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A Fast and Accurate Method for Genome-Wide
Time-to-Event Data Analysis and Its Application
to UK Biobank

Wenjian Bi,1,2 Lars G. Fritsche,1,2 Bhramar Mukherjee,1 Sehee Kim,1,3 and Seunggeun Lee1,2,4,*

With increasing biobanking efforts connecting electronic health records and national registries to germline genetics, the time-to-event

data analysis has attracted increasing attention in the genetics studies of human diseases. In time-to-event data analysis, the Cox pro-

portional hazards (PH) regressionmodel is one of the most used approaches. However, existing methods and tools are not scalable when

analyzing a large biobank with hundreds of thousands of samples and endpoints, and they are not accurate when testing low-frequency

and rare variants. Here, we propose a scalable and accuratemethod, SPACox (a saddlepoint approximation implementation based on the

Cox PH regressionmodel), that is applicable for genome-wide scale time-to-event data analysis. SPACox requires fitting a Cox PH regres-

sion model only once across the genome-wide analysis and then uses a saddlepoint approximation (SPA) to calibrate the test statistics.

Simulation studies show that SPACox is 76–252 times faster than other existing alternatives, such as gwasurvivr, 185–511 times faster

than the standard Wald test, and more than 6,000 times faster than the Firth correction and can control type I error rates at the

genome-wide significance level regardless of minor allele frequencies. Through the analysis of UK Biobank inpatient data of 282,871

white British European ancestry samples, we show that SPACox can efficiently analyze large sample sizes and accurately control type

I error rates. We identified 611 loci associated with time-to-event phenotypes of 12 common diseases, of which 38 loci would be missed

within a logistic regression framework with a binary phenotype defined as event occurrence status during the follow-up period.
Introduction

With increasing use of electronic health records (EHRs)

and biobanks for genetics research, time-to-event data

analysis is becoming more common to genetic studies of

human diseases. The time-to-event data analysis can be

more powerful than the analysis of binary outcome

defined as event occurrence status at a fixed time point

and allows for the identification of genetic variants pre-

dicting the prognosis of diseases.1–8 Although the time-

to-event data analysis has been routinely used in clinical

practice, it has not been extensively performed in

genome-wide association studies (GWASs), partly because

of the unavailability of such information in many studies.

EHR-linked biobanks potentially resolve the phenotype-

availability issues and can even provide phenome-wide

diagnosis and prognosis information. A motivating

example is the UK Biobank, which includes genome-wide

scale genetic data, diagnoses of more than 1,000 pheno-

types, and the corresponding in-patient dates from

500,000 participants.9,10 The time-stamped longitudinal

data enables one to extract age of onset information in

UK Biobank. In the absence of a national health system,

such as that in the UK, major hospital-based biobanks

around the world have been linked to National or State

Death Indexes or other disease registries to derive time-

to-event phenotypes.11

Another key challenge of genome-wide, and potentially

phenome-wide, time-to-event data analysis is computa-
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tional cost. In time-to-event data analysis, one of the stan-

dard approaches is the Cox proportional hazards (PH)

regression model. Cox PH is a semi-parametric method

and can adjust for features such as censoring, stratification,

and time-varying covariates.12,13 Based on the Cox PH

model, optimized tools such as gwasurvivr and SurvivalG-

WAS have been developed for genome-wide scale anal-

ysis.14–17 However, these tools are not scalable when the

sample size is large (>100,000) because they are based on

a Wald test that requires fitting a separate alternative

model for each genetic variant. For example, when

analyzing 400,000 subjects while adjusting for ten covari-

ates, R package gwasurvivar would take �300 days to test

20million genetic variants (�1.3 s per variant, see Numeric

Simulations). In addition, as shown in our simulation

studies and real data analysis, Wald tests cannot control

type I error rates when testing low-frequency variants

and/or when the event rate is low.

