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Abstract

Tissue engineering scaffolds play critical roles in skeletal tissue regeneration by supporting 

physiological loads as well as enhancing cell/tissue migration and formation. These roles can be 

fulfilled by the functional design of scaffold pore architectures such that the scaffold provides 

proper mechanical and mass transport environments for new tissue formation. These roles require 

simultaneous design of mechanical and mass transport properties. In this paper, a numerical 

homogenization based topology optimization scheme was applied to the design of three 

dimensional unit microstructures for tissue engineering scaffolds. As measures of mechanical and 

mass transport environments, target effective bulk modulus and isotropic diffusivity were achieved 

by optimal design of porous microstructure. Cross property bounds between bulk modulus and 

diffusivity were adapted to determine feasible design targets for a given porosity. Results 

demonstrate that designed microstructures could reach cross property bounds for porosity ranging 

from 30% to 60%.
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1 Introduction

The tissue engineering approach for repairing diseased or damaged tissues utilizes 

biomaterial scaffolds delivering biologics, including cells, genes, and/or proteins. Isolated 
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donor cells are cultured on a scaffold and the cell-scaffold construct is implanted into a 

tissue defect site (Langer and Vacanti 1993; Kim and Mooney 1998). During in vitro cell 

culture and after implantation, a scaffold serves several roles in tissue regeneration. It 

preserves three-dimensional space to guide tissue formation, maintains structural integrity 

under physiological loading conditions, and facilitates transport of nutrients and metabolic 

wastes (Hollister 2005). These scaffold roles are influenced by its internal architecture 

including porosity, pore size, and interconnectivity. In turn, the pore architecture affects 

functional characteristics such as mechanical modulus and diffusivity/permeability (Chu 

2002). Thus, the goal of scaffold design should be to find a pore geometry, or microstructure 

that best achieves a desirable functional environment for a regenerated tissue.

The appropriate properties a scaffold should provide are generally tissue specific and, 

moreover, the properties often conflict with each other. It is hypothesized that scaffold 

elastic or aggregate modulus should match those of healthy tissues at the defect (Hutmacher 

2001), which spans 10 ~ 1500 MPa (elastic modulus) for trabecular bone (Goulet et al. 

1994) and 0.5~3.0 MPa (aggregate modulus) for articular cartilage (Boschetti et al. 2004; 

Demarteau et al 2006). While satisfying these mechanical requirements, bone tissue 

engineering scaffolds should be designed with high diffusivity, permeability or porosity for 

better cell migration and biologics transport. However, scaffolds for cartilage regeneration 

are often designed with limited transport property due to the avascular and low metabolic 

nature of cartilage (Malda et al. 2003).

One way to achieve these diverse design goals is adapting optimization schemes in 

hierarchical scaffold design (Hollister 2005). In the hierarchical scaffold design scheme, unit 

microstructures, or unit cells (structural unit, not biological cells) are chosen from unit cell 

libraries and assembled to form a scaffold global shape that fits into anatomical defects. The 

mechanical and mass transport properties of the scaffold are computed using the 

homogenization method based on double-scale asymptotic expansion (Sanchez-Palencia 

1980). Pore architectures can be designed with predefined geometries such as three 

orthogonal cylindrical pores or spherical pores. Hollister et al. (2002) optimized pore 

diameters of scaffolds with three orthogonal cylindrical pores with homogenization method 

and empirically fitted polynomials that relate pore diameters and the effective stiffness 

tensor. Transport requirements were considered by imposing a lower bound constraint on 

porosity.

In more general cases, however, new microstructures with target properties can be sought 

using topology optimization (Bendsoe and Kikuchi 1988; Sigmund 1994a; Sigmund 1994b). 

Topology optimization distributes material within a unit microstructure such that the final 

structure meets specified design targets. Lin et al. adapted the topology optimization to find 

scaffold microstructures that achieved target anisotropic elastic constants (Lin et al. 2004). 

