Skip to main content
. 2020 Jul 19;20(14):4016. doi: 10.3390/s20144016
Algorithm 1 Time series evidence combination rule
  • Require: 

    Revised evidence E˜sit; the hyper-parameters Ni; the number of classifiers/activities n; current time interval T;

  • Ensure: 

    The final combination result Ef;

  •  1:

    Initial the weights WP and W^P;

  •  2:

    Initial Ef=[0,0,,0,1];

  •  3:

    fori=1; in; i++do

  •  4:

        for t=T; tTNi; t do

  •  5:

            Calculate each E^sit of classifier si in time interval t with WP by Equations (7) and (8);

  •  6:

        end for

  •  7:

        Calculate each intra-classifier combination result E^si of classifier si by Equation (6);

  •  8:

        EfEfW^PE^si by Equations (6)–(8);

  •  9:

    end for

  • 10:

    if train model then: Minimize the loss function and calculate the change of weights ΔWP and ΔW^P; WPWP+ΔWP; W^PW^P+ΔW^P;

  • 11:

    else if test model then: Output WP and W^P;

  • 12:

    end if