (−
||x− y||2

2σ2 ) (10)

where σ2 is set as 1/3; the cluster number in K-means method is set as 3 according to the number of
types of disease.
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3. Results and Discussion

3.1. Effects of Different Preprocessing Methods

In this section, we first preprocess the spectral curve samples by different preprocessing methods
to improve the signal-to-noise ratio, then, evaluate their effects on the ultimate disease recognition
accuracy of different recognition methods, and finally, based on which, find the one that relatively
fits our data. We take anthracnose as an example and randomly choose about 50 spectral curves
of anthracnose disease from the training and testing sets, and the prepressing results by different
methods are shown in Figure 3. It can be seen from Figure 3a that due to the absorption of radiant
energy, two absorption valleys appear near 450 and 670 nm, while there is a reflection peak between
them [15]; the signal-to-noise ratio at the beginning and end of the spectral curves is obviously
low; although different spectral curves of the same disease are quite different, their shapes are very
similar [32]. Figure 3b,e show that SG and MA can effectively smooth the glitch noise in the spectral
curve [33]; compared with MSC and SNV, the preprocessed samples of MA and SG contain less noise
and are more concentrated with similar shape and appearance. Hence, it is reasonable to believe
that the noise contained in our data are mainly random noise. The cucumber disease recognition
accuracies of different recognition methods using the preprocessed samples are shown in Table 3.
The following phenomenon can be seen: different preprocessing methods have different effects on the
same recognition method; MAS and SG can lead to higher disease recognition accuracies, regardless of
the recognition methods and the reason may be that these smoothing methods are very suitable for
dealing with the type of noise in our data, making the variations between samples of the same disease
smaller. In contrast with SG, MAS performs better in most cases; the relatively optimal preprocessing
method of SVM, LDA, and ECR is MAS, while that of the K-means is SG. Based on the results in Figure 3
and Table 3, we choose MAS to preprocess spectral curve samples. Since the window width of MAS
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can have a profound effect on classification success, we test the disease recognition accuracies of
the presented ECR-based disease recognition method when different window widths are adopted.
The results are shown in Table 4, based on which, we identify a relatively better window width 7 for
our data in the subsequent experiments.Sensors 2020, 20, x FOR PEER REVIEW 9 of 13 
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Figure 3. Spectral curve samples preprocessed by different methods. (a) Example of the spectral curve
samples of anthracnose; (b) MSC; (c) SNV; (d) MAS; (e) SG.

Table 3. Cucumber disease recognition accuracies under different preprocessing methods.

Methods SG MAS SNV MSC SG-1st Der SG-2nd Der

ESRC 92.08% 92.65% 69.99% 61.92% 82.94% 93.25%
SVM 92.95% 95.53% 82.61% 63.01% 90.46% 92.75%
LDA 89.02% 91.10% 70.12% 47.50% 82.36% 88.22%

K-means 93.74% 92.61% 73.90% 64.30% 90.82% 91.21%
ECR 95.48% 96.02% 63.70% 71.59% 89.37% 94.53%

Table 4. The results of ECR-based disease recognition method under different window widths.

Window Widths 3 5 7 9 11

Disease Recognition Accuracies 94% 95.7% 96% 95.7% 94.6%

3.2. Effects of the Variation Spectral Library and the Number of Principal Components

In order to reduce the calculation and time costs of the subsequent processing, a mainstream
dimensionality reduction method named PCA is used to project the preprocessed samples into
a low-dimensional space, where the first few principal components contain the most useful information
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of the sample. The number of principal components retained is an important parameter usually
specified by the user in advance. A too small number will cause the loss of much useful information,
while a large number will result in the inability to eliminate redundant information. Both the above
two cases will cause a negative impact on disease recognition. Here, an experiment is conducted
to evaluate the effects of the number of principal components on the ultimate disease recognition
accuracy and the results are shown in Table 5. It can be seen that compared with SVM and LDA,
ESRC, ECR, and K-means are relatively insensitive and robust to the number of principal components
to a certain extent and ECR achieves the highest recognition accuracies, while the performance of
ESRC and K-means is comparable. For the supervised machine learning methods SVM and LDA,
their recognition accuracies decrease with the increase in the number of principal components; the
reason may be that in the case of a small number of training samples, more principal components
are selected, and overfitting is more likely to occur and result in a sharp decline in the generalization
capability of the recognition model learned from the training set. As for the unsupervised classification
method K-means, it has a stable recognition rate, under the condition that the cluster number is set
as the groundtruth number of disease type; whereas, if the cluster number is not set beforehand, the
recognition accuracy varies, especially when the number of principal components is greater than 80,
and the recognition rate falls below 63.89%. As introduced in Section 2, a variation spectral library is
constructed to eliminate linear interferences superimposed on the ideal pure spectral curve samples,
which may influence the final disease recognition results. Here, we carry out an experiment to verify
its effectiveness by separately executing ECR with and without the variation spectral library and the
results are shown in Figure 4; it can be seen that the variation spectral library can promote disease
recognition accuracy.

Table 5. Disease recognition accuracies via different number of principal components.

