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Abstract

Chromatin can adopt multiple stable, heritable states with distinct histone modifications and 

varying levels of gene expression. Insight on the stability and maintenance of such epigenetic 

states can be gained by mathematical modeling of stochastic reaction networks for histone 

modifications. Analytical results for the kinetic networks are particularly valuable. Compared to 

computationally demanding numerical simulations, they often are more convenient at evaluating 

the robustness of conclusions with respect to model parameters. In this communication, we 

developed a second-quantization based approach that can be used to analyze discrete stochastic 

models with a fixed, finite number of particles using a representation of the SU(2) algebra. We 

applied the approach to a kinetic model of chromatin states that captures the feedback between 

nucleosomes and the enzymes conferring histone modifications. Using a path integral expression 

for the transition probability, we computed the epigenetic landscape that helps to identify the 

emergence of bistability and the most probable path connecting the two steady states. We 

anticipate the generalizability of the approach will make it useful for studying more complicated 

models that couple epigenetic modifications with transcription factors and chromatin structure.

I. Introduction

A remarkable achievement of multicellular organisms is the formation of distinct cell types 

with identical genomes. Covalent modifications of histone proteins, of which DNA wraps 

around to form chromatin, are expected to be crucial for the emergence of cellular diversity 

[1]. These epigenetic marks can regulate the output of the genome by promoting or 

restricting the accessibility of the DNA sequence. They are known to impact the openness of 

chromatin and global genome organization, though the molecular mechanisms are only 

beginning to emerge [2–5]. Therefore, multistability in chromatin states formed by various 

histone modifications or combinations thereof can potentially give rise to distinct patterns of 

gene expression and inheritable phenotypes [6–9]. Evidence for bistable and inheritable 

epigenetic marks has indeed been found that can be attributed to the presence of positive 

feedback loops wherein nucleosomes that carry a particular modification recruit, either 

directly or indirectly, enzymes that catalyze the same modification on neighboring 

nucleosomes [10–14].

Mathematical modeling of the reaction networks of histone modifications can help 

determine factors that are crucial for epigenetic stability. Distilling the essence of feedback 
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mechanisms, Dodd and coworkers introduced a simplified kinetic model with bistable 

chromatin states [15]. One envisions a system of N nucleosomes, where a nucleosome can 

exist in either a modified or an unmodified state (see Fig. 1). As a first approximation, 

spatial organization of chromatin is neglected, and the kinetics of the system can be 

described with the non-linear dynamics given below

X + X + Y
c1 3X, Y + Y + X

c1 3Y , (1)

X
c2 Y , Y

c2 X . (2)

The reactions governing the dynamics in Eq. (1) and (2) represent recruited and thermalized, 

noisy conversions respectively. From analysis of regulatory circuits, we know that in 

deterministic systems, bistability requires not only positive feedback but also nonlinearity in 

the feedback loop [10, 16–18]. However, sufficient noise can produce bistability with fewer 

constraints on the deterministic system [19, 20]. The model presented is nonlinear, since the 

recruited conversion of Y to X (or X to Y) is bimolecular in X (or Y) and unimolecular in Y 
(or X). Thus the rate of production for a given nucleosome type responds to increases in its 

own concentration in a nonlinear fashion. This produces bistability in the determinstic 

system, wherein noise can allow for transitions between the two stable attractors.

Far from being a trifle toy-model, the kinetic scheme above is not unlike the mating type 

silencing in S. Cerevisiae [15, 21–24]. Generalizing the above model to more than 2 

epigenetic states has been attempted as well [24–28]. Their elegance and biological 

relevance have inspired numerous theoretical studies of these models [6]. A popular 

approach used in these studies to investigate epigenetic stability is to posit deterministic rate 

equations followed by bifurcation analysis. Insight into the switching among chromatin 

states is missed in such deterministic analyses, however. To study the rare transition events 

between steady states, Dodd and coworkers introduced an approximate Fokker-Planck 

equation, from which an epigenetic landscape can be constructed.

