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Abstract

Although Cohen’s d and the growth modeling analysis (GMA) d from linear models are common 

standardized effect sizes used to convey treatment effects, popular statistical software packages do 

not include them in their standard outputs. This article demonstrated the use of statistical software 

with user-prescribed parameter functions (e.g., Mplus) to produce d for treatment effects from 

both classical analysis and GMA--along with their associated standard errors (SEs) and confidence 

intervals (CIs). A Monte Carlo study was conducted to examine bias in the SE and CI for GMA d 
obtained with Mplus and found that both estimates were more accurate when calculated by the 

software with the standard bootstrap than with the delta method, but the delta method estimates 

were less biased than respective estimates from extant post hoc equations. Thus, users of many 

statistical software packages (including SAS, R, and LISREL) should obtain d or GMA d and 

associated CIs directly. Researchers employing less versatile software--and meta-analysts 

including ds and GMA ds in their syntheses of treatment effects--should continue to use the 

conventional post hoc equations. Biases in SEs and CIs for effect sizes obtained with them are 

ignorable and point estimates of d and GMA d are the same whether obtained directly from the 

software or with post hoc equations.
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The need for effect sizes that communicate the potency of intervention effects is now well 

established (Grissom & Kim, 2012). There is also an increasing recognition of the 

importance of also providing confidence intervals (CIs) for these effect sizes (Cumming, 

2013; Odgaard & Fowler, 2010; Preacher & Kelley, 2011).

Effect sizes can be unstandardized or standardized (Kelley & Preacher, 2012). 

Unstandardized effects sizes have an advantage over standardized effect size when making 

comparisons among findings from different studies that used the same outcome measure 

because there is no confounding of effect magnitude with sample homogeneity (Baguley, 

2009). However, different studies examining the same hypothesis often use varying 
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operationalizations of identical constructs, thus inextricably confounding homogeneity with 

instrumentation properties. This is a key reason standardized effects sizes are typically used 

in meta-analysis in the behavioral sciences (Feingold, 2017).

There are a number of standardized effect sizes in common use, and the choice of the effect 

size metric for a particular study is often based on the distributions of study variables: (1) the 

correlation coefficient (r), when the independent and dependent variables are both 

continuous, (2) the odds ratio (OR), when the outcome is categorical, and (3) the 

standardized mean difference (Cohen’s d), when the independent variable is categorical 

(e.g., treatment vs. control) and the dependent variable is continuous (Feingold, 2013). Thus, 

d is frequently used when reporting results from randomized controlled trials (RCTs) 

examining efficacy of psychosocial interventions. However, the d statistic can vary as a 

function of design (Goulet-Pelletier & Cousineau, 2018), and the d relevant to RCTs (and 

thus this article) expresses the differences between independent groups (e.g., the treatment 

and control group)--whether observed in data from a completely randomized design, or from 

a mixed design that compares independent groups on repeated measures.

Statistical Software for Standardized Effect Sizes

Although most statistical software packages (e.g., SPSS) output r or OR as a standardized 

effect size where appropriate, such programs do not report d. Thus, a two-step method is 

typically used to obtain d from reported descriptive (means and standard deviations) or 

inferential (e.g., t ratios) statistics with post hoc equations typically found in meta-analytic 

texts (e.g., Borenstein, Hedges, Higgins, & Rothstein, 2009) to calculate d and its CI.

In addition, a growth model analysis (GMA) d can be derived from a linear multilevel or 

latent growth model that compares the random slopes of two groups over time to test 

intervention efficacy (Feingold, 2009). GMA d is a model-based estimate of the standardized 

mean difference between the two groups (e.g., treatment and control) at the end of a 

randomized study, and thus an equivalent of Cohen’s d from a completely randomized 

design (Feingold, 2015). GMA d has now been reported in hundreds of RCTs (e.g., Chorpita 

et al., 2017; Felder et al., 2017; Goodnight et al., 2017; Parra-Cardona, et al., 2017; Stice, 

Rohde, Shaw, & Gau, 2017). As with classical d, GMA d is not reported in statistical outputs 

and has previously been obtained only with a two-step approach that uses a post hoc 

equation at step 2.

An alternative but rarely considered approach is to use statistical software with user-

prescribed parameter functions-- including lavaan in R (Rosseel, 2012), LISREL (Jöreskog 

& Sörbom, 2006), PROC CALIS in SAS (SAS Institute Inc., 2011), and Mplus (Muthén & 

Muthén, 2017) but not SPSS--to directly produce effect sizes, standard errors (SEs) and 

confidence intervals (CIs) for d and GMA d (Feingold, 2018). This article illustrates an 

application of this approach with Mplus, a versatile statistical package commonly used to 

conduct modeling analysis with observed and latent outcomes. Although Mplus--like other 

statistical programs-- does not ordinarily produce d or GMA d, the software has the 

capability to create new parameters. This functionality would allow Mplus (and other 

programs with similar capabilities) to calculate d and GMA d directly, and to obtain their 
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standard errors (SEs) and CIs with the same methods the program uses to produce SEs and 

CIs for standard parameters (e.g., regression coefficients). Thus, this article uses Mplus to 

demonstrate and validate the use of this new approach for obtaining d and linear GMA d 
(with associated SEs and CIs), although adaptations to other software is relatively 

straightforward. (For effect size estimation for more complicated non-linear GMA models, 

see Feingold, 2018).

Calculation of d in Classical Analysis

Cohen’s d is the difference between the means of two independent groups divided by the 

pooled within-group standard deviation (SD).

(M1 − M2)/SD, (1)

where M1 is the mean of one group and M2 is the mean of the other group.

Most mainstream statistical packages can be used to compare the means of two independent 

groups with commands specifying a t test, an analysis of variance (ANOVA), or a multiple 

regression analysis. However, Mplus requires the use of the regression framework to 

compare means, which entails coding the binary predictor (x) capturing group and 

regressing the continuous outcome (y) on those codes (Cohen, Cohen, Aiken, & West, 

2003).

Single covariate model (one-step method).