Lin and Hollister (Lin 2005; Hollister and Lin 2007) further extended the method by 

introducing the effective permeability to the optimization scheme to design scaffolds with 

maximized permeability. However, the permeability was not coupled with the mechanical 

property in the optimization procedure, so that maximizing permeability could affect the 

mechanically optimized microstructure.
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Recently, several multifunctional material design schemes based on the topology 

optimization have been proposed. Guest and Prevost (2006) proposed a general 3D 

microstructure design scheme using the topology optimization method to achieve maximized 

bulk modulus and isotropic permeability. They optimized microstructures by differentially 

weighting mechanical and transport terms in the objective, allowing designers to tailor the 

material properties. de Kruijf et al (2007) found optimal structures with maximized bulk 

modulus and thermal conductivity by minimizing both mechanical and thermal compliance 

in 2D. The authors explored Pareto optimality by varying weights for mechanical and 

transport properties. Challis et al (2008), by utilizing level set method, presented the design 

of isotropic unit structures with maximized bulk modulus and isotropic conductivity. The 

authors also explored design changes with the different combinations of weighting factors.

The design of multifunctional material structures with maximized properties is gaining 

interest in many engineering fields. Tissue engineering scaffolds, however, must be tailored 

to a wide range of mechanical and mass transport properties, included cross property 

relationships that fall well within the interior of cross-property bounds, not just on the 

boundaries of the cross-property bounds. For example, cartilage needs low mass transport 

and mechanical properties (Kemppainen and Hollister, 2009) which lay well within the 

interior of the mass transport and mechanical cross-property bounds.

Thus, the goal of this study was to explore possible microstructure designs with various 

combinations of effective bulk moduli and diffusivities. In order to design microstructures 

with ranges of mechanical and mass transport properties, we adapted a local microstructure 

topology optimization scheme based on the SIMP method for target optimization. The target 

properties were chosen within known cross-property bounds connecting effective bulk 

modulus and isotropic diffusivity. Various microstructures were designed and utilized within 

actual tissue engineering scaffolds. A porous biodegradable interbody fusion cage was 

designed as a biomedical application of multifunctional microstructures by integrating the 

result from global topology optimization and the local microstructure optimization. The 

resulting integrated local and globally designed structures were the built using solid free-

form fabrication techniques.

2 Materials and Methods

2.1 Homogenization of diffusivity and elasticity

The homogenization method determines effective macroscopic properties from an analysis 

of a representative microstructure of a porous media or composite material assuming 

periodicity (Sanchez-Palencia 1980). The analysis responses at a local level are averaged to 

give the effective properties at global scale. A major assumption is separation of the scales 

between macrostructure and microstructure. Based on this assumption, a small variable, ε, 

for the ratio between microscopic length scale and macroscopic length scale can be defined 

as,

ε =
xi0

xi1
< < 1 (1)
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where xi0 is a spatial variable for macrostructure and xi1 is the microscopic spatial variable. 

Field variables are asymptotically expanded with respect to the microscopic scale and a 

hierarchical gradient can be defined with respect to the macroscopic length scale by the 

chain rule. Substitution of the expanded field variables and the hierarchical derivatives into 

the governing equilibrium equations leads to macroscopic and microscopic equilibrium 

equations. The microscopic equation can be solved by applying unit gradients of the 

macroscopic variables under the assumption of the periodicity of the microstructure and 

properties. The governing equations for local diffusivity are:

∂
∂xi1

Dij
∂χp

∂xj1
= ∂

∂xi1
Dip (2)

where Dij is the local diffusivity and χp is the characteristic concentration resulting from the 

pth unit concentration gradient (p=1,2, and 3).

The governing equations for local elasticity are:

∂
∂xj1

Cijkl
∂χk

pq

∂xl
1 = ∂

∂xj1
Cijpq (3)

where Cijkl is the localized elasticity and χk
pq is the characteristic displacement resulting 

from the unit strain in pq-direction (pq=11, 22, 33, 12, 23, and 31).

From the responses of the microscopic equation, the homogenized diffusion properties are 

calculated as:

Dij
H = Dik δjk − ∂χj

∂xk
1 (4)

where Dij
H is the homogenized diffusivity, Dik is local diffusivity, δjk is the kronecker delta, 

and 〈⋅〉 denotes volume average of a quantity.