Compared to the Wald-test-based approaches, a score

test takes much less time because it only requires fitting

one null model across the genome-wide tests.18–21 A regu-

lar score test uses a normal distribution to calculate p

values. However, when testing low-frequency variants,

the underlying null distribution could be highly

skewed.22,23 In these cases, the normal approximation is

inaccurate at extreme tails, which will result in inflated

type I error rates. To overcome this, the saddlepoint

approximation (SPA) method uses an entire cumulative

generating function (CGF) to approximate the null
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distribution. Superior performance of the SPA method has

been shown in case-control and gene-environment inter-

action (G3E) studies.18–21,24–26

In this paper, we propose an SPA implement based on

the Cox PH regression model (SPACox), a fast and accurate

approach that is scalable for a genome-wide scale single-

variant time-to-event data analysis and is well calibrated

for controlling type I error rates. SPACox fits a null Cox

PH model only once for the genome-wide analysis. We

then estimate the empirical CGF of the martingale resid-

uals and apply the SPA to calibrate p values. Important fea-

tures embedded in the classic Cox PH model, such as

censoring, time-varying covariates, and stratification, can

also be incorporated in SPACox. Through simulation

studies and application to UK Biobank data of 282,871 un-

related samples fromwhite British participants, we demon-

strate that SPACox is computationally feasible, correctly

controls type I error rates, and is sufficiently powerful to

identify 611 loci associated with 12 common phenotypes,

38 loci of which are not found within a logistic regression

framework with a binary phenotype defined as event

occurrence status at the end of the follow-up period.
Material and Methods

Cox Proportional Hazard Model and Score Statistics
For subject i, let Gi denote hard-called genotype ðGi ¼ 0; 1; 2Þ or
dosage value of a genetic variant to be tested. Dominant or reces-

sive genotype coding ðGi ¼ 0; 1Þ can also be used.27 The Cox PH

model specifies the hazard function for the failure (event pheno-

type) time T�
i associated with Gi and a p31 vector of covariates

Xi in the form of

lðt;Xi;GiÞ¼ l0ðtÞexp
�
XT

i bþGig
�
;

where l0ðtÞ is a baseline hazard function, b is a p31 vector corre-

sponding to the effect of covariates, and g is the genetic effect.

Let Ci denote the censoring time for subject i. Suppose that the

data consist of n independent samples of ðTi; di; Xi; GiÞ, where

Ti ¼ minðT�
i ; CiÞ denotes the observed time-to-event, di ¼

IðT�
i %CiÞ indicates that failure is observed, and Ið:Þ is the indica-

tor function.

To perform the score test for the null hypothesis H0 : g ¼ 0, we

need to fit the null Cox PH model as

lðt;XiÞ¼ l0ðtÞexp
�
XT

i b
�
:

We note that the null model is the same for all genetic variants,

so the null model will be fit only once across the genome-wide

analysis. To fit the null model, we use a well-developed R package

survival, which can incorporate extensions of time-dependent var-

iables and time-dependent strata and can handle tied event time

with three possible choices, including Breslow’s approximation,

Efron’s approximation, and exact partial likelihood.28–30 The pack-

age also returns martingale residuals Ri; i%n for all subjects. In Ap-

pendix A, we give more details about the likelihood and its deriv-

atives and the definition of the martingale residuals under

Breslow’s approximation. Chen et al. also gave similar derivations

under Efron’s approximation.22
The Americ
For any genetic variant, the score statistic is S ¼ Pn
i¼1

GiRi, and

its asymptotic variance is estimated by dVarðSÞ ¼ GTVG�
GTVXðXTVXÞ�1XTVG, where G ¼ ðG1;.; GnÞT , X ¼
ðX1;.; XnÞT , and V is defined in Appendix A. The score statistic

S asymptotically follows a normal distribution with a mean of 0.

However, when the event rate is low, the martingale residuals are

highly skewed, which results in a right-skewed null distribution

of S, especially when testing low-frequency variants (Figure 1).

This indicates that the normal approximation cannot control

type I error rates at stringent genome-wide significance levels.31

The inflated type I error rate of the score test has been observed in

previous studies.22,23
Saddlepoint Approximation and Empirical CGF
Compared to the normal approximation that only uses the first

two moments, SPA is more accurate because it uses an entire

CGF to approximate the null distribution of scores.18,19 For the

Cox PH model, the null distribution of score statistic S ¼ Pn
i¼1

RiGi

is complicated, and its theoretical CGF cannot be expressed in a

closed form. In this paper, we use an empirical method to approx-

imate the CGF.