In a regression equation with a single dichotomous predictor (with a 1 unit difference 

between the codes used to create the x variable, e.g., “0” for control and “1” for treatment, or 

“−.5” and “.5”), the unstandardized regression coefficient (b) of y on x is the raw score mean 

difference (M1 - M2) between the groups--the numerator in the formula for d (see Equation 

1). The square root of the residual variance from that model is the pooled within-group SD 
of the outcome--the denominator in Equation 1. The d, the SE of d, and the CI of d from a 

single covariate model (where group is the only predictor) can thus be calculated in Mplus in 

a single step with the MODEL CONSTRAINT command that creates new parameters from 

existing ones, such as regression coefficients and residual variances (see A1 in Appendix A 

for the Mplus input that produces d from the single covariate model).

Multiple covariates model (two-step method).

Designs with one or more covariates in the model in addition to the binary treatment variable 

are common in program evaluations. In particular, a pretest score is often included as a 

covariate in an independent groups pretest-posttest control group design (Morris, 2008; 

Morris & DeShon, 2002) to decrease the SE of b and increase power to detect the treatment 

effect.

When treatment is not the only independent variable in the regression model, the residual 

variance is no longer the pooled within-group SD because variance in y explained by other 

covariates is removed from the variance of y (Cohen et al., 2003). Therefore, in GMA 
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models with multiple covariates, the pooled SD cannot be determined from the residual 

variance but instead must be obtained from a prior analysis at step 1 and then specified in 

MODEL CONSTRAINT at step 2 (see A2 in Appendix A for input producing d using a 

specified SD from a model with multiple covariates). Such a two-step method in which a 

predetermined SD of the outcome is specified in the input to calculate an effect size is also 

used in Mplus for mediation analysis with a continuous predictor and a dichotomous 

outcome (Feingold, MacKinnon, & Capaldi, 2018; Muthén, Muthén, & Asparouhov, 2016).

Given randomization, the expected value of the correlation between the treatment variable 

and other covariates in a regression model is zero. Thus, b and d would then both have the 

same expected values in single and multiple covariate models. However, the CIs may be 

narrower in the latter because of the reduced SE as a result of variance in y (e.g., posttest 

score) explained by other covariates (e.g., pretest scores).

By default, Mplus produces the SE for new estimates (e.g., d) with the same delta method 
(Benichou & Gai, 1989; Kendall & Stuart, 1977) used to obtain the SEs for standard 

parameters (e.g., b). Inclusion of an optional command in the input statement to report CIs 

will have Mplus produce the CIs for both b and d with the delta method.

Mplus also has a capability to generate SEs and CIs for both default (e.g., b) and new (e.g., 

d) parameters with the bootstrap--either the standard non-parametric (percentile) bootstrap 

(Efron, & Tibshirani, 1993) or the Bollen-Stine (1992) residual parametric bootstrap--in lieu 

of SEs and CIs obtained by default with the delta method . However, bootstrap CIs are 

almost never reported instead of delta method CIs for either b or d, which indicates that 

researchers generally assume that b and d are normally distributed and have symmetric CIs.

The square of the SE of d is the variance of d, which is used in meta-analysis of study 

findings in the d metric (Borenstein et al., 2009; Feingold, 2017). Meta-analysts typically 

calculate this variance with post hoc equations that are approximations provided in meta-

analytic texts that yield estimates that are close to the squares of the SEs of d obtained in 

Mplus with the input provided in Appendix A. Unlike primary researchers, meta-analysts 

must rely on post hoc equations (e.g., Equation 1) because Mplus can only produce d and its 

SE from raw data, whereas meta-analysts typically need to calculate them with statistics 

extracted from research documents.

Growth Modeling Analysis (GMA)

GMA--including multilevel modeling/hierarchical linear models (Goldstein, 2011; Hedeker 

& Gibbons, 2006; Hox, Moerbeek, & van de Schoot, 2010; Raudenbush & Bryk, 2002) and 

latent growth modeling (Bollen & Curran, 2006; Preacher, Wichman, MacCallum, & Briggs, 

2008)--is often used to compare trajectories (e.g., means of random linear slopes) between 

groups to examine differences in rate of growth on an outcome over the course of a 

longitudinal study, particularly to evaluate intervention efficacy. GMA has revolutionized 

approaches to the analysis of repeated measures data used to examine naturally occurring or 

experimentally induced changes in people’s attitudes, health, and behaviors (Gueorguieva & 
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Krystal, 2004; Kuljanin, Braun, & DeShon, 2011). GMA is now as familiar to evaluators of 

interventions as ANOVA and ordinary least squares regression.

Calculating GMA d from Extant Post Hoc Equations

Equation 2 is typically used to convert the unstandardized coefficient (b) for the effect of 

group on slope (the treatment effect) to a standardized effect size (GMA d)--the model-

estimated standardized mean difference between the two groups at the end of a randomized 

study,

GMA d = (b ∗ duration)/SD, (2)

which estimates the same effect size parameter as Cohen’s d (Feingold, 2013, 2015).

The b in the numerator of Equation 2 is the difference in the rate of change in the outcome 

between the two groups per unit of time (e.g., per week when time is coded in weeks), and 

duration is the length of the study based on units associated with b (e.g., number of weeks 

from baseline if b is the group difference in rate of change per week).1 The numerator in 

Equation 2 (the product of b and duration) is thus the model-estimated raw score mean 

difference between the two groups at the end of the study (and analogous to M1 - M2 in 

Equation 1 for d). The SD (denominator of Equation 2) is the pooled within-group SD of the 

outcome (y) that is an estimate of the same parameter as the SD in Equation 1. However, 

with GMA of data from multiple time points, the SD of y can be calculated from observed 

baseline or end-of-study within-group variation, depending on statistical and theoretical 

considerations (see discussion in Feingold, 2013). SD can also be obtained from the GMA in 

a single covariate model by summing the variance of the intercept growth factor and the 

Level 1 residual variance2 (Feingold, 2015, 2018).