The homogenized elasticity properties are calculated as:

Cijkl
H = Cijpq δkpδlq − ∂χpkl

∂xq1
(5)

where Cijkl
H  is the homogenized elasticity tensor, and Cijkl is the localized elasticity.

The microscopic equations can be solved numerically with the finite element method. The 

characteristic responses to the applied global gradients and periodic boundary conditions 

compose a local structure matrix. Multiplication of the local property matrix and the local 

structure matrix averaged over the microstructural volume gives the homogenized property.

The unit cell domain was discretized into voxel elements, or 8-node hexahedral elements to 

evaluate the homogenized properties using the finite element method. Periodic boundary 
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conditions were implemented by assigning equivalent nodal constraints by assuming 

symmetries in the unit cell geometry and the local properties (Auriault 2001; Hassani and 

Hinton 1996). In this way, only one-eighth domain was considered as design domain. The 

element-by-element preconditioned conjugate method was used as a solver for the finite 

element analysis of the microscopic problems because of its efficiency when dealing with 

large degrees of freedom.

2.2 Theoretical Bounds and Cross-Property Bounds

There are upper and lower bounds on the effective properties for composite material for 

given material volume fractions. Hashin and Shtrikman derived well-known bounds for 

isotropic magnetic permeability and bulk/shear moduli using variational principles (Hashin 

and Shtrikman 1962; Hashin and Shtrikman 1963). The theoretical bounds for the effective 

magnetic permeability also hold for the effective diffusivity owing to the mathematical 

equivalency. For isotropic, three dimensional, solid-void phase composites, the upper bound 

on the effective bulk modulus and the effective diffusivity can be expressed in terms of the 

solid phase volume fraction and phase properties.

Kmax
iso = (3/4)ρKG

(1 − ρ)K + (3/4)G (6)

Dmax
iso = 2(1 − ρ)D

2 + ρ (7)

where ρ is solid phase volume fraction, K and G are the bulk and shear moduli of solid 

phase and D is a free isotropic diffusion coefficient of a solute in the fluid phase. Fig. 1 

illustrates the bounds on the relative isotropic diffusivity and bulk modulus in terms of solid 

phase volume fraction. The competition between elasticity and mass transport is obvious 

from the plots.

When multiple, conflicting properties are considered simultaneously, there are cross-

property bounds that connect those properties through the microstructure. Such cross-

property bounds provide an achievable range of one property if the other is known. For 

cross-property bounds that link bulk modulus and isotropic conductivity (diffusivity), 

Gibiansky and Torquato derived the sharpest known cross-property bounds using translation 

methods (Gibiansky and Torquato 1996). The cross-property upper bounds for an ill ordered 

solid-void(fluid) phase (K2 / K1 = ∞ and D2 / D1 = 0) can be defined in diffusivity-bulk 

modulus phase plane with a hyperbola segment that passes through three points, (Dmax
iso , 0), 

(0, Kmax
iso ) and ((1–ρ)D1, ρK2), where D1 and K1 (= 0) are the diffusivity and bulk modulus of 

the void phase, D2 (=0) and K2 are the diffusivity and bulk modulus of the solid phase, and 

Dmax
iso  and Kmax

iso  are defined in equations (6) and (7). Fig. 2 illustrates an example for the 

cross-property bounds in the diffusivity-bulk modulus phase for an ill ordered composite 

where K2 / K1 = ∞, D2 / D1 = 0 and 50% porosity. As can be seen, lower bounds are straight 

lines parallel to the axes. All feasible elasticity/diffusivity designs for a 50% porous material 

must lie within the lines in Fig. 2. As noted by the authors, their cross-property bounds hold 

for both isotropic and cubic symmetric composites.
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2.3 Topology optimization problem statement

Microstructure topology optimization computes the optimal topology of scaffold 

microstructure by distributing material density within the unit cell domain under design 

objectives and constraints (Sigmund 1994a; Sigmund 1994b). The design domain is 

discretized with the finite elements assigned with density values, ranging from 0 through 1. 