For any genetic variant, to approximate the null distribution of

S, we consider Gi; i%n as fixed values and Ri; i%n as random vari-

ables. In addition, because martingale residuals should satisfy

linear restrictions of
Pn
i¼1

XiRi ¼ 0 and
Pn
i¼1

Ri ¼ 0, we use a projection

scheme on G. Suppose ~X ¼ ½1n; X�, which includes a column of 1

in the design matrix, and R ¼ ðR1;.; RnÞT : The linear restrictions

can be expressed as ~X
T
R ¼ 0, that is, random vector R is restricted

at the null space of the matrix ~X. Let Q ¼ In � ~Xð~XT ~XÞ�1 ~X
T
be an

orthogonal projection matrix onto the null space of the matrix ~X.

We assume that R ¼ Q~R;where ~R is a latent random vector without

the linear restriction, then the score statistic can be rewritten as

S ¼ RTG ¼ ~R
T
QG ¼ ~R

T ~G, where ~G ¼ QG ¼ G� ~Xð~XT ~XÞ�1 ~X
T
G is

a centered covariate-adjusted genotype vector. Because R ¼ QR, R

is a natural representative of ~R, andwe use the observedmartingale

residuals Ri; i%n to estimate the empirical distribution of ~R.

To construct the CGF of S, we first estimate the moment gener-

ating function (MGF) of Ri. Following an analogous approach used

in Feuerverger,32 the empirical MGF of Ri is given by

bM 0ðzÞ¼E
�
ezR

�
z
1

n

Xn

i¼1

ezRi ;

and its first and second derivatives are

bM 0
0ðzÞz1

n

Xn
i¼1

Ri$e
zRi ; bM 0

00ðzÞz1

n

Xn

i¼1

R2
i $e

zRi :

The empirical CGF of Ri is then bK0ðzÞ ¼ ln bM0ðzÞ, and the deriv-

atives are

bK 0

0ðzÞ¼
bM 0

0ðzÞbM 0ðzÞ
; bK 00

0ðzÞ ¼
bM 0

00ðzÞ bM 0ðzÞ �
h bM 0

0ðzÞ
i2

h bM 0ðzÞ
i2 :

The properties of uniform consistency, moment structure, and

weak convergence to normality have been established.32
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Figure 1. Quantile-Quantile (QQ) Plots for Standardized Statistics and �log10(P) of Score and Wald Tests
(A and B) Normal QQ plots for standardized statistics (A) and QQ plots for -log10(P) of score and Wald tests (B). Standardized statistics
were calculated as raw statistics S divided by the estimated variance dVarðSÞ. p values were calculated from a normal approximation. We
simulated 23 105 replications under three event rates (ERs) of 1%, 10%, and 50%. The sample size was 4,000, and we considered com-
mon variants (MAF ¼ 0.3, expected MAC ¼ 2,400) and low-frequency variants (MAF ¼ 0.01, expected MAC ¼ 80). MAF, minor allele
frequency; MAC, minor allele counts.
Considering ~Gi; i%n as constant coefficients, we obtain the empir-

ical variance of the score statistic S ¼ Pn
i¼1

~Gi
~Ri asdVarempðSÞ ¼

Pn
i¼1

~G
2

i $
bM 00

0ð0Þ, and its estimated CGF is

bKðzÞ¼ Xn

i¼1

bK0

�
~Giz

�
:

The first and second derivatives are

bK 0
ðzÞ¼

Xn

i¼1

~Gi
bK0

0
�
~Giz

�
; bK 00

ðzÞ ¼
Xn

i¼1

~G
2

i
bK0

00
�
~Giz

�
:

Given an observed score S ¼ s, we first calculate z such thatbK 0
ðzÞ ¼ s, then we calculate u ¼ sgnðzÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðzs� bKðzÞÞq

and n ¼

z

ffiffiffiffiffiffiffiffiffiffiffiffibK 00ðzÞ
q

. According to the saddlepoint method (Barndorff-Niel-

son),33 the null distribution is

PrðS < sÞzF

�
uþ 1

u
$ log

�n
u

��
;

where F is the standard normal distribution function.
Implementation Details and Computation Complexity
ToobtainempiricalCGF, bK0ðzÞ, and its derivatives bK0