Methods
Number of Principal Components

3 5 10 15 25 50 75 100 125 150

ESRC 87.7% 93.6% 93.2% 89.6% 93.9% 93.7% 93.4% 92.7% 94.0% 93.5%
SVM 94.3% 93.8% 91.9% 94.1% 95.0% 93.9% 56.9% 57.4% 56.4% 57.2%
LDA 83.9% 77.5% 81.8% 77.6% 90.1% 92.8% 93.3% 93.3% 89.1% 78.6%

K-means 93.4% 93.6% 93.7% 93.7% 93.7% 93.3% 93.6% 93.7% 93.8% 93.7%
RF 92.9% 94.9% 95.1% 95.6% 94.8% 94.7% 89.1% 92.1% 83.3% 88.6%

ECR 80.7% 95.8% 96.5% 96.7% 97.1% 96.2% 95.8% 94.7% 96.6% 96.6%
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3.3. Disease Recognition Using Different Methods

The success of the ECR-based classification depends on each disease having sufficient training
samples that can span the variations of query samples. However, the premise is not always
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satisfied due to the variable collection environment and a great consumption of manpower and
time. Here, an experiment is carried out to assess the influence of enrollment size (the number of
training samples per type of disease) on the performance of the ECR method. The training and
testing sets are prepared as follows: for each type of disease, m samples are randomly selected from
the 4000 extracted spectral curve samples and the rest are used for testing; thus, there are, in total,
3m training samples and 12,000 3m testing samples. Table 6 shows the disease recognition accuracies
of ECR, ESRC, SVM, LDA, and K-means when different enrollment size m is adopted, where m varies
from 20 to 100 with an interval of 10. It can be seen that the ECR method achieves the highest and
relatively stable recognition accuracy, with a maximal value of 98.5%. In most cases, ESRC ranks second
with a maximal value of 95.5%, whereas the recognition rate of the ESRC method falls below 92%,
when enrollment size is smaller than 10. The performances of SVM and LDA have greatly improved
as the enrollment size increased, implying that the models learning from a large number of training
samples have better generalization properties that can well fit the entire sample space and work well
on the testing samples.

Table 6. Disease recognition accuracies when different enrollment size is adopted.

Methods
Enrollment Size m (the Number of Training Samples per Disease)

20 30 40 50 60 70 80 90 100

ESRC 94.5% 94.6% 95.4% 94.4% 95.5% 94.9% 94.8% 94.5% 94.9%
SVM 65.6% 70.3% 73.5% 81.3% 87.7% 93.2% 96.8% 96.8% 97.7%
LDA 70.9% 75.6% 76.4% 78.1% 80.4% 82.1% 83.4% 82.6% 83.8%

K-means 93.7% 93.7% 93.7% 93.6% 93.6% 93.6% 93.6% 93.7% 93.7%
ECR 97.6% 97.1% 98.1% 97.6% 97.4% 97.7% 98.3% 98.2% 98.5%

In practical, disease diagnostic speed is an important index for the real-time and dynamical
regulation of agricultural production. Here, we further carry out an experiment to evaluate the average
online diagnosis time of each spectral curve sample achieved by different recognition methods with
different enrollment size, and the results are shown in Table 7. It shows that ESRC has the highest
time cost between about 2.5 to 6.5 ms, while that of the SVM ranks second and is between about 2.7 to
3 ms. The diagnostic time of LDA, ECR, and K-means is relatively small and between about 1 and
1.2 ms, which can meet the real-time requirements. Besides, it can be seen that the diagnostic time
of the ECR and ESRC method slightly gets longer as the enrollment size increases; the reason may
be that more training samples will increase the number of atoms in spectral libraries, causing the
raise of the computation and time costs when solving the l1-norm or l2-norm regularized least squares
problems. To sum up, the ECR method not only reaches the highest disease recognition accuracies but
also has fast diagnostic speed, even if the number of training samples per type of disease is very small,
demonstrating that the goal of reducing the required training samples and promoting the diagnosis
accuracy is well achieved.

Table 7. The average online diagnostic time (ms) of each query sample with respect to different
recognition methods.

Methods
Enrollment Size m (the Number of Training Samples per Disease)

10 20 30 40 50 60 70 80 90 100

ESRC 2.49 3.24 3.65 4.26 4.45 4.81 5.05 5.67 5.77 6.53
SVM 2.75 2.69 2.69 2.80 2.72 2.77 2.88 2.73 2.87 3.00
LDA 1.01 1.01 1.03 1.05 1.01 1.07 1.02 1.02 1.15 1.17

K-means 1.04 1.04 1.04 1.09 1.04 1.09 1.04 1.04 1.18 1.19
ECR 0.99 1.04 1.05 1.09 1.04 1.11 1.07 1.06 1.19 1.22
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4. Conclusions

An ECR-based classification model is presented in this paper and we evaluate its performance by
applying it to the cucumber disease recognition problem. For cucumber disease recognition, we first
probe the refined spectral information related to disease using HSI technique, and then, construct
pure and variation spectral libraries to respectively characterize the pure spectral curves and linear
interferences introduced by illumination, occlusion or other factors. Given a query sample, it is
collaboratively represented as a linear combination of all atoms from the spectral libraries and the
coefficient vector is utilized to identify which disease it is infected with. A number of experiments
are conducted to study the influences of preprocessing, sample dimension, variation spectral library,
and enrollment size on the disease recognition effect of the ECR method. The results indicate that the
ECR-based classification method could achieve high recognition accuracies and fast online diagnostic
speed, even in the case of very few training samples, which could meet the needs of rapid and accurate
non-destructive diagnosis to some extent in practical production.
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