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A B S T R A C T   

The development of simple detection methods aimed at widespread screening and testing is crucial for many 
infections and diseases, including prostate cancer where early diagnosis increases the chances of cure consid-
erably. In this paper, we report on genosensors with different detection principles for a prostate cancer specific 
DNA sequence (PCA3). The genosensors were made with carbon printed electrodes or quartz coated with layer- 
by-layer (LbL) films containing gold nanoparticles and chondroitin sulfate and a layer of a complementary DNA 
sequence (PCA3 probe). The highest sensitivity was reached with electrochemical impedance spectroscopy with 
the detection limit of 83 pM in solutions of PCA3, while the limits of detection were 2000 pM and 900 pM for 
cyclic voltammetry and UV–vis spectroscopy, respectively. That detection could be performed with an optical 
method is encouraging, as one may envisage extending it to colorimetric tests. Since the morphology of sensing 
units is known to be affected in detection experiments, we applied machine learning algorithms to classify 
scanning electron microscopy images of the genosensors and managed to distinguish those exposed to PCA3- 
containing solutions from control measurements with an accuracy of 99.9%. The performance in distinguish-
ing each individual PCA3 concentration in a multiclass task was lower, with an accuracy of 88.3%, which means 
that further developments in image analysis are required for this innovative approach.   

1. Introduction 

The search for new diagnostic methodologies has gained tremendous 
impetus with the Covid-19 pandemic outbreak in 2020, for it has 
become clear that low-cost, easily deployable tests are crucial for hu-
manity. Three main challenges have to be faced to fulfill such stringent 
requirements: the sensing units must be cheap and easy to manufacture 
even in developing countries; the principle of detection should be simple 
without requiring highly trained personnel to operate the measuring 

equipment; data analysis should be robust and fast. Much has been done 
in all of these challenges, as can be easily confirmed in the recent 
literature for various types of biosensors (see e.g. some review papers) 
[1–5]. However, this considerable body of knowledge has not been 
transformed into products for various reasons, the most important of 
which is perhaps the high cost of device engineering to develop tests and 
certify them through government agencies. This is particularly the case 
of neglected diseases or of diseases in which the number of tests to be 
commercialized would not justify the large investments. 
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We advocate, nevertheless, that efforts should be made to develop 
sensing technology that is sufficiently generic to leverage progresses in 
different areas, across different diseases and for monitoring health 
conditions. Moreover, there are diseases for which such new method-
ologies are urgent. This applies to prostate cancer [6], which is rarely 
symptomatic as the tumor grows quietly and the failure to detect early 
makes this disease the second cause of death in men in industrialized 
countries [7]. Today, prostate cancer is diagnosed with a combination of 
a blood test to detect the prostate specific antigen (PSA) and rectal ex-
amination [8]. Unfortunately, in spite of its high sensitivity, the PSA test 
has low specificity, thus resulting in many negative biopsies, i.e. un-
necessary and invasive procedures [9,10]. An increased PSA concen-
tration may arise from non-cancerous conditions such as prostate 
infections, prostate enlargement and even recent sexual activity [11]. 
This state of affairs may change significantly if more specific biomarkers 
are found. An important candidate is the prostate cancer gene 3 (PCA3) 
located on the chromosome 9q21–22 [12,13], which is prostate-specific 
and associated with prostate cancer [14–17]. PCA3 was identified in 
1995 [18], being initially called DD3 (Differential Display Clone 3) since 
differential display analysis was used to compare mRNA expression 
patterns of normal versus prostate cancer tissues [19]. Overexpression of 
PCA3 gene was observed in 95% of prostate cancer samples, while gene 
3 expression was not detected in any other normal or multi-organ tumor 
tissues. In benign altered prostate cells, very low levels of gene expres-
sion were detected [20,21]. PCA3 biomarker is specific for prostate 
cancer and there is no cut-off concentration. Even low concentrations of 
PCA3 are indicative of a high probability that a patient has (or will) 
developed prostate cancer. 