II. Results

In this work, we present an alternative way to analyze such zero-dimensional models. We 

turn to the original master equation, which is an exact stochastic description of the 

underlying process describing the temporal evolution of the system’s configurational 

probability, and reformulate it using second-quantization (or Fock-Space) methods (Doi-

Peliti approach) [29–33]. While canonical approaches rely on bosonic creation and 

annihilation operators, we employ operators that are a representation of the SU(2) algebra, in 

order to treat the constraint that fixes the total number of nucleosome types (X + Y ≡ N) in a 

more mathematically natural fashion. The Doi-Peliti method has been successfully 

employed in the study of reaction-diffusion processes [34], gene switches [35, 36], and other 

systems [37]. We outline the main results here and the detailed derivations are consigned to 

Appendix A. The Doi-Peliti approach allows us to reformulate the time evolution of the 

original master equation as an imaginary time Schrödinger equation
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∂t ψ(t)〉 = − H ψ(t)〉, (3)

where we have introduced formally a state vector |ψ(t)〉 as a superposition of all possible 

occupation number configurations weighted with their corresponding probabilities (a 

generating function),

|ψ(t)〉 = ∑
nx, ny

P nx, ny ; t nx, ny〉 .
(4)

Following standard procedures [35–37], H is usually expressed in a second-quantized form

H = c1
(2j)3 [ax†3ax2ay − ax†2ax2ay†ay] + c1

(2j)3 [ay†3ay2ax − ay†2ay2ax†ax]

+ c2
2j[ay†ax − ax†ax] + c2

2j[ax†ay − ay†ay] .
(5)

ai and ai
† for i ∈ {x,y} are bosonic creation and annihilation operators that obey the 

canonical commutation relations

[ai, aj
†] = δij and [ai, aj] = 0 = [ai

†, aj
†] . (6)

The action of ax, ax† on ket vectors |nx, ny〉 is given by ax|nx, ny〉 = nx|nx −1,ny〉, 

ax† nx, ny〉 = nx + 1, ny〉, and ax†ax nx, ny〉 = nx nx, ny〉. Similar operations can be defined for ay, 

ay†. Since for a vacuum state |0,0〉, ai |0,0〉 = 0, one can obtain any arbitrary ket state as 

nx, ny〉 = (ax†)
nx(ay†)

ny | 0, 0〉.

While it is straightforward to apply the standard formalism up until this point, one notices 

that the total number of nucleosomes in our system N = nx + ny = ax†ax + ay†ay is constant. 

This is evident from the fact that our Hamiltonian commutes with the total number operator, 

ax†ax + ay†ay. One might also find it slightly philosophically troubling, to use bosonic ladder 

operators to describe a system with a large, but still finite number of particles. Moreover, not 

all combinations of states X and Y are allowed, but only those satisfying nx + ny = N. In 

conventional quantum mechanics, bosonic ladder operators allow for neither an exclusion 

principle, nor a cap on the total particle number. However, since the Hamiltonian conserves 

particle number, we aren’t remiss in our formalism. We can take any equilibrium solution of 

the master equation and project down to the subspace where the conserved quantity takes a 

fixed value and we will get another equilibrium solution. In probability theory we would say 

we are conditioning on the conserved quantity taking a definite value. Thus if our initial 

state |ψ(0)〉 is a configuration such that nx + ny = N holds true, and then given our 

prescription of stochastic Hamiltonian all subsequent states will meet this condition as well. 

However, given that there is essentially only one independent variable, namely nx, we can 

perhaps phrase this problem in a more natural framework. We develop this framework in the 

sections that follow.
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The starting point of this reformulation is the Jordan-Schwinger map [38, 39], where we 

introduce (see Appendix A, Eqs. A3, A4)

J+ = ax†ay J− = ay†ax . (7)