0ðzÞ and bK0
00ðzÞ,

wecompute (bK0ðzjÞ, bK0
0ðzjÞ, bK0

00ðzjÞ), forpre-determinedknotszj; j ¼
1;.; q, and then use linear interpolation. To select knots, we first

calculate q-quantiles of a standard Cauchy distribution and then

scale themuptoapre-determined range.WeuseCauchydistribution

because (1) the bell shape leads to more knots close to 0 and (2) the
224 The American Journal of Human Genetics 107, 222–233, August
heavy tail ensures enough knots far away from 0. In our simulation

studies and real-data analyses, we used q ¼ 10;000 knots and set

the location of knots bounded by ð� 10; 10Þ.
Because thenormal approximationbehaveswellnear themeanof

the distribution, it can be used to obtain the p value when the

observed score statistic lies close to 0, the mean value under the

null hypothesis.18 We apply the normal approximation by using

theempiricalvariance dVarempðSÞ if theabsolutevalueof theobserved
score statistic jSj < r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffidVarempðSÞ
q

, where r is a pre-specified value.

Because using the normal approximation takes less time than using

the SPA, this approach can reduce the computation time. We

consider r ¼ 2, following the recommendation by Dey et al.18

Confounding can be controlled by replacing the raw genotypeG

with a covariate-adjusted genotype ~G. This projection is motivated

by linear regression but is not necessarily the best choice.26 A

computationally efficient alternative is to use the centered geno-

type bG ¼ G� G; where G is the mean value of the genotype.

Numeric simulations demonstrate that using bG also works well

in most cases, although it might result in slightly inflated type I er-

ror rates when the raw genotype is strongly associated with cova-

riates. Hence, we recommend beginning with bG to calculate the p

value and then updating the result with ~G only if the p value is less

than 0.001. In this way, we can improve the computational effi-

ciency while avoiding false positive discoveries.

Implementation of the SPACox method mainly comprises two

steps. In step 1, we use R package survival29,30 to fit a null Cox

PH model and then empirically estimate (bK0ðzÞ, bK0
0ðzÞ, bK0

00ðzÞ)
of the martingale residuals. In step 2, for each genetic variant,
6, 2020



we calculate score statistic S and its empirical variancedVarempðSÞ: Then, the normal approximation or SPA is used to

calculate p values. Note that the matrix ~Xð~XT ~XÞ�1, functionbK0ðzÞ, and its derivatives will be pre-calculated in step 1. It takes

(pn) multiplications to calculate ~G and takes (n) multiplications

to calculate bKðzÞ and its derivatives in step 2. The total computa-

tion complexity for testing one SNP is (pn).
Numeric Simulations
We carried out simulation studies to evaluate computation time,

type I error rates, and powers of SPACox. For subject i, we first

generated the censoring time Ci and the underlying failure

time T�
i and then calculated the time-to-event phenotype Ti ¼

minðT�
i ;CiÞ and di ¼ IðT�

i %CiÞ. The censoring time Ci was simu-

lated following a Weibull distribution with the scale parameter

of 0.15 and the shape parameter of 1. The underlying failure

time T�
i was generated from a Cox PH model with a Weibull base-

line hazard function as

T�
i ¼ l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�log Ui

expðhiÞ

s
; ð1Þ;

where Ui was simulated from a uniform (0,1) distribution and

linear predictor hi ¼ 0:5xi1 þ 0:5xi2 þ gGi;where g is the genotypic

effect, Gi is the genotype simulated following Hardy-Weinberg

equilibrium, and xi1 and xi2 are two covariates simulated following

the standard normal distribution and a Bernoulli (0.5), respec-

tively. The scale parameter l is selected to correspond to an event

rate
Pn
i¼1

di=n.

We first simulated small datasets of 4,000 samples (n ¼ 4,000) to

evaluate the null distributions of regular score andWald test statis-

tics and compare them to the standard normal distribution. The

score and Wald test statistics were standardized to have mean

zero and variance unity. The asymptotic variance dVarðSÞ was esti-

mated from the observed informationmatrix.We considered three

event rates of 1%, 10%, and 50%. For each event rate, we simu-

lated 2 3 105 replications for common variants (minor allele fre-

quency [MAF] ¼ 0.3) and low-frequency variants (MAF ¼ 0.01).