There are a few reports of sensors to detect PCA3 [15,20,22,23] 
including our own recent work [22], which is the only one using a 
simple principle of detection to the best of our knowledge. In this study, 
we build upon this previous work to address the last two challenges of 
the three mentioned in the beginning of this introduction. More spe-
cifically, we show that genosensors can be built with simple 
manufacturing processes and applied with varied principles of detec-
tion. We show that PCA3 can be detected using electrochemical 
methods, optical absorption spectroscopy and through image analysis of 
the sensing devices. Furthermore, the matrix onto which the DNA 
sequence (PCA3 Probe) is immobilized differs from our previous work, 
as we incorporated gold nanoparticles along with chitosan and chon-
droitin sulfate to enhance the electrical signal. As for data analysis we 
employ information visualization techniques for the electrochemical 
impedance data, with which the highest sensitivity was obtained, and 
machine learning methods to classify the images taken from the geno-
sensing units. The overall aim was to obtain a generic platform in terms 
of materials, devices and data analysis, which can be replicated to other 
biomarkers and other diseases. 

2. Materials and methods 

2.1. Fabrication and characterization of the genosensors 

The genosensors were made with layer-by-layer (LbL) films [24] 
containing alternating layers of gold nanoparticles stabilized with 
chondroitin sulfate (AuNP-CS) and of the PCA3 probe designed for 
detection. The LbL films were deposited onto the working electrode of a 
commercial, 4 mm diameter printed carbon electrode (Dropsens, Spain). 
Chondroitin sulfate, HAuCl4 gold salt, sodium borohydride, biotinylated 
(PCA3 probe) with the following sequence [Btn]TTTTTTTCCCAGG-
GATCTCTGTGCTTCC, positive control (PCA 3) with the sequence 
GGAAGCACAGAGATCCCTGGG and the negative control sequence 
(non-complementary) CTAATGTCCTTCCCTCACAAGCG were obtained 
from Sigma-Aldrich. The chitosan used from Golden-Shell Biochemical 
had molecular weight 87000 g/mol and deacetylation degree 85%. The 
gold nanoparticles (AuNPs) were synthesized by putting 100 mL of 0.02 
mmolL− 1 solution of sodium borohydride reducing agent in a beaker 

under constant stirring, and 5 min later 14 mL of HAuCl4 salt were added 
to obtain a pink solution. The formation of NPs was monitored by taking 
the UV–vis spectra with the solution every 5 min until 325 min, using a 
HR2000 Ocean Optics UV–vis spectrophotometer in situ. In order to 
avoid aggregation, the NPs were protected via steric stabilization [25] 
by adding 0.2 mmolL− 1 of the polymer chondroitin sulfate into the NPs 
solution. The results in Fig. S1 in the Supporting Information indicate 
that 75 min of synthesis were sufficient to form gold nanoparticles with 
an average diameter between 5 nm and 10 nm, according to the scan-
ning electron microscopy (SEM) image in Fig. S2a. These images were 
acquired with a Digital Scanning Microscopy Scanning Electron Micro-
scope (DSM 960 from Zeiss West Germany), in which the nanoparticle 
solution was deposited on a silicon wafer. This nanoparticles size is 
compatible with data in the literature where the reducing agent was also 
borohydride [26]. Nanoparticle composition was confirmed with 
elemental analysis in Fig. S2b, whose elements are listed in Table S1. 

The LbL assembly on the carbon electrode was carried out as follows. 
The carbon electrode was immersed into a solution with AuNP-CS (0.02 
mmol/L) for 30 min, after which the electrode was washed with Milli-Q 
water and dried under nitrogen. A bilayer was completed with deposi-
tion of PCA3 Probe during 45 min of adsorption, followed by rinsing 
with Milli-Q water and drying under nitrogen. Film growth was moni-
tored by depositing LbL films on quartz substrates. The adsorption of 
AuNP-CS on the quartz substrate was facilitated by a cushion chitosan 
layer formed with 1 mg/mL chitosan acetate buffer solution adsorbed on 
quartz for 10 min. The quartz substrate was rinsed and dried and an 
aliquot of AuNP-CS was adsorbed for 30 min, before rinsing and drying. 
LbL films of up to 6 layers were deposited to characterize film growth 
(Fig. S3). 