Recent work (Feingold, 2015) has derived and validated an equation for the estimation of the 

variance (v) of GMA d,

v = SEb
2 ∗ (duration/SD)2, (3)

where SEb is the SE of b and SD is the same statistic used in Equation 2 to calculate GMA 

d. The square root of v is thus the SE of the GMA d, which can be used to calculate the 95% 

CI of GMA d,

1.The magnitude of b can vary with the coding of time in a given GMA. Therefore, the duration term in Equation 2 can also vary with 
coding of time because the product of b and duration (i.e., the expected raw score mean difference at end of the study) must be the 
same regardless of the value of b. As an example, consider a 6-week study that includes 4 assessments, with 2 weeks between time 
points. If the GMA used time codes of 0, 2, 4, and 6 for T1 (baseline), T2, T3, and T4 assessments respectively, b is the difference in 
change rate per week, and thus duration is 6, because it is a 6-week study. However, if time codes were based on measurement 
occasions rather than week (e.g., 0, 1, 2, and 3), b would be twice as large because it would then be the difference in rate of change 
expected in a 2-week period. The duration in an analysis using this alternative coding for the same study would then be 3. (When the 
time codes are based on occasions that differ by 1 point between them, duration is 1 less than the number of time points.)
2.In multilevel modeling (MLM) approaches to GMA (e.g., Raudenbush & Bryk, 2002), there is a single Level 1 variance in the model 
output. In the competing latent growth/structural model equation modeling framework for GMA used by Mplus, there is a separate 
residual variance associated with the Y at each time point, and the average of these residuals is the Level 1 variance in the MLM 
approach.
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CI = GMA d + / − 1.96∗SE . (4)

A mathematically equivalent approach for CI estimation uses Equation 2, but with the lower 

and upper confidence limits (CLs) of b replacing the point estimate to transform the CI for b 
into the CI for GMA d (Feingold, 2015).

Producing GMA d for Linear Models in Mplus: An Illustrative Analysis

As with Cohen’s d, the GMA d and associated statistics can be obtained directly with Mplus. 

Example 6.10 in the Mplus user’s guide (Muthén, & Muthén, 2017) consists of an input 

statement for a linear GMA--with 4 equidistant time points (coded 0, 1, 2, and 3 for y11, 

y12, y13, and y14, at T1, T2, T3, and T4, both respectively), 2 continuous time-invariant 

covariates (x1 and x2), and a single time-varying covariate (a31-a34)--used for an illustrative 

GMA of an accompanying dataset included with the Mplus software (ex6.10.dat, N = 500). 

The current illustration uses this example as a foundation for demonstrating the calculation 

of GMA d--and the three different SEs and CIs for GMA d--from Mplus, and affords 

comparisons with respective statistics obtained with the widely used post hoc equations that 

include delta method statistics (Feingold, 2009, 2015)

Because GMA d is used only with binary covariates, a DEFINE command was added to 

Example 6.10 input to dichotomize the continuous x1 (based on a mean split) covariate in 

the accompanying dataset, and the MODEL CONSTRAINT command was included for the 

program to calculate GMA d. With 4 equidistant time points differing by 1 unit between 

them, duration = 3. Two types of models are considered, a multiple covariates model (where 

there is one or more covariates in the model in addition to the covariate for condition) and a 

single covariate model (where group is the only time-invariant covariate in the analysis).

Multiple covariates model.

As with classical analysis, a two-step method is needed to obtain effect sizes from a GMA 

model with multiple covariates (e.g., Mplus user’s guide Example 6.10). The input requires 

specifications of: (a) duration, and (b) a predetermined SD for the within-group variation of 

y (see MODEL CONSTRAINT code in the input in Appendix B). The SD of 1.478 specified 

for this example of a model with multiple covariates was the within-group SD at baseline 

(y11POOLED), which is commonly used for SD estimation in RCTs because it ensures that 

the SD is unbiased by effect of treatment or attrition--and is also used to evaluate the 

effectiveness of the randomization when comparing the two groups at baseline (see 

Feingold, 2009, 2013). This SD was obtained by regressing y11 on the binary x1 covariate 

and taking the square root of the residual variance.

Three input statements--all modifications of Mplus Example 6.10--were used to conduct the 

illustrative analysis to produce the standard GMA statistics plus the GMA ds, SEs, and CIs 

from the multiple covariates model with: (a) the default delta method (see B1 in Appendix 

B), (b) the standard bootstrap (B2), and (c) the residual bootstrap (B3). (Specification for 

Mplus to use a bootstrap instead of the default delta method to estimate SEs and CIs is the 

same in this example as in all Mplus input statements, and 500 draws were used in the 
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illustrative analysis--the standard number of draws when the bootstrap was requested in 

input statements in Mplus user’s guide examples.)

The observed GMA d of .872 was the same in the three analyses using the delta method and 

two bootstraps to produce the SEs and CIs for GMA d because point estimates are not 

affected by the method used to estimate the SEs and CIs. The Mplus-generated SEs and CIs 

from the multiple covariates model are reported in last three columns in the top half of Table 

1 (under the heading “All 3 Covariates” for “Mplus Outputted CI”) for each CI estimation 

method; respective SEs and CIs were nearly identical across the three estimation methods. 

The last the three columns in bottom half of the table (“Transformations of CI of b to CI of 

d”) reports CIs obtained for the GMA ds obtained with the post hoc equations approach. 

That is, the bottom half of the table reports corresponding results obtained by transforming 

the CI of b to the CI for GMA d for each type of CI with Equation 2 (with CLs of b 
substituted for b). These CIs were virtually identical to respective CIs for GMA d calculated 

directly by Mplus (reported in the top half of the table), irrespective of the Mplus estimation 

method.

Single covariate model.