We also compared the asymptotic variance estimated from the

observed information matrix dVarðSÞ and the empirical variancesdVarempðSÞ and evaluated SPACox-NoSPA in which p values were

calculated via a normal approximation with variance dVarempðSÞ.
To evaluate computation time in realistic scenarios,we randomly

sampled MAFs from the MAF distribution in the UK Biobank data

and then simulated 10,000 null variants. We considered two event

rates of 1% and 50%, incorporated 10 covariates in the model, and

increased the sample size from1,000 to 400,000.We compared four

different tests: the proposed saddlepoint approximation score test

(SPACox), theWald-basedCox PH regression via R package survival

(Wald), Firth’s penalized likelihood ratio test via R package coxphf

(Firth), and a fast version of theWald test via R package gwasurvivr

(gwasurvivr).14 We did not evaluate other genome-wide survival

analysis software, such as genipe, SurvivalGWAS, and GWASTools,

because Rizvi et al. has shown that gwasurvivr is significantly faster

than them.14 The evaluation process is on an Intel Xeon Platinum

8176 CPU at 2.10 GHz.

To evaluate type I error rates, we fixed the sample size at 100,000

and simulated phenotypes under the null model g ¼ 0.We consid-

ered common, low-frequency, and rare variants with MAFs of 0.3,

0.01, and 0.001 and simulated 106 genetic variants for each MAF.

We considered five event rates of 0.2%, 1%, 10%, 20%, and 50%
The Americ
and simulated 1,000 datasets of time-to-event phenotypes for

each event rate. Hence, for each pair of MAF and event rate, 109

replications were evaluated in total.We compared type I error rates

of SPACox, SPACox-NoSPA, Score, Wald, and Firth tests at signifi-

cance levels a ¼ 5310�5 and 5310�8. As a result of the heavy

computational burden, we performed a hybrid approach in which

we used Score, Wald, and Firth tests only when the SPACox p

values were smaller than 1310�3. We did not evaluate R package

gwasurvivr because its p value is the same as the p value calculated

via R package survival.

To evaluate powers, we fixed the sample size at 100,000 and

simulated 50 datasets under the alternative model. For each data-

set, we simulated 20 genetic variants and a phenotype by setting

hi ¼0:5xi1 þ 0:5xi2 þ g
X20
k¼1

Gk
i :

We compared empirical powers of SPACox, Score, Wald, and

Firth tests. To compare the powers of using time-to-event pheno-

types and using case-control phenotypes, we considered the SPA

method for case-control study (SPACC).18 Event indicator di was

treated as a binary outcome. SPACC used xi1, xi2, and time-to-event

Ti as covariates; SPACC0 only used xi1 and xi2 as covariates.

Application to the UK Biobank Data
To illustrate the performance in a real-data application, we applied

SPACox to analyze UK Biobank.9,10 UK Biobank includes 408,961

white British samples. We used FastIndep34 to select 344,340 unre-

lated samples, of which 282,871 samples with in-patient data were

analyzed. UK Biobank includes in-patient diagnosis data from

various providers with different censoring dates. More details

about the providers, including sample size and censoring dates,

are presented in Table S2.

We defined affected and unaffected individuals by using the

PheWAS code system based on the International Statistical Classi-

fication of Diseases and Related Health Problems (ICD) (PheCode,

Web Resources).35,36 For example, individuals with hypertension

(PheCode: 401.1) were identified as the individuals who had at

least one observed ICD-10 diagnosis code I10 or its subcodes. In to-

tal, we analyzed 12 phenotypes, including hypertension, type 2

diabetes, and Alzheimer disease. The detailed summary informa-

tion is presented in Table 1. For each phenotype, if we observe at

least one in-patient diagnosis for patient i, we let the event indica-

tor di ¼ 1 and time-to-event Ti be the age at the first in-patient

diagnosis date. Otherwise, we let di ¼ 0 and time-to-event Ti be

the age at right-censoring date or lost to follow-up date. The

observed survival time was left truncated at the in-patient data

collection date.