For notational convenience we set N = 2j. Here the operators satisfy the commutation 

relations of SU(2) algebra

Jz, J± = ± J± Ji, Jj = i ε ijk ∀i, j, k ∈ {x, y, z}, (8)

where the structure constant ε ijk is the Levi-Civita symbol. Re-defining the ket |nx, ny〉 = |

nx, 2j – nx〉 ≡ |n〉, their action is given by

J+ n〉 = (2j − n) n + 1〉,
J− n〉 = n n − 1〉,
Jz n〉 = (n − j) n〉,

(9)

nx n〉 = Jz + j n〉 = n n〉,
ny ny〉 = j − Jz n〉 = (2j − n) n〉 . (10)

The Hamiltonian can be reformulated as

H = c1
(2j)3 [J+nx

2 − nx
2ny] + c1

(2j)3 [J−ny
2 − ny

2nx]

+ c2
2j[J− − nx] + c2

2j[J+ − ny],
(11)

where we have used ni
2 = ni(ni − 1)) to denote the falling factorial to write down the 

Hamiltonian in a more compact form.

A great advantage of the second quantization approach is its relative convenience for 

deriving analytical solutions. For example, a formal solution to Eq. 3 is given by

ψ(t)〉 = exp( − Ht) ψ(0)〉 . (12)

In addition, the transition probability of starting in a state with particle number ni at time t = 

0 and ending up in a state with particle number nf at tf can be defined as

〈ψ tf e−tH ψ(0)〉 ≡ 〈nf e−tH ni〉 . (13)

We next seek for a path integral expression of the transition probability that is useful for 

finding steady states and transition pathways between them. We discretize the time interval 

[0, tf] into Nt time slices, and then insert a resolution of identity between each time slice. 

Finally, taking the limit Nt → ∞ we get,
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ℙ ρf; tf ∣ ρi; 0 = 〈nf e−tH ni〉
= ∫ D zi, zf 〈nf ∣ zf〉〈zf e−tH zi〉〈zi ∣ ni〉

= ∫ D zi, zf ∫ D[z, z]e−S,
(14)

where we have introduced, ρ = n/2j. By definition, ρ represents an order parameter that 

quantifies the fraction of modified nucleosomes. After performing the integration over zi, zi, 

zf, zf. we introduce one final re-parametrization in terms of the density ρ. Using

ρ = 〈z j + Jz z〉
2j = zz

1 + zz, (15)

we can rewrite

z = ρ
1 − ρexp( − ρ), z = exp(ρ) (16)

with ρ(0) = ρi and ρ(t) = ρf and ρ(t), ρ(0) unconstrained. Making these substitutions, the 

action finally reads,

S[ρ, ρ] = 2j∫
0

tf
dt ρ∂tρ − H(ρ, ρ) , (17)

where

H(ρ, ρ) = − 1
2j2e−ρ eρ − 1 c1(j − 1)(2j − 1)

(ρ − 1)ρ ρ + ρeρ − 1 + 2c2j2 ρ + (ρ − 1)eρ .
(18)

Correspondingly, the time-dependent transition probability (propagator) can be expressed as

ℙ ρf; tf ∣ ρi; 0 = ∫ D[ρ, ρ]exp( − S[ρ, ρ]) . (19)

Eq. 17 is the main result of this paper. It allows the computation of both steady state and 

kinetic results for the model in terms of the order parameter ρ. In particular, for 2j ≫ 1, i.e., 

the small noise regime with many nucleosomes, the path integral in Eq. 19 will be 

dominated by contributions from the minimum action path [40–44]. The variational 

derivatives that minimize the action yield the classical Hamiltonian equations

ρ̇ = ∂H
∂ρ ,

ρ̇ = − ∂H
∂ρ .

(20)

We note that ρ ≡ 0 is always a solution to the above Hamiltonian equation. As shown in 

Figure 2 in blue color, these paths correspond to deterministic dynamics flowing towards 
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steady-state solutions (green dots). The resulting deterministic equation (see Eq. A17) is 

identical to that presented in Ref. 15, which was obtained using phenomenological 

arguments. For the Hamiltonian paths with non-zeros ρ, the zero-energy path with H ≡ 0 is 

of particular interest as it represents fluctuations away from the steady states. In bistable 

regimes, the zero-energy path connects the two steady states via the saddle point (see Fig. 2b 

red), and corresponds to the maximum likelihood transition path [45, 46].