An analysis was first conducted with only x1 as a covariate to illustrate calculation of GMA 

d from a single covariate model with a specified SD. However, in a GMA with a single 

covariate capturing group, SD does not have to be specified but can be estimated from the 

model using the variance of the intercept growth factor and residual variances of y with 

either of two equations. The first equation for estimating SD from the model takes the square 

root of the sum of the intercept growth factor variance and the mean of all the residual 

variances of y (Feingold, 2015)--and is most appropriate when the residual y variances are 

assumed homogeneous (or are specified to be equal in a Monte Carlo study). The second 

equation takes the square root of the sum of the intercept growth factor variance and the 

residual y variance associated with a time code of 0 (y11 in this example).

Appendix C provides the input for a single covariate model for each SD estimation 

approach: (1) specified SD (see C1), (2) SD estimated from mean of all residual variances of 

y (C2), and (3) SD estimated using the y11 (baseline) residual variance (C3). Note that 

Appendix C indicates the input for use of the default delta method for CI estimation for each 

SD estimation method. To obtain bootstrap CIs instead of delta method CIs, the bootstrap 

must be specified by adding an analysis command between the MODEL CONSTRAINT and 

OUTPUT commands, and the bootstrap specification must be added to the output 

CINTERVAL command (as shown in B2 and B3 in Appendix B for the input for the 

multiple covariates model).

The two model-estimated approaches for SD estimation produce identical SDs (and thus the 

same GMA ds calculated using that SD as the denominator) when the residual y variance 

associated with a time code of 0 equals the mean of all the other residual y variances. In 

addition, with the equation using a single residual y variance, the GMA ds (but not their CIs) 

are nearly the same as the GMA ds obtained with the predetermined SD using the previously 

described two-step approach. Because there is no specified value for SD when SD is 
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estimated from the model, the coefficient for the group difference in slopes (b) and the GMA 

d derived from it are obtained simultaneously in a single step.

In the illustrative GMA for this model that included only x1 as a covariate and specified SD 
= 1.478 in MODEL CONSTRAINT (C1 input in Appendix C), GMA d = 1.030. When the 

SD was estimated from the GMA using the average of the 4 y residual variances (C2), GMA 

d = .994. When the SD was estimated from the GMA using the y11 residual variance (C3), 

GMA d = 1.010. Thus, a GMA d of about 1.00 was obtained regardless of the approach used 

to estimate SD in the single covariate model, and was thus larger than the GMA d of .87 that 

was observed when the other covariates were included in the model in the previous 

illustrative analysis of the same data.

The first 9 columns in Table 1 reports the SEs and CIs calculated with the different methods 

of SD and CI estimation, including the CIs for the post hoc approach that were not 

calculated directly by Mplus but were obtained by transforming delta method or bootstrap 

CIs for b to CIs for GMA d (see bottom half of table headed “Transformation of CI of b to 

CI of d.”) The observed differences among the different CIs for respective GMA ds were not 

meaningful.

Monte Carlos Study of the Validity of the Mplus Estimates for GMA d

The validity of the estimates obtained with different methods used by Mplus for SE and CI 

for GMA d needs to be compared with the validity of the respective statistics obtained with 

the widely used post hoc equations (reported in Feingold, 2015). Errors in parameter 

estimates (bias) can be assessed with Monte Carlo simulation studies (e.g., Cheung, 2009; 

Hedges, Pustejovsky, & Shadish, 2012; Lau & Cheung, 2012; MacKinnon, Lockwood, & 

Williams, 2004). A Monte Carlos study was previously conducted by Feingold (2015) to 

examine bias in the estimates of the SE and CI for the GMA d obtained with post hoc 

equations (Equations 2 and 3, which used the SEb estimated by the delta method). Bias was 

found to be small, particularly in large samples.

Objectives of Current Article

A key purpose of this article is to illustrate an approach for obtaining effect sizes (and 

estimation of their SEs and CIs) from classical analysis and linear GMA that uses statistical 

software (specifically, Mplus) to create new parameters. However, this approach produces 

different types of SEs and CIs, raising questions about which statistics should be reported in 

program evaluations. Previous research using this approach with non-linear GMA models 

found that directly produced CIs obtained by Mplus with the delta method were less biased 

than respective bootstrap CIs (Feingold, 2018). Thus, a major objective of this article is to 

determine whether that finding generalizes to the GMA d obtained with a linear growth 

model. The prior study also found that sample sizes greater than 150 were needed to for 

relatively unbiased effect sizes from quadratic GMAs. Thus, the current study examines 

whether a similar N is needed for linear GMA effect sizes. Evaluations of bias in bootstrap 

SEs and CIs for b for linear GMA were not possible in an earlier study (Feingold, 2015) 

because the Mplus version then available did not have its current capability of producing 
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bootstrap statistics in a Monte Carlo study. Thus, bootstrap SEs and CIs for b are examined 

here to afford comparisons with respective biases in bootstrap SEs and CIs for GMA d that 

are derived from b.

Method

Feingold (2015) used Monte Carlo analysis to examine bias in the SE and the 95% CI for b 
for the treatment effect computed with the delta method in 10 Monte Carlo simulations--

each using 10,000 replications and specifying two parameters for the slope differences (.10 

and .20) crossed with five sample sizes (ranging from 50 to 500). Each replication 

manufactured and analyzed data for a balanced linear GMA with a dichotomous time-

invariant covariate (i.e., two groups of equal size), 4 equidistant time points differing by 1 

point between them) and a continuous outcome (for a complete sample Mplus input 

statement, see Appendix A in Feingold, 2015, or the non-bolded text in Appendix D of this 

article).

Biases in the delta method SEs and CIs for b, and in the GMA d obtained with post hoc 

equations using delta method CIs, were both examined in Feingold (2015) following 

conventional practices for interpreting Monte Carlo results (Muthén & Muthén, 2002). The 

current study of bias in GMA d and associated statistics used the same 10 GMA models and 

input statements as the previous study to afford meaningful comparisons between biases in 

SEs and CIs obtained directly by Mplus in this study vs. the previously reported biases in 

respective statistics obtained with post hoc equations. However, commands and options were 

added to the earlier inputs to also generate GMA d within Mplus, along with its SE and CI. 