For all diseases, we used the top four principal components

(PCs) and gender as covariates. We restricted our analyses to

markers imputed by the Haplotype Reference Consortium

(HRC)37 panel. Approximately 24 million markers with minor

allele counts (MAC) R 20 and imputation info score > 0.3 were

used in the analyses.
Results

Normal Approximation: Score Test, Wald Test, and

SPACox-NoSPA

We first evaluated the null distributions of regular score

and Wald test statistics. The normal quantile-quantile
an Journal of Human Genetics 107, 222–233, August 6, 2020 225



Table 1. Summary Information of the 12 Phenotypes in UK Biobank Data Analysis

Phenotype PheCode
# of Events (Affected
Individual) Event Rate Mean (SD) of Age at Event # of Significant Locia

Essential hypertension 401.1 76,566 27.09% 62.7 (7.67) 204 (23)

Abdominal hernia 550 45,957 16.26% 59.88 (9) 45 (0)

Hyperlipidemia 272.1 35,623 12.60% 63.4 (7.52) 70 (1)

Osteoarthrosis 740 29,071 10.29% 62.88 (7.96) 22 (5)

Cardiac dysrhythmias 427 25,585 9.05% 63.08 (8.58) 29 (1)

Asthma 495 25,240 8.93% 58.33 (9.74) 74 (2)

Cataract 366 22,635 8.01% 65.94 (7.3) 24 (2)

Coronary atherosclerosis 411.4 19,079 6.75% 62.38 (7.41) 69 (2)

Type 2 diabetes 250.2 18,557 6.57% 62.76 (7.91) 70 (2)

Parkinson disease 332 1,345 0.48% 66.7 (7.08) 1 (0)

Alzheimer disease 290.11 641 0.23% 70.53 (5.09) 2 (0)

Schizophrenia 295.1 551 0.19% 65.26 (8.24) 1 (0)

aNumber of significant loci based on the SPACox method (and number of not significant loci based on SPACC). Using significance level 5 3 10-8, we identified a
total of 611 loci with a SPACox p value < 53 10-8, of which, 38 loci did not reach genome-wide significance in SPACC (p value > 53 10-8). We clustered variants
within the 200 kb region or at the same gene region as one locus.
(QQ) plots for standardized statistics and QQ plots for p

values of regular score and Wald tests are presented in

Figure 1. For score andWald tests, a lack of symmetry in de-

partures from the null hypothesis is observed, especially

when testing low-frequency variants and/or when the

event rate is low. The variance dVarðSÞ was underestimated

for positive statistic and was overestimated for negative

statistic. This asymmetry is because the information

matrix of the Cox PH model behaves differently for large

positive g and large negative g.31 For a genome-wide

time-to-event analysis, the right-skewed null distribution

would result in inflated type I error rates. We compared

the regular score test, which uses dVarðSÞ from the informa-

tion matrix, and SPACox-NoSPA, which uses the empirical

variance dVarempðSÞ (Figure S1). In general, dVarðSÞ anddVarempðSÞ were comparable. For common variants with

an MAF of 0.3, p values of SPACox-NoSPA were similar to

score test p values. For low-frequency variants with an

MAF of 0.01, p values of SPACox-NoSPA were slightly

different from score test p values. Interestingly, the QQ

plot suggests that, when event rates were low (1% and

10%), the score test had more inflated type I error rates

than SPACox-NoSPA for low-frequency variants.
Figure 2. Projected Computation Time for a Genome-wide
Time-to-Event Data Analysis of 20 Million Variants
The projected time is based on computation time for 10,000 vari-
ants on an Intel Xeon Platinum 8176 CPU at 2.10 GHz. For
example, suppose it takes a h to analyze 10,000 variants, then
the projected time for 20 million variants is 2,000 3a h. Solid
and dashed lines represent ERs of 1% and 50%, respectively. The
MAFs are randomly generated from the MAF distribution of UK
Biobank, and we considered 10 covariates.
Comparison of Computation Time

The projected computation time for 20 million variants is

presented in Figure 2. SPACox was 76–252 times faster than

gwasurvivr, 185–511 times faster than theWald test (R pack-

age survival), andmore than 6,000 times faster than Firth (R

package coxphf). For example,whenanalyzinga large cohort

with 400,000 samples, SPACox took 29 CPU h (without

reading data). Meanwhile, gwasurvivr, Wald, and Firth took

302.9, 614.3, and more than 15,000 CPU days, respectively.