In this relaxed problem, material laws should be defined to relate element densities and local 

material properties. In addition, the intermediate density values are penalized to have a final 

discrete design. The most common local material law is the Solid Isotropic Microstructure 

with Penalization (SIMP) (Bendsoe 1989). We utilized the SIMP method for elasticity:

Cijkl = ρpCijkl
base, (p > 1) (8)

where Cijkl is the element stiffness tensor, ρ is the element density, p is a penalization factor, 

and Cijkl
base is the stiffness tensor for the base material. For the diffusivity, a SIMP-like 

material law can be applied to the interpretation of the intermediate densities with 

penalization,

Dij = (1 − ρ)pDij
base, (p > 1) (9)

where Dij is the element diffusivity tensor, ρ is the element density, p is penalization factor, 

and Dij
base is the free diffusivity tensor for the fluid phase. With the local material laws 

defined for both stiffness and diffusivity, the objective function and sensitivity derivatives 

are derived with respect to material density ρ, and the optimization problem can be solved 

by updating ρ at each iteration. For the phase base material, we used unit isotropic 

diffusivity, D=1 for the void phase. For the base material solid phase, we chose Poisson’s 

ratio equal to 1/3 with a Young’s modulus of 1, which yields a bulk modulus of 1. In this 

case, the designed properties could be easily compared within the cross-property bounds 

normalized to base material properties.

In order to tailor the material properties directly, the optimization problem was defined to 

minimize the error between the target and the effective bulk moduli and diffusivities, with 

constraints on porosity:

minimize f = w1
KH

K* − 1
2

+ w2
DH

D* − 1
2

+ w3fcubic

subject to ϕlb ≤ ∑
i = 1

N 1 − ρi
N ≤ ϕub,

0 < ρi ≤ 1

(10)

where KH is the homogenized bulk modulus, K* is the target bulk modulus, DH is the 

homogenized isotropic diffusivity, D* is the target isotropic diffusivity, fcubic is the cubic 

error function and wi (i=1,…,3) are weighting factors, ϕlb and ϕub are the upper and lower 

bounds of porosity, ρi is i-th element density, and N is the total number of elements.
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The cubic error function is defined to minimize the differences among three normal 

components, three off-diagonal terms, and thee shear terms in the stiffness tensor 

components, respectively.

fcubic = C2222
H

C1111
H − 1

2
+ C3333

H

C2222
H − 1

2
+ C1111

H

C3333
H − 1

2

+ C2233
H

C1122
H − 1

2
+ C1133

H

C2233
H − 1

2
+ + C1122

H

C1133
H − 1

2

+ C1313
H

C2323
H − 1

2
+ C1212

H

C1313
H − 1

2
+ C2323

H

C1212
H − 1

2

(11)

Heesuk: Please note that I changed the indices above to reflect the correct index notation for 

the shear terms, Scott where Cijkl
H  are the components of the homogenized stiffness tensor.

This multiobjective formulation can be easily converted to a formulation in which one of the 

target properties is optimized while the other is constrained.

Topology optimization, in its relaxed formulation, still requires additional treatments to 

avoid known numerical instabilities such as checkerboard patterns and mesh dependencies 

(Sigmund and Petersson 1998). We applied a nonlinear filtering scheme to the sensitivity 

derivatives to prevent checkerboard patterns and mesh dependency as proposed by Sigmund 

(Sigmund 1994a). Based on element resolution, a filter radius of 3 elements was chosen to 

maintain a minimum physical feature size (what is this feature size?) for the 40×40×40 

element unit cells. When the mesh resolution was increased to 60×60×60, the filter radius 

was increased to 4 elements to maintain the minimum physical feature size. Finally, to solve 

the optimization problem, the Method of Moving Asymptotes (MMA) was adopted to 

provide greater efficiency in solving problems with a large number of variables and a small 

number of constraints (Svanberg 1987).