Polarization-modulated infrared reflection absorption spectroscopy 
(PM-IRRAS) was used to determine the chemical groups involved in LbL 
film formation, using a KSV PMI 550 equipment with 8 cm− 1 spectral 
resolution and 81◦ incidence angle. Cyclic voltammetry (CV) and elec-
trochemical impedance spectroscopy were employed to characterize the 
LbL films and to detect the biomarker with a PGSTAT 204, Autolab 
electrochemical system (Eco Chimie, Netherlands), controlled by NOVA 
software. For CV the potential range was from − 0.6 to 0.6 V. Detection 
was also performed with UV–vis spectroscopy using a Hitachi U-2001 
spectrophotometer, where the band responsible for hybridization at 260 
nm was analyzed. The reproducibility of the genosensor was tested with 
triplicate measurements. 

2.2. Data analysis and machine learning 

The data acquired in impedance spectroscopy measurements were 
visualized with the multidimensional projection technique referred to as 
interactive document mapping (IDMAP) [27], in which each spectrum is 
plotted as a data instance on a 2D plot. This technique for reducing the 
dimensionality of data has been proven excellent for biosensors [28] and 
is based on preserving the similarity from the objects (spectra in this 
case) in the high dimension space in the projected space. It employs the 
optimization function in Equation (1) 

SIDMAP =
δ(xi, xj) − δmin

δmax − δmin
− d(yi, yj) (1)  

where δ(xi, xj) and d(yi, yj) are Euclidean distances between two data 
instances in the original and lower dimension space, respectively, 
andδmax and δmin are the maximum and minimum Euclidean distances. 

SEM images were acquired with a Digital Scanning Microscopy 
Scanning Electron Microscope (DSM 960 from Zeiss, Germany). The 
electrodeposited films on carbon electrodes were affixed to an Al bracket 
and covered with a thin platinum (Pt) layer for electrical contact and 
image generation. The Pt layer was thin enough so that Pt was not 
incorporated into the sample, but sufficient to maintain electrical con-
tact [29]. After coating, the samples were placed in a vacuum chamber 
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to eliminate moisture. In the analysis with machine learning a set of 32 
SEM images was employed, corresponding to sensing units that were 
subjected to distinct concentrations of PCA3 in addition to the negative 
sequence (non-complementary) and a blank measurement for control as 
indicated in Table 1, thus leading to a 8-class problem. All images have 
8-bit resolution (gray scale) and they were taken with different sizes in 
terms of number of pixel sand scales (200 nm and 300 nm), which 
allowed a semi-systematic study of the effects from the size of the im-
ages. The entire data for this set of images are available in the Sup-
porting Information. 

The images were scaled in 1024 × 768 pixels and then segmented 
with three square window sizes to increase the number of examples (in a 
data augmentation procedure) and facilitate generalization of the 
modeling results. The datasets were initially imbalanced with regard to 
the number of examples, but for the analysis we used a random sub- 
sample strategy to obtain a uniform distribution of the classes. Thus, 
in the classification step a resampling process was adopted, using 100 
random configurations (ie., 100 trials). In each configuration the same 
number of examples was taken in each class. The characteristics of the 
imbalanced dataset and the balanced analysis are given in Tables S2 and 
S3 in the Supporting Information. Classification using various machine 
learning algorithms was performed employing a pipeline comprising 2 

steps: (1) texture feature extraction and (2) classification. 
Image features were extracted in step 1 using texture analysis tech-