Thus, the expanded input statement (see Appendix D, with added text in bold) used in this 

new Monte Carlo study obtained (a) the prior results for biases in b with the delta method, 

(b) additional results for biases in b obtained with the bootstrap, and (c) bias in SE and CI 

for GMA d calculated by with both the delta method and the standard bootstrap.

The commands and options used in the current study were Monte Carlo counterparts to the 

Mplus inputs presented in the introduction for the illustrative study (i.e., the expansions of 

the input statement in Example 6.10 in the Mplus user’s guide), with the SD in the 

parameter creation equation calculated with the single-step method by Mplus using the mean 

y residual variances to estimate SD in each replication (see C2 in Appendix C). The key 

differences between the two types of input statements are that the Monte Carlo study inputs 

include specifications of the effect size parameters for both b and GMA d but omit the 

CINTERVAL option. Given the intercept growth factor and residual variances, the b of .10 

for the smaller treatment effect is associated with a GMA d of .3464, and the b of .20 for the 

larger effect corresponds to a GMA d of .6928 in these models (Feingold, 2015).

Input Statements for Current Monte Carlo Simulations

For the 5 simulations evaluating the smaller effect size (b = .10 and GMA d = .3464), the 

bolded text in Appendix D was added to the Feingold (2015) input statements to conduct 

Monte Carlo simulations examining SEs and CIs for the GMA d produced with the default 

delta method by Mplus. In the input statements for the 5 simulations specifying the larger 

effect size, .20 replaced .10 in the first line added to the MODEL COMMAND, and .6928 
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replaced .3464 in the first line in MODEL CONSTRAINT. To examine the standard 

bootstrap estimates instead of delta method estimates, the same ANALYSIS command 

specifying bootstrap was included that is used in an empirical study (see B2 and B3 in 

Appendix B for examples of bootstrap specification in Mplus).

A preliminary Monte Carlo analysis with the smallest specified sample size (N = 50, where 

the bias in the SE was the greatest with the default delta method) found that the Bollen-Stine 

residual bootstrap CIs evinced greater bias than respective delta method CIs, which had also 

been observed with effect sizes for quadratic GMA (Feingold, 2018). Accordingly, only 

biases in SEs and CIs obtained with the delta method and standard percentile bootstrap were 

examined in all 10 analyses.

Note that there is no option for CIs specified in the input for a Monte Carlo study via a 

CINTERVAL command because Mplus evaluates bias in CIs with coverage: the proportion 

of the replications in which the CI contains the parameter (Muthén & Muthén, 2002). Thus, 

perfect coverage for the 95% CI is .950, and the smaller the bias in the SE, the closer the 

coverage is to .950. In addition, Feingold (2015) proposed a CI bias statistic obtained by 

subtracting .950 from the coverage value, which is also reported in the results of CI bias in 

the current Monte Carlo study.

Results

The Monte Carlo analysis found that the GMA d obtained by Mplus in each model was 

identical to the previously reported respective GMA d calculated with Equation 2 using 

statistics from the GMA (Feingold, 2015). Thus, bias in the point estimates was the same 

whether GMA d was calculated directly by Mplus or with Equation 2 (see Feingold, 2015, 

for demonstration that the bias in the point estimate of the GMA effect size parameter is 

ignorable).

Table 2 reports the results from the Monte Carlo analysis evaluating the bias in the SE and 

CI for the GMA d obtained with each of three different approaches: (a) post hoc equations 

(Equations 2 and 3) with a delta method SEb (from Feingold, 2015), (b) delta method 

calculated in Mplus, and (c) bootstrap in Mplus. The first three columns in the table report 

(a) the specified N for the Monte Carlo results in that row, (b) the effect size parameter 

(small or medium delta), and (c) the empirical distribution of the generated GMA ds in each 

analysis, calculated as the SD of the GMA ds across the 10,000 replications used in each 

simulation. The next three columns (4-6) report the averages of the SEs of GMA ds across 

the same replications that were calculated using (a) Equation 2, as previously reported 

(Feingold, 2015), (b) the delta method, and (c) the percentile bootstrap, respectively. The 

coverage values for each CI estimation method are reported in the same order in columns 

7-9.

The next six columns report the biases in the SEs obtained using different methods, with 

columns 10-12 reporting raw bias and columns 13-15 reporting percent bias. (For respective 

biases in the point estimates, see Feingold, 2015). The raw biases in columns 10-12 were 

calculated by the standard practice of subtracting the empirical distribution of SEs in column 
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3 from the corresponding average SEs in columns 4-6 (Muthén & Muthén, 2002). These raw 

biases were the divided by the SD of GMA ds across replications (column 3) and multiplied 

by 100 to obtain the percent biases that are reported in columns 13-15. The final 3 columns 

of the table report the CI bias index, calculated by subtracting .950 from coverage values in 

columns 7-9.

The last row in Table 2 reports the medians of the coverage values, percent biases, and CI 

biases across the 10 simulations. These statistics indicated that the delta method produced 

less biased SEs and CIs for the GMA d than he post hoc equations that used the delta 

method SEb, and the percentile bootstrap afforded less biased SEs and CIs than the delta 

method. Indeed, the median coverage for the bootstrap was a perfect .950.

An examination of the rows in the table indicates that the bias in statistics obtained with both 

post hoc equations (as previously reported in Feingold, 2015) and the delta method in Mplus 

were the greatest at the smallest sample size and decreased rapidly as N increased. With the 

bootstrap, by contrast, minimal bias was found at the smallest sample size and there was no 

evident trend in bias related to N, with all observed variations in biases across the different 

simulations likely ascribable to sampling errors in the simulation analysis. Thus, the benefits 

of using the bootstrap over the other two approaches diminished as sample size increased.

Most important, the advantage of the bootstrap over the delta method for estimation of SE 
and CI for GMA d was also observed for b (see Table 3). However, unlike with GMA d, 

where the benefits of the bootstrap were appreciable at most sample sizes, the reduction in 

the bias in CI for b found with the bootstrap CI compared to the delta method CI was 

meaningful only with the smallest sample size (N = 50).