Quantitative results of the kinetic model can be obtained with the definition of a quasi-

potential, Φ, in the Friedlin-Wentzell sense [47] in terms of the least-action path (denoting 

φ = ρ, ρ )

Φ x1, x2 = inf
t > 0

inf
φ ∈ γx1

x2(0, T )
S(φ),

(21)

where γx1
x2(0, t) is the set of continuous curves f connecting two points x1,x2 in configuration 

space, such that f(0) = x1, f(t) = x2. The minima of the Friedlin-Wentzell quasi-potential 

correspond to attractors of the dynamical system, and the height of the barrier corresponds to 

the ease of transition between two stable fixed points. As shown in Fig. 3, the quasi-potential 

correctly captures the emergence of bistability as the parameter c1/c2 varies from 3 to 12. c1 

and c2 are the rate coefficients for recruited and random nucleosome conversions defined in 

Eqs. 1 and 2. In addition, we found that in both cases, the quasi-potential agrees well with 

the negative-log of the steady state probability distribution determined using the zero 

eigenvalue eigenvector of the transition rate matrix (see Appendix B for details). When 

compared to the transitions rates between the two steady states, the barriers of the saddle 

point determined from the quasi-potential strongly correlate with the numerical values over a 

wide range of parameters (see Fig. 4).

III. Discussion

In this communication, we applied the Doi-Peliti approach to a reaction network that 

captures the emergence of epigenetic stability from histone modifications [15]. Together 

with a transformation enabled by the SU(2) algebra, it allowed for the derivation of 

analytical results that rigorously account for the constraints imposed by a fixed number of 

particles. The semi-classical treatment of the path integral expression for transition 

probability further provided a fresh view of the stochastic reaction network in the guise of a 

“pseudo-mechanical system”. Hamilton’s equation of motion and the quasi-potential, much 

like their counterparts in classical mechanics, provide intuition regarding the dynamics and 

landscape of the reaction network.

We note that the steady state distribution and transition rate for the chromatin state model 

can be obtained from the Fokker–Planck equation introduced in Ref. 15 as well. The 

Fokker–Planck equation may, in fact, seem more appealing compared to the Doi-Peliti 

approach used here due to its mathematical simplicity. As shown in Figs. 3 and 4, the 

accuracy of the two methods is comparable. The Doi-Peliti approach slightly outperforms in 

reproducing solutions obtained from diaogonalizing the master equation, due to its improved 

treatment of larger deviations.
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The advantage of the Doi-Peliti approach will become more evident for more complex 

problems with coupled reaction networks, such as a chromatin switch coupled to a self-

activating gene. There, due to the high dimensionality, analytical/numerical solutions of the 

Fokker-Planck equation cannot be readily obtained. On the other hand, robust algorithms 

have been introduced to compute the minim action paths of complex networks [48]. These 

most probable paths could be used to quantify epigenetic stability and investigate the 

mechanism for switching between steady states [36]. We note that both the Fokker-Planck 

equation and the minimum action approximation are only valid at the small-noise limit. 

When the number of nucleosomes is small (<30), significant deviations from the analytical 

results presented here may occur. The small number regime, though physically interesting, is 

of less biological interest as epigenetic domains are large and can cover a long stretch of 

DNA (10 ~ 100 Kb). In addition, estimations based on the minimum action can, in principle, 

be improved by including higher-order terms from a functional Taylor expansion of Eq. 19 

[49].
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V.: Appendix

A. Constructing the coherent states path integral

For completeness let us start with the master equation for our system (with N = 2j),

∂tP nx, ny = c1
(2j)3 nx − 1 nx − 2 ny + 1 P nx − 1, ny + 1

− nxny nx − 1 P nx, ny

+ c1
(2j)3 ny − 1 ny − 2 nx + 1 P nx + 1, ny − 1

−nxny ny − 1 P nx, ny

+ c2
2j nx + 1 P nx + 1, ny − 1 − nxP nx, ny

+ c2
2j ny + 1 P nx − 1, ny + 1 − nyP nx, ny .