niques. Texture is a key element of human visual perception, used in 
many computer vision systems and for a variety of applications [30]. In 
this step, we employed for feature extraction the following texture 
analysis techniques: Gray Level Difference Matrix (GLDM) [31], Fourier 
descriptors [32], Complex Network Texture Descriptor (CNTD) [33], 
Fractal descriptors [34], Adaptative Hybrid Pattern (AHP) [35], Local 
Binary Patters (LBP) [36], Complex Network and Randomized Neural 
Network (CNRNN) [37] and Local Complex Features and Neural 
Network (LCFNN) [37]. These techniques analyze texture information in 
different ways (using models, statistics, spectra, and learning) and are 
suitable for a small number of samples in the dataset, also providing fast 
results. The image features (feature vectors) obtained from the images 
using texture analysis were classified (step 2) using the non-supervised 
machine learning technique referred to as K-means and 3 supervised 
machine learning algorithms. Two types of classification were executed, 
viz. a binary classification between the samples exposed to PCA3 (pos-
itive) and those that were not (negative and blank), and a multiclass 
classification where the distinct PCA3 concentrations were considered. 
For supervised machine learning, the texture analysis techniques and 
classifiers were evaluated in performance and generalization capacity 
using the average accuracy and standard deviation of the 100 random 
trials. In each trial we adopted a 10-fold cross-validation scheme to 
separate the test and training sets. In this scheme, 1-fold is used for 
testing and the 9-folds remaining are employed to train the classifier; 
this procedure is repeated using all folds for testing. The parameters of 
the texture analysis techniques and classifiers were kept with the stan-
dard values according to the original paper for each technique. 

3. Results and discussion 

3.1. Detection with electrochemical and optical methods 

The immobilization of the PCA3 probe on carbon electrodes led to a 
slight shift in the oxidation peak to more positive potentials in Fig. S4(a), 
though the area within the voltammograms did not change. A small 
increase in resistance from 3.4 kΩ to 3.6 kΩ was inferred from the 
Nyquist plot in Fig. S4(b), consistent with the cyclic voltammetry 
measurements. This adsorption could be visualized in the SEM images of 
Fig. S5 (Supporting Information), where the typical morphology of small 
spherical particles for the AuNP-CS film was altered after immobiliza-
tion of PCA3 probe with an increased number of particles. DNA hy-
bridization on the film also changed the morphology, as seen in Fig. S5 
(c). 

The PM-IRRAS spectra in Fig. 1 confirmed PCA3 Probe 

Table 1 
Description of the SEM images taken with genosensing units exposed to a 
negative (non-complementary) sequence, a blank (PBS solution with no 
biomarker) and PBS solutions containing various PCA3 concentrations. Also 
informed are the size of the images (in pixels) and number of samples for each 
condition.  

Analyte Class Name 
(label) 

1024 ×
768 
(pixels) 

2048 ×
1536 
(pixels) 

Total 

Negative sequence 
(non-complementary) 

negative (n) 2 0 2 

Blank (for control) 
[PCA3](μmolL− 1) 

zero (o) 3 0 3 

10− 5 positive 10− 5 

(p0p00001) 
2 2 4 

10− 4 positive 10− 4 

(p0p0001) 
1 3 4 

10− 3 positive 10− 3 

(p0p001) 
0 4 4 

10− 2 positive 10− 2 

(p0p01) 
3 3 6 

10− 1 positive 10− 1 

(p0p1) 
5 0 5 

1 positive 1 
(p1p0) 

4 0 4  

Fig. 1. PM-IRRAS spectra of a AuNP-CS layer (black), coated with a layer of Probe (AuNP-CS/Probe, red) and after adsorption of PCA3 sample (AuNP-CS/Probe- 
DNA, blue). The spectrum of the gold support was used as reference, which was subtracted from the spectra of the films. The term PM-IRRAS signal is used as it refers 
to the difference in reflectivity between s and p polarizations. (For interpretation of the references to color in this figure legend, the reader is referred to the Web 
version of this article.) 
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immobilization and DNA hybridization. The band at 1080 cm− 1 in 
Fig. 1A assigned to the phosphate group in the DNA sequence had its 
intensity increased after hybridization. Fig. 1B features the amide I band 
owing to carbonyl groups (C––O) [38,39], at 1700-1730 cm− 1, which 
shifted considerably and became broader by hybridization, as expected 
from the literature [22]. 

Electrochemical impedance spectroscopy and cyclic voltammetry 
measurements were used to detect PCA3. Fig. 2 shows that the current of 
the oxidation peak at 0.3 V in the voltammograms increases with PCA3 
concentration (color lines), while negligible changes were noted for the 
negative control (black lines). The latter behavior occurs because the 
non-complementary strand has no affinity with the adsorbed PCA3 
Probe in the film. 