3 Results

Our results demonstrated that the properties of the microstructures can be tailored to meet 

various scaffold requirements such as stiffness and mass transport using topology 

optimization with SIMP interpolation and sensitivity filtering. Target design points were 

chosen close to the cross-property upper bounds. Fig 3 illustrates various microstructural 

architectures obtained in this study and the achieved properties are presented in Table 1. The 

mesh resolution for microstructures (A), (C), (E), (G), and (F) was 60×60×60, and the mesh 

resolution for the other microstructures was 40×40×40. The designed microstructures were 

identified within the cross-property bounds in Fig 4.

The porosities of the designed microstructures satisfied the constraints despite the lack of an 

exact match in the corresponding cross-property bounds. This is because the porosity 

constraints were set at a small range around the target porosity. For example, the porosity 

constraints were set between 48% and 52% to design for the 50% cross-property bounds. . 
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Nonetheless, there was excellent agreement between the target and designed bulk moduli 

and diffusivities (Fig 5).

Because of the theoretical cross-property bounds for 50~60% porosities, the maximum 

normalized diffusivities are 0.4 and 0.5, respectively. Thus, we may consider diffusivity over 

0.3 as high diffusivity for 50~60 % porosity materials.

3.1 Microstructures with High Diffusivity

Microstructures with relatively high diffusivity designed for either 50% or 60% porosity 

approached the cross-property upper bound, as depicted in Fig 3-D through Fig 3-H. The 

properties of the microstructures illustrated in these figures were isotropic. It should be 

noted that the designed microstructures have different topologies while the achieved 

properties were close to each other. Interestingly, the property pair of the microstructure in 

Fig 3-F is the closest to the cross-property upper bound, implying that the structure is 

optimal. Furthermore those microstructures designed to have 60% porosity showed lower 

bulk modulus of approximately 0.1 of that of the solid phase. When the structures were 

specified within cross-property bounds, both structures again have near optimal properties 

because the properties are close to the upper bounds (Fig 4).

3.2 Microstructures with Low Diffusivity

Microstructures designed to achieve low diffusivity for 30% porosity were also close to the 

corresponding cross-property upper bounds (Fig 3-A through C). The optimized structures 

have thick members across the diagonal of the unit cell domain to achieve high bulk 

modulus, and small pore diameters to decrease diffusivity. The normalized diffusivities of 

these microstructures were between 0.12 and 0.17 (Table 1). These low diffusivity structures 

are also close to the upper cross-property bounds due to high bulk modulus (Fig 4).

3.3 Microstructure targeting Low Diffusivity and Low Bulk Modulus

A microstructure designed with low diffusivity and low bulk modulus achieved the target 

properties although it contains significant intermediate densities. For cartilage tissue 

engineering applications, microstructures with low modulus and low diffusivity are desired. 

Such microstructures within the interior of the cross property bounds, well away from the 

upper limits that have been the target of most multiphysics microstructural topology 

optimization applications. These targets present significant challenges as the increase of 

material will increase bulk modulus (although decreasing diffusivity) and vice versa, the 

opposite of the design goal.

To eliminate the intermediate densities, we used post processing. A low diffusivity and low 

bulk modulus microstructure was designed by targeting a diffusivity of 0.1 and a bulk 

modulus of 0.1. However, the result of the post processing, (diffusivity of 0.26 and bulk 

modulus of 0.1), changed the very properties achieved. The application of a threshold to the 

intermediate densities interpolated by SIMP model made the properties shift towards the 

cross-property upper bounds.
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One interpretation for the intermediate densities is that the algorithm converged to local 

minimum before all densities were penalized. Thus, the convention of Sigmund’s 

continuation method was employed to avoid convergence to a local minimum (Sigmund 

1994a). However as expected, this essentially heuristic approach could not sufficiently 

penalize the intermediate densities: the final mechanical and transport properties are a 

diffusivity of 0.12 and a bulk modulus of 0.1, which is not a totally satisfactory solution to 

the problem due to the intermediate densities. The full structure and 1/8th of the structure are 

shown in Fig 6-A and Fig 6-B, respectively. In addition, representative cross-sectional view 

of the density distribution were illustrated in Fig 6-C. There are significant amounts of grey 

elements at convergence, which may indicate local minima. There are very weak 

connections between large spheres at the corners.