(A1)

As mentioned in the main text, following the second quantization approach [29, 30, 35–37] 

and by introducing the state vector |ψ(t)〉, the time evolution of the original master equation 

can be recast into an imaginary time Schrödinger equation (Eq. 3), and the Hamiltonian is 

defined in terms of the bosonic creation and annihilation operators as Eq. 5. Now we can 

begin reformulating this system using the Jordan-Schwinger map [38]. For convenience, let 

us define the following vectors (Eq. A2), to which we then apply the Jordan transformation 

to obtain (Eq. A3), where σμ denotes the usual Pauli Matrices.
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a ≡
ax
ay

, a† ≡
ax†

ay†
. (A2)

Qμ = a†σμa
J± = Q1 ± iQ2

J+ = ax†ay J− = ay†ax,
(A3)

Also for convenience, we define the auxiliary operators (Eq. A4). The operators J± satsify 

the same commutation relations as SU(2) algebra, given in Eq. 8

Jx = J+ + J−
2

Jy = J+ − J−
2i

J+, J− = 2Jz .

(A4)

Using these rules, the stochastic pseudo-hamiltonian was reformulated as in Eq. 11. In order 

to now construct a path integral for the transition probability, one introduces the following 

left and right spin-coherent states [50, 51], and a resolution of identity,

|z〉 = 1
(1 + zz)jezJ+ | 0〉 = (1 + zz)−j ∑

0 ≤ n

2j 2j
n zn | n〉, (A5)

〈z | = 1
(1 + zz)j〈0|ezJ− = 1 + zz −j ∑

0 ≤ n

2j
〈n |zn,

∫ 2j + 1
π

d2z
(1 + zz)2 | z〉〈z | = 1 .

(A6)

The details and subtleties regarding the construction of spin coherent state path integrals 

have been discussed in the literature [39, 52–55]. However, for completeness we give a brief 

overview. Starting with the propagator between two normalized coherent states, 〈zf|e−tH|zi〉, 
we discretize the time interval [0,t] into Nt time slices, and then insert a resolution of identity 

of the form (A6) between each time slice. Finally, taking the limit Nt → ∞ we get,

〈zf|e−tH|zi〉 = ∫ D[z, z]exp( − S), (A7)

where,

S = − jlog 1 + zfz(t) 1 + z(0)zi
1 + zfzf 1 + zizi

+ 2j∫
0

t
dt 1

2
zż − żz
1 + zz − H(z, z) ,

(A8)
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and H(z, z) = 〈z |H |z〉. Next, we derive an expression for the physical propagator between 

and 〈nf| and |ni〉 representing states of fixed initial and final number of particles respectively. 

This represents the probability of starting in state with particle number ni at time t = 0 and 

ending up in a state with particle number nf at tf. To do so one takes,

ℙ nf; tf ∣ ni; 0 = 〈nf|e−tH|ni〉
= ∫ D zi, zf 〈nf ∣ zf〉〈zf|e−tH|zi〉〈zi ∣ ni〉 . (A9)

To get the physical propagator from (A7) one needs to subtract log〈zi|ni〉 + log〈nf|zf〉 from 

the action, and then integrate over zi, zi, zf, zf. Then,

ℙ ρf; tf ∣ ρi; 0 = ∫ D zi, zf ∫ D[z, z]e−S, (A10)

where we have introduced, ρ = n/2j. Here S is now given by,

S = − jlog 1 + zfz(t) 1 + z(0)zi

+ 2j∫
0

t
dt 1

2
zż − żz
1 + zz − H(z, z)

+ 2j −ρilogzi − ρF logzf + ρflogρf + 1 − ρf log 1 − ρf
+log +zfzf 1 + zizi .