A Monte Carlo simulation was also conducted with a very large sample size (N = 2000) for 

each estimation method but with an otherwise identical input statement. Essentially zero bias 

was observed in the point estimate, the SE, and the CI obtained with all methods for both b 
and GMA d when N was very large, suggesting bias in the equation and delta method 

statistics was small sample size bias. That the estimation of both the effect size parameter 

and its SE improved with increases in sample size indicated that the GMA d meets the 

important effect size criterion of consistency (Preacher & Kelley, 2011).

Discussion

The Monte Carlo study found that the GMA d calculated by Mplus was identical to the 

GMA d obtained with the use of Equation 2 following the GMA (the conventional post hoc 

approach). However, the bias in the CIs for the GMA d calculated by the standard bootstrap 

with was smaller than the bias in CIs obtained with the delta method, although the latter was 

smaller than the bias in CIs obtained with post hoc equations that transformed delta method 

CIs for b to CIs for GMA d.

Bootstrap CIs have been found to have advantages in estimation over conventional 

approaches to CI estimation for other statistics as well (Banjanovic & Osborne, 2016), 

especially the indirect effects in mediation analysis (Hayes, 2013; MacKinnon, 2008; Shrout 

& Bolger, 2002). However, the delta method yielded better time-varying GMA ds than the 

Feingold Page 11

Quant Method Psychol. Author manuscript; available in PMC 2020 August 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



bootstrap in quadratic GMA, where the effect sizes are determined from effects of group on 

linear and quadratic slopes (Feingold, 2018).

The observed biases decreased rapidly as the specified sample size increased, as did the 

differences among methods in manifested bias in estimates. With an extremely large sample 

size (e.g., N = 2000), there was essentially zero bias in point estimates, SEs, and CIs for 

GMA d, irrespective of estimation method. Because the illustrative study using a modified 

Mplus user’s guide example had a large sample size (N = 500), it was no surprise that SEs 

and CIs for GMA d were essentially identical across methods used in that example.

However, even at the smallest sample size examined in the Monte Carlo study (N = 50), the 

bias in the SE was always less than the 5% threshold for acceptable bias proposed by 

Muthén and Muthén (2002), whereas a sample size of 100 was insufficient to yield SEs with 

ignorable bias for effect sizes from quadratic GMA (Feingold, 2018). In addition, coverage 

was always excellent for the linear GMA d (94-.96).

Thus, the bias in the statistics obtained with Equations 2 and 3 should not be problematical 

for researchers using software that cannot output the more accurate SEs and CIs for GMA d 
produced directly by GMA software like Mplus that has user-prescribed parameter 

functions. Also, the post hoc equations are needed for meta-analysis, where it is necessary to 

calculate the v for the GMA d from reported statistics rather than from raw data (Feingold, 

2017).

Although previous examinations of the validity of estimates from post hoc equations 

included delta method SEs or CIs in those equations (Feingold, 2015), the terms used in 

those equations can include bootstrap SEs and CIs reported for b (see example in Table 1), 

which would be expected to yield less biased SEs and CIs for GMA d than when these 

equations included delta method statistics. Indeed, the illustrative study found that 

transforming the bootstrap CI for b to the CI for GMA d yielded essentially the same CI as 

the bootstrap CI obtained directly in Mplus. Thus, the transformations equations could be 

used with software that provides bootstrap CIs or SEs for b but cannot directly produce 

GMA d. counterpart. For example, when an empirical researcher using GMA has reported a 

bootstrap SE or CI for b, a meta-analyst should have no qualms about using it to calculate 

the v of GMA d with extant methods (Feingold, 2015, 2017). Indeed, the Monte Carlo 

findings indicate that meta-analysts should calculate v with the bootstrap CI for GMA d 
rather than the delta method CI when retrieved studies reported both CIs.

GMA ds from a linear models are model-estimated standardized mean differences (Cohen’s 

d equivalents) at the end of the study only when the design uses randomization (e.g., in an 

RCT) or matching to ensure that the expected mean difference between the two independent 

groups at baseline is zero. Because Equation 2 does not include a term for the effect of group 

on the random intercepts from the GMA, GMA ds are derived exclusively from differences 

between the groups in rate of growth from their respective--and potentially different--

baselines. As a result, the GMA d is effectively adjusted for baseline differences, as in 

ANOVA (see Feingold, 2018, for an extended discussion of this issue, which applies to 

GMA ds from both linear and quadratic models).
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Cohen’s d and the GMA d from a linear model are examples of standardized effect sizes. 

However, there are circumstances in which unstandardized effect sizes are preferable 

(Baguley, 2009). The equations for unstandardized effect sizes for classical analysis (raw 

score mean difference) and linear GMA (model-estimated mean difference at end of study) 

are simply the numerators in Equations 1 and 2. Moreover, only minor modifications to the 

input statements for d and GMA d would be needed for Mplus to produce respective 

unstandardized effect sizes and their CIs. Specifically, the denominator in the each equation 

specified in MODEL CONSTRAINT would be eliminated, and labels applied to parameters 

for residual variances used to estimate SD are unnecessary.

Although the focus of this study was on the use of d and GMA d for findings from RCTs, 

where the standardized effect size is for the difference between the treatment and control 

groups (or between two different treatment groups), the methods are applicable to 

comparisons between any two independent groups. For example, the classical d that 

compares treatment and control groups is the same classical d that would be used to compare 

men on women to examine sex differences (e.g., Feingold, 1994). The GMA d can also be 

used in research that compares men and women in outcome trajectories (e.g., Huttenlocher, 

Haight, Bryk, & Seltzer, 1991; Leahey & Guo, 2001). Thus, methods of calculation 

(including the Mplus code to conducts such calculations) of d and GMA d are applicable to 

a broader range of research areas than evaluation of intervention efficacy.