3.4 Microstructures with the same porosity but different bulk modulus and diffusivity

A particular strength of the target optimization is the capability to create microstructures of 

the same porosity, but with a range of bulk modulus and diffusivity. We successfully 

designed microstructures with 45~50% porosities (Fig. 7) that had diffusivities ranging from 

16% to 33% and effective bulk moduli ranging from 12% to 24% of base diffusivity and 

bulk moduli, respectively. This reflects the algorithms ability to distribute the same amount 

of material in different layouts to attain dramatically different effective mechanical and mass 

transport properties. The microstructures in Fig 7 can be used to experimentally investigate 

the sole effect of material distribution on load bearing and mass transport without the 

confounding variation of changing porosity.

3.5 Application in Tissue Engineering: Microstructures for Spinal Fusion Devices

There are many potential clinical applications for topology optimized biomaterial scaffolds. 

One application is spinal fusion, which requires a scaffold that combines sufficient load 

bearing with high mass transport to enable bone formation. Spinal fusion has been 

successfully applied in the treatment of the degenerative disc diseases such as radiculopathy 

and myelophathy (McAfee 1999). Disc degeneration may compress nerve roots, resulting in 

the chronic neck and low back. By fusing vertebral bodies at the degenerative disc level, 

immediate recovery of disc height is ensured with pain relieve at the expense of reduced 

segment mobility. To overcome complications related to conventional metallic cages or non 

degradable polymeric cages, Lin et al. proposed a biodegradable porous interbody fusion 

cage design scheme using an integrated global and local topology optimization (Lin et al. 

2004). This concept was applied to the design of biodegradable lumbar interbody fusion 

cages customized for a large animal study (Kang et al. 2008).

Scaffolds for tissue engineering must satisfy the need for a global scaffold shape or envelope 

with a distribution of designed microstructures. The global material density map is obtained 

by topology optimization of global anatomic structures to minimize compliance under 

physiological loads including flexion, extension, lateral bending and torsion. Then, 

microstructures with appropriate properties determined by local microstructure optimization 

are used replace segmented region based on the global density map. We successfully 

achieved a biodegradable interbody fusion cage for spinal fusion by replacing a material 

density distribution from the global structural topology optimization with our tailored 
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microstructures. To this end, a microstructure with high diffusivity (63%) but low bulk 

modulus (8%), and one with high bulk modulus (33%) but low diffusivity (17%) were 

designed.

The finite element model and the design domain for the optimal fusion cage were built based 

on medical images from a minipig (Fig 8-A). An example of density distribution resulting 

from the global topology optimization is illustrated in Fig 8-B. The design domain was 

segmented into three regions: solid (red region in Fig 8-C), high density (green region in Fig 

8-C) and low density (clear region in Fig 8-C) regions. The detailed pore architecture of the 

fusion cage was implemented by replacing these regions with appropriate microstructures 

optimized with desired elasticity and diffusivity while satisfying a porosity constraint (Fig 8-

C). Fig 8-D shows a final integrated design and its fabrication using a solid freeform 

fabrication technique that enables fabrication of complex geometries of porous fusion cage.

4 Discussion

It is hypothesized that scaffolds should provide mechanical and mass transport properties as 

close as possible to native tissues to enhance tissue regeneration (Hollister et al. 2009). As 

an active component, scaffolds should be able to provide a proper mechanical environment 

so as to maintain structural integrity at the defect site as well as transmit appropriate 

mechanical stimuli to newly generated tissues (Thomson et al. 1995, Hutmacher 2001, 

Simmons et al. 2001). In addition, scaffolds should provide appropriate mass transport 

conditions that can influence cell phenotype, tissue ingrowth, and nutrient conditions 

(Hollister et al., 2009;, Malda 2004). However, it is still unclear what optimal properties the 

scaffold should provide for the best tissue regeneration. For example, there have been 

inconsistent suggestions on the optimal pore size or porosities for tissue regeneration. 

Moreover, different levels of mass transport environment have been shown to result in 

differentiation to different cell types and degrees of tissue regeneration (Malda 2003).