Fig. 3 shows the calibration curve obtained from the cyclic voltam-
metry data, with the current at 0.3 V versus concentration. The current 
increases up to 1 μmolL− 1, above which it tends to level off, indicating 
saturation. The higher the concentration of PCA3, the greater the 
number of molecules for which hybridization occurs. This increases 

electron transport and hence the oxidation current which can be 
attributed to the increase in adenine and guanine bases. We attempted to 
fit the calibration curve with Langmuir and Langmuir− Freundlich 
models, and found that optimized fitting was obtained with a compo-
sition of two Langmuir-Freundlich isotherms. The reason why simple 
Langmuir− Freundlich models apply to adsorption processes of large 
molecules, or to hybridization, is probably the predominance of the 
specific interactions in complementary DNA strands, which dominate 
over all the other interactions [40]. The detection limit was calculated 
according to IUPAC recommendation from the standard deviation of 10 
reference curves and with α being the sensitivity obtained from the 
angular coefficient of the linear part of the calibration curve [29]. The 
limit of detection was 2000 pM. 

Hybridization between the PCA3 probe and PCA3 also affects the 
electrochemical impedance spectroscopy data, as seen in Fig. 4, espe-
cially at low frequencies where the electrical response is dominated by 

Fig. 2. Cyclic voltammograms with genosensors made with carbon electrodes 
coated with one-bilayer AuNP-CS/Probe films in the potential range between 
− 0.6 and 0.6 V vs SCE in K3 [Fe(CN)6] and K4 [Fe(CN)6], with PCA3 concen-
trations ranging between 10− 12 M and 10 μM. Data are also shown for the 
negative control. 

Fig. 3. Peak current in cyclic voltammograms for AuNP-CS/Probe of Fig. 2 
versus PCA3 concentration. 

Fig. 4. Impedance vs. frequency for genosensors made with carbon electrodes 
coated with one-bilayer AuNP-CS/Probe films immersed in a solution of K3 [Fe 
(CN)6] and K4 [Fe(CN)6], with different concentrations of PCA3. 

Fig. 5. Impedance at 30 Hz versus PCA3 concentration from the data in Fig. 4. 
The curve was fitted using a combination of Freundlich functions. The inset 
shows the curve fitted in the logarithmic scale. Detection was performed at 
room temperature of 23 ◦C. 
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the electrical double layer [22]. 
A calibration curve was built from the data in Fig. 4 for the imped-

ance at 30 Hz where one notes in Fig. 5 a sharp increase at low PCA3 
concentrations before stabilizing when the active sites available for 
hybridization tend to zero. This curve can be taken as an adsorption 
isotherm, and has been fitted with the composition of two Freundlich 
isotherms. The limit of detection was 83 pM, being therefore more 
sensitive than using cyclic voltammetry (above) and in a recent work 
where chitosan and carbon nanotubes were utilized as immobilization 
matrix, for which the detection limit was 128 pM [22]. The control 
experiments with electrochemical impedance measurements in Fig. S6 
in the Supporting Information (see also the visualization below) indicate 
no significant changes in impedance when the genosensors were 
exposed to different concentrations of the non-complementary 
sequence. 

The high sensitivity and selectivity of the genosensor is further 
confirmed by plotting the impedance data using the multidimensional 
projection technique IDMAP, as shown in Fig. 6. A clear distinction can 
be made of the samples containing the various PCA3 concentrations 
with the data points referring to the highest concentrations clustering 

together as saturations is reached. Also these positive controls (in blue) 
are located on an entirely different space to that of the negative controls 
corresponding to measurements with different concentrations of the 
non-complementary sequence (in pink). 