In summary, users of GMA software with the appropriate capability to obtain GMA d and its 

CI directly should obtain and report the GMA d and its bootstrap CI, although the default 

delta methods CIs are only slightly more biased than the bootstrap CIs, especially when both 

are calculated directly by software. However, meta-analysts who do not have access to raw 

data, and empirical researchers who use a less versatile statistical software package than 

Mplus--and thus must rely on the post hoc equations (i.e., Equations 1–3) to calculate the SE 
and/or CI for d or GMA d--need not be unduly concerned about the bias in the SEs and CIs 

for the GMA d obtained with those equations. This is particularly true when the statistics 

included in those equations are bootstrap CIs for b that can be transformed to CIs for GMA 

d with a simple modification of Equation 2 that replaces the b with the CLs for b.
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Appendix A: Mplus Input for Calculating d

A1. Input for Computing d from Single Covariate Model

TITLE: Example 1 of computation of Cohen’s d with Mplus

DATA: FILE IS example.dat;

VARIABLE: NAMES ARE x y;
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MODEL: y ON x (b);

   y (r);

MODEL CONSTRAINT:

   new(d);

   d = b/sqrt(r);

OUTPUT: CINTERVAL;

A2. Input for Computing d from Multiple Covariates Model

TITLE: Example 2 of computation of Cohen’s d with Mplus

DATA: FILE IS example.dat;

VARIABLE: NAMES ARE x1 x2 y;

MODEL: y ON x1(b)

   x2;

MODEL CONSTRAINT:

   new(d);

   d = b/SD;

OUTPUT: CINTERVAL;

Note. The SD in the MODEL CONSTRAINT command in the multiple covariates model 

(A2) is the pooled within-group SD of y obtained in prior analysis that must be specified. In 

other words, the numerical value of SD replaces “SD” in the input. So if SD is, say, 1.5, the 

second line under MODEL CONSTRAINT would be:

d=b/1.5;

Appendix B: Expanding Mplus Example 6.10 to Produce GMA d for Multiple 

Covariates Model

B1. Input for Delta Method for CI Estimation

TITLE: Computation of GMA d for x1 in multiple covariate model with delta 

method for CIs

 DATA: FILE IS ex6.10.dat;
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 VARIABLE: NAMES ARE y11–y14 x1 x2 a31–a34;

 DEFINE: IF (x1 GE −.073) THEN x1=1;

      IF (x1 LT −.073) THEN x1=0;

 MODEL: i s | y11@0 y12@1 y13@2 y14@3;

    i s ON x1 x2;

    y11 ON a31;

    y12 ON a32;

    y13 ON a33;

    y14 ON a34;

    s on x1(b);

 MODEL CONSTRAINT:

    new (d);

    d = (b*3)/1.478;

 OUTPUT: SAMPSTAT CINTERVAL;

B2. Input for Standard Bootstrap for CI Estimation

TITLE: Computation of GMA d for x1 in multiple covariate model with standard 

bootstrap for CIs

 DATA: FILE IS ex6.10.dat;

 VARIABLE: NAMES ARE y11–y14 x1 x2 a31–a34;

 DEFINE: IF (x1 GE −.073) THEN x1=1;

      IF (x1 LT −.073) THEN x1=0;

 MODEL: i s | y11@0 y12@1 y13@2 y14@3;

    i s ON x1 x2;

    y11 ON a31;

    y12 ON a32;

Feingold Page 15

Quant Method Psychol. Author manuscript; available in PMC 2020 August 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



    y13 ON a33;

    y14 ON a34;

    s on x1(b);

 MODEL CONSTRAINT:

    new (d) ;

    d = (b*3)/1.478;

 ANALYSIS:

     BOOTSTRAP=500;

 OUTPUT: SAMPSTAT CINTERVAL(BOOTSTRAP);

B3. Input for Residual Bootstrap for CI Estimation

TITLE: Computation of GMA d for x1 in multiple covariate model with residual 

bootstrap for CIs

 DATA: FILE IS ex6.10.dat;

 VARIABLE: NAMES ARE y11–y14 x1 x2 a31–a34;

 DEFINE: IF (x1 GE −.073) THEN x1=1;

      IF (x1 LT −.073) THEN x1=0;

 MODEL: i s | y11@0 y12@1 y13@2 y14@3;

    i s ON x1 x2;

    y11 ON a31;

    y12 ON a32;

    y13 ON a33;

    y14 ON a34;

    s on x1(b);

 MODEL CONSTRAINT:

    new (d);
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    d = (b*3)/1.478;

 ANALYSIS:

     BOOTSTRAP=500(RESIDUAL);

 OUTPUT: SAMPSTAT CINTERVAL(BCBOOTSTRAP);

Note. Bold type indicates an addition or modification to the input statement for Example 

6.10 in the Mplus user’s guide to produce effect sizes in addition to standard statistics.

Appendix C: Modifying Mplus Example 6.10 to Produce GMA d for Single 

Covariate Model

C1. Input Using a Specified SD in Model Constraint

 TITLE: Computation of GMA d for x1 in single covariate model with 

specified SD

 DATA: FILE IS ex6.10.dat;

 VARIABLE: NAMES ARE y11–y14 x1 x2 a31–a34;

   USEVARIABLEs=y11–y14 x1;

 DEFINE: IF (x1 GE −.073) THEN x1=1;

     IF (x1 LT −.073) THEN x1=0;

 MODEL: i s | y11@0 y12@1 y13@2 y14@3;

    i s ON x1;

    s on x1(b);

    i(v1);

    y11-y14(r1-r4);

 MODEL CONSTRAINT:

    new(d);

    d = (b*3)/sqrt(1.478);

OUTPUT: SAMPSTAT CINTERVAL;
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C2. Input Using SD Estimated from All Y Residual Variances

 TITLE: Computation of GMA d for x1 in single covariate model with

 DATA: FILE IS ex6.10.dat;

 VARIABLE: NAMES ARE y11–y14 x1 x2 a31–a34;

    USEVARIABLEs=y11–y14 x1;

 DEFINE: IF (x1 GE −.073) THEN x1=1;

      IF (x1 LT −.073) THEN x1=0;

 MODEL: i s | y11@0 y12@1 y13@2 y14@3;

    i s ON x1;

    s on x1(b);

    i(v1);

    y11–y14(r1–r4);