In order to rigorously investigate correlations between functional environments and tissue 

regeneration, the ability to design scaffolds with controlled mechanical and mass transport 

properties is necessary. In this study, we were able to design microstructures for scaffolds 

with tailored mechanical and transport properties using topology optimization. Cross-

property bounds provide on the feasible design space in the bulk modulus and diffusivity 

plane. Thus, topology optimization combined with cross-property bound can be a very 

useful design tool for creating microstructures with significant, controlled variations in 

mechanical and mass transport properties.

To avoid numerical instabilities inherent to the topology optimization, we applied the 

nonlinear sensitivity filter proposed by Sigmund (1994a). Filtering techniques are known to 

work well to avoid known instabilities such as checkerboard patterns and mesh dependence. 

The drawback of the filtering technique is that final structure often contains intermediate 

density values along solid-void boundaries due to the blurring effect of the filter. However, 

we found in many cases that 0–1 designs were achieved with the nonlinear sensitivity filter. 

We measured the convergence of the intermediate densities toward 0 or 1 by Eq (12).
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Rconv = 1
N ∑

i = 1

N ρi − 0.5
0.5 (12)

Rconv approaches 1 as the intermediate densities are penalized toward either 0 or 1. With the 

SIMP topology optimization and sensitivity filter, we were able to obtain microstructures 

with an Rconv index over 0.95, which can be considered converged.

If Rconv is less than 0.95, the designed properties may shift towards upper cross-property 

bounds after post processing. From a practical view point, this may be beneficial because the 

premature solution still serves as a design choice. However, achieving a discrete solution is 

more desirable in terms of tailoring the material properties and creating a manufacturable 

design. In this regard, other techniques can be applied such as density filtering with a 

Heaviside step function (Guest et al, 2004) or addition of a nonlinear diffusion term to the 

objective function (Wang et al. 2004).

Many microstructure design studies have presented the composite or porous structures that 

are near or on the cross-property upper bounds (Guest and Prevost 2006; de Kruijf et al. 

2007; Challis et al. 2008). In these previous works, two competing properties were 

maximized simultaneously. However, one of our main interests in this study was to design 

microstructures whose properties are far from the upper bounds.

Of particular interest in our study was the design of microstructures with low diffusivity and 

low bulk modulus. As presented in the result section, our design converges to a minimum. 

More often than not the Rconv index was less than 0.8. If we targeted a design point far from 

the upper cross-property bounds, Rconv index was even smaller. To evaluate the difficulty of 

achieving this inner design point, we tested three design points: (1) K=0.2 and D=0.3, (2) 

K=0.15 and D=0.2, and (3) K=0.1 and D=0.15. We used the same problem statement and 

control parameters for filtering until convergence at a (local) minimum was achieved.

The outer point or the point on the upper bounds was easily achieved with an Rconv index of 

almost 0.99. For the middle design point, the Rconv index was 0.93, which means the final 

design contained a blurry solid-void boundary. However, for the innermost design point 

case, the Rconv index was 0.71 and the structure exhibited a clear grey layer in addition to 

the black solid structure. This can be clearly noticed in the histogram plots (Fig 9) in which 

the number of elements having a given density are plotted in bins. The inner design point 

case had a large amount of elements containing density values of around 0.3~0.4. One 

explanation is that the presence of grey regions represents sub-microstructures that give 

more degrees of freedom in reaching the interior targets than can be reached using pure 0–1 

designs. This is actually seen in the hierarchical structure of biologic tissues, which have 

feature sizes ranging from the nanometer to centimeter scale.

Another important factor is the consideration of the manufacturability. Particularly for the 

low diffusivity designs, the small holes develop to limit diffusivity. Considering the size of 

unit cells (typically around 1 mm) in the skeletal tissue scaffolds, the small holes may not be 

manufactured due to the limited fabrication resolutions. As for the optimization problem, it 
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would be interesting to control the member size as well as hole size as manufacturing 

control factors.