The genosensors could also detect PCA3 using UV–vis. spectroscopy. 
Film growth on a quartz plate was monitored by measuring the spectrum 
after depositing each AuNP-CS/Probe bilayer. The spectra in Fig. S3 in 
the Supporting Information feature a band at 550 nm for gold nano-
particles, which increases with deposition of additional layers up to the 
5th layer, as seen in the inset of the figure. Based on these results, the 
genosensors were made with 5 AuNP-CS/Probe bilayers deposited on 
quartz. Fig. 7 shows the absorption spectra for the genosensors exposed 
to different PCA3 concentrations. The band at 260 nm is assigned to 
absorption of DNA bases of the PCA3 probe and its intensity decreases 
with increasing PCA3 concentration [41]. This decrease is due to the 
so-called hypochromic effect [42], explained as follows. The close 
interaction between stacked bases in nucleic acids causes a decrease in 
UV light absorption compared to that the absorption of a solution with 
the same concentration of free nucleotides. It is worth mentioning that 

Fig. 6. IDMAP plot for the impedance spectra for different concentrations of: PCA3 complementary sequence. non-complementary sequence. Each point corresponds 
to an impedance spectrum obtained with the genosensor. Note that the axes are not labeled because in IDMAP plots what matters is the relative distance between 
projected data points. 

Fig. 7. Absorbance spectra for genosensors made 5-bilayer AuNP-CS/Probe 
films deposited onto quartz exposed to various concentrations of PCA3 in 
PBS solutions. Fig. 8. Change in the relative area below the 260 nm band versus PCA3 

concentration. 
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this hypochromic effect does not occur when the genosensor is exposed 
to the non-complementary sequence, as seen in Fig. S7 in the Supporting 
Information. 

Note in Fig. 8 that the absorbance decreased up to 10− 3 μM showing 
a small increase for higher concentrations. This is consistent with the 
electrochemical impedance measurements which presented saturation 
from the same concentration, indicating there were no more free probes 
at higher concentrations. For this technique the detection limit calcu-
lated according to IUPAC recommendation was 900 pM. For better 
visualization the x axis in Fig. 7 was multiplied by (− 1). For UV–vis 
detection no isotherm fitted the calibration curve owing to the decrease 
in absorbance at high concentrations. 

All the techniques employed here for PCA3 gene detection were 
successful, with electrochemical impedance being the most sensitive 
with the lowest detection limit. The sensitivity even with the most 
efficient method is not as high as the one obtained by Fu and colleagues 
[20] who employed surface-enhanced Raman scattering (SERS) with a 
device using a PCA3 mimic. The genosensor developed here is never-
theless attractive because it has the advantage of ease of production with 
low cost; in addition, no sophisticated equipment is required unlike the 
more sensitive SERS sensor [20]. In future studies the genosensor will be 
applied to urine samples from patients. 

3.2. Diagnosis with image analysis employing machine learning 

One of the easiest ways to obtain a fast diagnostic with present 
technology is to take a picture of a sensing unit exposed to the sample 
and process the image. This is different from the standard approaches 
involving image analysis for diagnostics because the image is taken not 
from the biological sample itself but of the sensing unit. Hence, this 
strategy will only work if the detection procedure leads to a change in 
texture or morphology or any other image feature of the sensing units. 
Since it is well established that the surfaces of biosensors are altered 
during the measurements, it seems natural to assume that such changes 
could be utilized for diagnosis. Yet, this strategy has not been explored in 

the literature. To the best of our knowledge the only work based on 
image analysis of sensing units is our own [29] in which we proved that 
the standard deviation of the circularity of objects on SEM images 
correlated with the concentration of a cancer biomarker. We have 
therefore decided to extend this research and apply machine learning to 
the images of genosensors subjected to the same procedures as in the 
electrochemical and optical detection in the previous subsection. 

A typical set of representative images are illustrated in Fig. 9. We 
used SEM images for proof-of-concepts experiments, though we know 
ideally one should use optical images. For if the strategy does not work 
with SEM images that are expected to capture the nanoscopic changes 
owing to hybridization in the genosensors, it is unlikely that it would 
work with optical images. The classification was performed in 3 

Fig. 9. Examples of SEM imagens of the sensor unity with (a) negative sequence, (b) blank and PCA3 biomarker with concentrations (μmol L− 1) in increasing order 
(left-right): (c) 10− 5, (d) 10− 4, (e) 10− 3, (f) 10− 2, (g) 10− 1, (h) 1. 