(A11)

Now we can integrate over zi, zf, zi, zf using the saddle-point method. The derivatives of 

(A11) fix the initial and final conditions,

1
2j

∂S
∂zi

= zi
1 + zizi

− z(0)
1 + z(0)zi

, (A12a)

1
2j

∂S
∂zf

= zf
1 + zfzf

− z(t)
1 + z(t)zf

, (A12b)

1
2j

∂S
∂zi

= zi
1 + zizi

− ρi
zi

, (A12c)

1
2j

∂S
∂zf

= zf
1 + zfzf

− ρf
zf

. (A12d)

Thus, we get the following four conditions z(0) = zi, z(t) = zf, ρi =
zizi

1 + zizi
 and ρf =

zfzf
1 + zfzf

. 

After performing the integration the action now reads,

S = 2j zz
1 + zzlogz − log(1 + zz) f

i

+ 2j∫
0

t
dtt′ 1

2
zż − żz
1 + zz − H(z, z) .

(A13)
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We introduce one final re-parametrisation in terms of the density ρ. Using

ρ = 〈z|j + Jz|z〉
2j = zz

1 + zz, (A14)

one rewrites

z = ρ
1 − ρexp( − ρ), z = exp(ρ) (A15)

with ρ(0) = ρi and ρ(t) = ρf and ρ(t), ρ(0) unconstrained. The Jacobian for the change of 

variables is (1 − ρ)2, and ∫ 2j + 1
π

d2z
(1 + zz)2

 is replaced by ∫ 2j + 1
π d2ρ. Doing so we finally 

recover 17 and 19 of the main text. To get the deterministic rate equations, we evaluate,

ρ̇ = ∂H
∂ρ ρ = 0

=
(1 − 2ρ) c1(j − 1)(2j − 1)(ρ − 1)ρ + 2c2j2

2j2 (A16)

which for j ≫ 1, gives

ρ̇ = (1 − 2ρ) c1(ρ − 1)ρ + c2 . (A17)

This equation is in agreement with Micheelsen et.al. [15], and it yields a single stable real 

fixed point, ρ* = 0.5 when c1/c2 < 4 and an unstable fixed point at ρ* = 0.5 and 2 stable 

fixed points at ρ* = 0.5 ± 0.5 c1 − 4c2 /c1 when c1/c2 > 4.

B. Details of Transition Matrix Calculations

The transition rate matrix corresponding to the reaction network of the chromatin state 

model is a N × N tridiagonal matrix with off-diagonal elements defined as

Hi, j = δi, i + 1
c1

N3 i(i − 1)(N − i) + c2
N (N − i)

+ δi, i − 1
c1

N3 i(N − i)(N − i − 1) + c2
N i .

(B1)

The diagonal elements were defined to ensure that each column of the matrix sums to zero, 

namely,

Hi, i = − ∑
i

Hi, j . (B2)

The smallest (in absolute value) non-zero eigenvalue of the matrix corresponds to the 

transition rate between two steady states. The eigenvector for the zero eigenvalue quantifies 

the steady state probability distribution.
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FIG. 1. 
Illustration of the kinetic model for the interconversion between modified (green, X) and 

unmodified nucleosomes (grey, Y). (a) Recruited conversion defined in Eq. 1 that requires a 

pair of (un-)modified nucleosomes to alter the state of a nucleosome. (b) Noisy conversion 

(Eq. 2) with first order kinetics.
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FIG. 2. 
Phase portrait determined using Eq. (20) with kinetic parameters c1/c2 = 3 (a) and 12 (b). 

The red dashed lines are zero-energy paths and green dots are steady state solutions. The 

blue paths represent deterministic trajectories. The number of nucleosomes was held fixed at 

N = 60.
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FIG. 3. 
Comparison between the steady state distribution (−logPeq, red dots) and the quasi potential 

(Φ) computed using Eq. 21 (black solid line) and the Fokker-Planck equation (blue dashed 

line) for c1/c2 = 3 (a) and 12 (b). The number of nucleosomes was held fixed at N = 60.
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FIG. 4. 
Correlation between the exact transition rates (k) computed from diagonalizing the transition 

matrix and the barrier height of the quasi-potential (a) or the mean first passage time (τ) 

estimated using the Fokker-Planck equation (b). Each data point corresponds to an 

independent calculation for integer values of the parameter c1/c2 between 5 and 120. The 

total nucleosome number was fixed as N = 60.
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