We also presented porous interbody fusion cage design using global-local integerated 

topology optimization technique (Lin et al. 2004), as an example of the clinical application 

of the microstructural topology optimization. A more critical role of the fusion cages is to 

restore original disc height to achieve nerve root decompression. Thus, the global density 

layout was found in the global topology optimization to maximize the overall stiffness of the 

device. Then, local microstructures were tailored to replace the global density map without 

changing the global porosity, which will facilitate transport properties of the fusion device. If 

one of the global design constraints limits excessive stress or strain on the interfacing bone, 

a low elastic modulus microstructure should be designed to match the global density map. 

The use of topology optimization to balance mechanical and mass transport properties is 

especially critical for fusion cages made from degradable polymers.

In our study, diffusivity was considered in this scaffold design because diffusion 

characteristics of the scaffold can govern overall cell migration and tissue regeneration as 

well as oxygen and nutrient delivery and metabolic waste removal. Thus, mathematical 

models of cell migration and tissue regeneration have adapted diffusion like equations 

(Anderson 1998; Adachi 2006). In addition, diffusivity and permeability of scaffolds are 

well correlated (Hollister et al. 2008). Moreover, there are known cross-property bounds on 

the effective diffusivity and bulk modulus, which can suggest feasible design characteristics.

As a temporary substitute for extracellular matrix, the scaffolds should provide tissue 

specific functional environments during new tissue formation. However, there is still little 

experimental data available regarding optimal effective scaffold properties for tissue 

regeneration. Moreover, conflicting findings have been reported regarding the effect of 

oxygen diffusion on cartilage regeneration, demonstrating the need for testing scaffolds with 

a range of designed properties (Malda 2004). In this regard, the microstructural topology 

optimization method, which is able to produce scaffolds with a range of designed properties, 

will provide more opportunities to investigate relevant scaffold properties.
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Fig 1. 
Normalized theoretical bounds on isotropic diffusivity and bulk modulus plotted as a 

function of solid phase volume fraction
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Fig 2. 
An example of cross-property bounds on the effective bulk modulus and diffusivity for ill-

ordered composite, adapted from Gibiansky and Torquato (1996)
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Fig 3. 
Microstructures obtained by targeting bulk modulus and diffusivity close to the upper cross-

property bounds, for 30% porosity (A,B and C), 50% porosity (D,E and F) and 60% porosity 

(G and H)
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Fig 4. 
Microstructures designed to achieve properties close to the upper cross-property bounds are 

specified within the cross-property bounds
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Fig 5. 
The achieved bulk moduli (left) and diffusivities (right) were compared with target 

properties for the microstructures presented in Fig 3.
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Fig 6. 
(A) Microstructures with low diffusivity and low bulk modulus, (B) 1/8 of the designed 

microstructure and (C) representative cross-sectional view of the structure
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Fig 7. 
Microstructure designs with ranges of diffusivities for 50% porosity
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Fig 8. 
(A) FE model for the global topology optimization including entire lumbar spine and 

specific design domain for the interbody fusion cage. (B) A density distribution within the 

design domain resulting from the global topology optimization. (C) The design domain was 

segmented into solid (red regions, zero porosity), high density (green regions, 33% 

porosity), and low density (clear regions, 63% porosity) regions. High density region was 

replaced with high modulus microstructure and low density region was replaced with low 

modulus microstructure. (D) Finial design of an optimal interbody fusion cage and its 

fabrication using solid freeform fabrication.
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Fig 9. 
Histograms of densities of three microstructure designs targeting K=0.2 and D=0.3, K=0.15 

and D=0.2, and K=0.1 and D=0.1
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Table 1

Properties of the designed microstructures in Fig 3

Microstructures Porosity Diffusivity Bulk Modulus Poisson’s ratio

A 0.2825 0.1276 0.3734 0.2824

B 0.3030 0.1340 0.3565 0.2535

C 0.2935 0.1616 0.3317 0.2851

D 0.4831 0.3016 0.1512 0.2511

E 0.4828 0.3156 0.1624 0.2994

F 0.5037 0.3330 0.1522 0.2535

G 0.5802 0.3556 0.1246 0.1734

H 0.5882 0.4164 0.1114 0.3544
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