Table 2 
Accuracy in binary and multiclass classifications for the dataset with window 
size of 300 × 300 pixels.  

Texture 
Techniques 

Binary Multiclass 

Classifier LDA SVM 1-NN LDA SVM 1-NN 

GLDM 92.8 
(6.7) 

98.7 
(1.3) 

98.5 
(1.3) 

75.7 
(4.4) 

79.3 
(3.3) 

62.8 
(3.8) 

Fourier 92.4 
(5.5) 

97.1 
(1.9) 

98.6 
(1.2) 

56.3 
(5.7) 

75.9 
(3.9) 

67.2 
(5.2) 

CNTD 98.1 
(1.8) 

96.9 
(1.9) 

97.3 
(2.0) 

68.6 
(5.3) 

75.5 
(3.4) 

62.6 
(4.1) 

Fractal 92.9 
(5.8) 

97.9 
(1.5) 

96.3 
(2.9) 

59.5 
(5.2) 

64.2 
(4.0) 

52.7 
(4.8) 

AHP 98.9 
(1.3) 

98.8 
(1.3) 

98.4 
(1.3) 

66.7 
(6.2) 

78.2 
(3.7) 

68.4 
(4.9) 

LBP 99.0 
(1.3) 

98.6 
(1.4) 

94.6 
(3.3) 

76.5 
(4.7) 

74.7 
(3.5) 

72.5 
(4.7) 

CNRNN 98.1 
(1.7) 

98.9 
(1.0) 

98.9 
(1.0) 

72.7 
(4.3) 

82.4 
(3.5) 

70.4 
(3.7) 

LCFNN 99.9 
(0.3) 

99.9 
(0.3) 

99.5 
(0.9) 

88.3 
(3.4) 

86.9 
(3.1) 

80.3 
(3.8)  
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datasets, which differs in number of examples (Table S2) according to 
the window sizes of the segmentation. The best results for both binary 
and multiclass classification shown in Table 2 were obtained using the 
dataset with the windows size of 300 × 300 pixels (the results for the 
two other datasets are given in Tables S4 and S5). In the table, the ac-
curacy and standard deviation (in parenthesis) for each combination of 
texture analysis technique and classifier are reported. We used the 
classifiers Support Vector Machine (SVM) (linear kernel), Linear 
Discriminant Analysis (LDA) [43] and 1-Nearest Neighborhood (1-NN). 
The maximum accuracy was 99.9 (0.3) using the LCFNN descriptor with 
SVM and LDA classifiers in the binary classification. In this procedure, 
the classification system had the task to distinguish the images of sensing 
units exposed to PCA3 (with all concentrations put together) from those 
which were not (negative and blank). Thus, the accuracy indicates a 
strong ability to separate the two classes. 

When a multiclass classification was attempted, the accuracies 
decreased because a visual inspection of the images indicates that the 
changes are small for low PCA3 concentrations. The most efficient 
combination of texture technique and classifier was based on the LCFNN 
descriptor and LDA algorithm with an accuracy of 88.3% (3.4). The table 
also shows that overall the SVM and LDA classifiers combined with 
LCFNN, CNRNN, and GLDM texture techniques are the most appropriate 
to separate the groups. The details of all the image processing and the 

results for all the algorithms and classification conditions are given in 
the Supporting Information. 

We are aware of the possible overfitting in the analysis with super-
vised machine learning when the number of images is small, as in our 
case. We have then also performed a non-supervised data analysis over 
the image features using the t-Distributed Stochastic Neighbor Embed-
ding (t-SNE) [44], which should be entirely free from overfitting arti-
facts. This technique is used for high-dimensional data visualization 
because of its ability to reveal the data structure, such as clusters of 
similar samples. The same feature vectors employed above were now 
embedded in a two-dimensional space with t-SNE, which does not 
require class information. Fig. 10 shows the feature projections of the 
four best texture descriptors, with the samples (points) labeled using the 
binary class case only for visualization purposes. This experiment re-
veals a data structure for the GLDM descriptors that form two main 
clusters, one comprising the positive (in blue) samples while the other 
had a majority of negative (in red) samples. The other descriptors also 
show a clustering structure in which the positive and negative samples 
can be easily separated, corroborating the results of the binary super-
vised experiment (Table 2). The projections for the texture features with 
samples colored using multiclass labels are shown in Fig. 11, where a 
cluster is noted for the negative (‘n’ and ‘o’) and ‘p1p0’ classes. The 
clustering of the other positive classes is less clear, as one should expect 