MODEL CONSTRAINT:

    new(d);

    d = (b*3)/sqrt(v1 + r1/4 + r2/4 + r3/4 + r4/4);

OUTPUT:SAMPSTAT CINTERVAL;

C3. Input Using SD Estimated from Y11 Residual Variance

 TITLE: Computation of GMA d for x1 in single covariate model

 DATA: FILE IS ex6.10.dat;

 VARIABLE: NAMES ARE y11–y14 x1 x2 a31–a34;

    USEVARIABLEs=y11–y14 x1;

 DEFINE: IF (x1 GE −.073) THEN x1=1;

      IF (x1 LT −.073) THEN x1=0;

 MODEL: i s | y11@0 y12@1 y13@2 y14@3;
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    i s ON x1;

    s on x1(b);

    i(v1);

    y1 (r1);

 MODEL CONSTRAINT:

    new(d);

    d = (b*3)/sqrt(v1 + r1);

OUTPUT: SAMPSTAT CINTERVAL;

Note. GMA = Growth Modeling Analysis. An analysis command can be added to each 

model to request either standard bootstrap or residual bootstrap be used in SE and CI 

estimation instead of the default output produced by these input statements. Bold type 

indicates an addition or modification to the input statements for Example 6.10 in the Mplus 

user’s guide.

Appendix D: Mplus Input for Monte Carlo Study for GMA d = .3464 and n = 

250

MONTECARLO: NAMES ARE y1–y4 x;

        CUTPOINTS = x (0);

        NOBSERVATIONS = 250;

        NREPS = 10000;

        SEED = 53487;

        CLASSES = C(1);

        GENCLASSES = C(1);

ANALYSIS:  TYPE = MIXTURE;

        ESTIMATOR = ML;

MODEL MONTECARLO:

        %OVERALL%
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        [x@0]; x@1;

        i BY y1–y4@1;

        s BY y1@−3 y2@−2 y3@−1 y4@0;

        [y1–y4@0];

        [i*0 s*.2];

        i*.25;

        s*.09;

        i WITH s*0;

        y1–y4*.5;

        i ON x*.3;

        s ON x*.1;

        %C#1%

        [i*0 s*.2];

MODEL:

        %OVERALL%

        i BY y1–y4@1;

        s BY y1@−3 y2@−2 y3@−1 y4@0;

        [y1–y4@0];

        [i*0 s*.2];

        i*.25;

        s*.09;

        i WITH s*0;

        y1–y4*.5;

        i ON x*.3;
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        s ON x*.1;

        %C#1%

        [i*0 s*.2];

        s on x.1(b);

        i(v1);

        y1–y4(r1–r4);

MODEL CONSTRAINT:

        new(d*.3464);

        d = (b*3)/sqrt(v1 + r1/4 + r2/4 + r3/4 + r4/4);

OUTPUT: TECH9;

Note. Bold type indicates input added to the input statement in Appendix A of Feingold 

(2015) to examine bias in the GMA d produced by Mplus. The specified GMA d of .3464 

was for the small standardized effect size associated with a b of .10 and the specified 

residual variances. This input yields SEs and CIs for the default delta method. A bootstrap 

command must be added to produce bootstrap statistics.
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Table 1

SEs and CIs for GMA ds from Linear Models as a Function of Estimation Methods

Covariates in Example 6.10 Dataset Included in the Linear GMA

x1 Only All 3 Covariates

SE 95% CI SE 95% CI SE 95% CI SE 95% CI

Mplus Outputted CI

delta method .134 .767, 1.294 .136 .746, 1.279 .133 .734, 1.255 .105 .666, 1.078

pbootstrap .132 .756, 1.291 .134 .741, 1,278 .131 .724, 1.252 .104 .679, 1.074

rbootstrap .131 .764, 1.270 .133 .762, 1.273 .129 .748, 1,255 .096 .676, 1.070

Transformation of CI of b to CI of d

delta method NA .767, 1.293 NA NA, NA NA NA, NA NA .666, 1.078

pbootstrap NA .755, 1.291 NA NA, NA NA NA, NA NA .680, 1.074

rbootstrap NA .763, 1.271 NA NA, NA NA NA, NA NA .676, 1.070

Note. GMA = growth modeling analysis, N =500. SE = standard error; CI = 95% confidence interval, pbootstrap = percentile (standard) bootstrap, 
rbootstrap = residual bootstrap, SD1 = 1.748, SD2 = SD estimated with y 11 residual variance, SD3 = SD estimated with mean of all y (y11-y14) 
residual variances, NA = not applicable. CIs for time-varying GMA ds from the single covariate model (x1 only) cannot be compared with 
respective CIs from the multiple covariates model (using 3 covariates) because point estimates differ between the two types of models.
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Table 3

Monte Carlo Analyses of Unstandardized Coefficients (bs) for the Group Difference in Slopes for a Linear 

Latent Growth Model as a Function of Sample Size and Estimation Method

Monte Carlo Results Bias Estimates

N SD Avg Coverage SE Percent CI

Delta BTSP Delta BTSP Delta BTSP Delta BTSP Delta BTSP

50 .1258 .1216 .1250 .937 .942 −.0042 −.0008 3.34 .64 .013 .008

100 .0878 .0866 .0876 .943 .944 −.0012 −.0002 1.37 .23 .007 .006

150 .0720 .0708 .0713 .942 .943 −.0012 −.0007 1.67 .97 .008 .007

250 .0554 .0550 .0552 .947 .949 −.0004 −.0002 .72 .36 .003 .001

500 .0394 .0390 .0391 .945 .946 −.0004 −.0003 1.02 .76 .005 .004

Mdn .943 .944 1.37 .64 .007 .006

Note. Avg = average SE of b across replications, Coverage = 95% coverage for b, CI = 95% confidence interval, Delta = delta method, BTSP = 
bootstrap.. Unlike in Table 1, results are not reported separately for small and medium effect sizes because findings did not vary by effect size for b, 
and the equations approach is not applicable.
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