Fig. 10. t-SNE projection of the features for AHP, CRNNN, LCFNN, and GLDM descriptors with the points labeled using the binary class case.  
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from the results of the supervised learning experiment. The accuracy 
values in Table 3 obtained with K-means are smaller than those in 
Table 2, with a maximum of 70.83% for the multiclass scenario. This is 
indeed a more challenging task, which requires more sophisticated and 
complex image analysis techniques. 

The results from the analysis of SEM images of the genosensing units 
amount to a demonstration that image processing may be a powerful 
option to complement electrical, electrochemical and optical principles 
of detection. Nevertheless, the accuracy in discriminating all of the 

PCA3 concentrations used in the experiments was at most 88.3% for 
supervised learning and 70.83% for non-supervised learning, while with 
the electrochemical and optical methods full distinction could be 
reached. Hence, in further studies we shall explore different image 
analysis techniques to improve the accuracy in the multiclass scenario, 
including Convolutional Neural Networks (CNN) [45]. 

4. Conclusions 

We designed a genosensor made with LbL films coated with a layer of 
a PCA3 probe which proved effective in detecting PCA3 with different 
principles of detection. The most effective was electrochemical imped-
ance spectroscopy, with which a limit of detection of 83 pM was 
reached, being more sensitive than the genosensor from our previous 
work22 probably owing to the incorporation of gold nanoparticles in the 
LbL film. Using the multidimensional projection technique IDMAP we 
demonstrate that full distinction of all PCA3 concentrations can be 
achieved. The high sensitivity and selectivity is related to hybridization, 
which is very specific, confirmed with PM-IRRAS. The second most 
efficient method was UV–Vis. spectroscopy, and this is particularly 
significant because one may now envisage the development of colori-
metric tests. 

The PCA3 concentration dependence of the electrochemical 

Fig. 11. t-SNE projection of the features for the AHP, CRNNN, LCFNN, and GLDM descriptors with the points colored using the multiclass label.  

Table 3 
Accuracy for the clustering groups computed with k-means in binary and mul-
ticlass cases on the dataset with window size of 300 × 300 pixels.  

Texture Techniques Accuracy (%) 

Binary Multiclass 

GLDM 86.98 52.10 
Fourier 87.50 62.50 
CNTD 84.37 52.60 
Fractal 90.10 48.44 
AHP 80.21 46.35 
LBP 82.81 51.56 
CNRNN 95.83 52.10 
LCFNN 87.50 70.83  
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measurements could be explained with Freundlich and Langmuir- 
Freundlich models as if hybridization could be simulated as an adsorp-
tion process. This specific interaction did affect the morphology of the 
genosensors when exposed to different PCA3 concentrations or in con-
trol experiments, and this allowed us for the first time attempt to detect a 
cancer biomarker via machine learning of SEM images of the geno-
sensors. The results are encouraging since almost full distinction could 
be reached for a binary classification for samples with and without 
PCA3. On the other hand, the distinguishing ability in the multiclass 
case can still be improved if compared to the other methods (with 
electrochemical and optical measurements). We should also mention the 
limitations of our use of machine learning, stemming from the small 
number of images per condition and the need to employ data augmen-
tation. These issues should be addressed in the future to confirm that no 
overtraining of data occurs. One may be optimistic nevertheless for 
further studies including different image analysis techniques since it has 
already been proven that image contents are correlated with biomarker 
concentration29. 

Taken together, we believe that the results and concepts reported 
here may pave the way for a new era of diagnostics – not only for 
prostate cancer – where simple detection methods may be employed 
which can be leveraged with machine learning of images of the sensing 
units themselves. 
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