SPACox, Wald, and gwasurvivr took similar computation
226 The American Journal of Human Genetics 107, 222–233, August
times under different event rates. However, Firth took more

time when ER ¼ 50%. This may be because the R package

coxphf is not as well optimized as other packages.
Type I Error Simulation Results

The empirical type I error rates based on 109 replications

are presented in Figure 3 and Table S1. At significance

levels a ¼ 5310�5 and 5310�8, SPACox and Firth can con-

trol type I error rates under all settings of MAFs and event

rates. However, Wald, Score, and SPACox-NoSPA had in-

flated type I error rates when testing low-frequency vari-

ants (MAF ¼ 0.01 and 0.001), especially when the event

rate is low. For example, at a ¼ 5310�8, when testing
6, 2020



Figure 3. Empirical Type I Error Rates of SPACox, SPACox-NoSPA, Wald, Firth, and Score Tests
From left to right, the plots considered five event rates (ERs) of 0.2%, 1%, 10%, 20%, and 50%. Top and bottom plots are for empirical
type I error rates at a ¼ 5310�5 and 5310�8, respectively. Sample size n¼ 100,000. For each pair ofMAF and event rate, we simulated 109

replications.
variants with an MAF ¼ 0.001 and event rate of 1%, type I

error rates of SPACox and Firth were 4:75310�8 and 7:103

10�8, respectively, and type I error rates ofWald, Score, and

SPACox-NoSPA were 9:14310�6, 5:04310�5, and 2.61 3

10�5. We further evaluated Wald in terms of type I error

rates based on the signs of the estimated bg. Figure S3 shows

that the Wald test was inflated when bg > 0 and was

deflated when bg < 0, which is consistent to the right

skewed distribution of Wald statistics as shown in Figure 1.

Power Simulation Results

The empirical powers with positive and negative g are pre-

sented in Figures 4 and S4, respectively. SinceWald and Score

tests cannot control type I error rates when testing low-fre-

quency variants, we used their empirical significance levels

estimated fromtype Ierror simulationstocalculate theempir-

ical powers. When the event rate was less than 10%, the

powers of all six tests were almost the same, and when the

event rate was greater than 10%, powers of SPACC and

SPACC0were significantly lower thantheother fourmethods

(SPACox, Firth, Wald, and Score tests) based on the Cox PH

model. For example, at a ¼ 5310�8, when testing common

variantswithanMAF¼ 0.3, event rate of 50%, andgenetic ef-

fect size g ¼ 0:05, powers of SPACC and SPACC0 were less

than 0.211, and powers of the other four methods were

higher than 0.916. This validates that the time-to-event

phenotype (i.e., when an event occurs) is more informative

than the corresponding case-control outcome (i.e., whether

an event occurs during the follow-up period).

When testing common variants (MAF R 0.05), the

powers of SPACox, Firth, Wald, and Score tests were almost

the same. When MAF ¼ 0.01 and the event rate is greater

than 20%, powers were slightly different. Similar to type
The Americ
I error rates, the differences depend on the sign of g:

when g > 0, powers of Firth, Wald, and Score tests were

slightly greater than that of SPACox, and when g < 0,

powers of Firth and SPACox were slightly greater than

those of Wald and Score tests. The differences were slightly

larger when testing rare variants with an MAF ¼ 0.001

(Figure S5).

Application to UK Biobank Data

We applied SPACox to UK Biobank data to analyze 12

phenotypes (Table 1). The Manhattan plots (Figure 5)

and QQ plots (Figure S6) show that SPACox successfully

identified a large number of loci. We also evaluated SPA-

Cox-NoSPA and Wald tests, both of which used normal

approximation to calculate p values for all genetic vari-

ants (Figures S7–S9). QQ plots suggest that tests using

normal approximation produced many potentially

spurious associations, and SPACox gave a better type I er-

ror rates control, especially when testing low-frequency

and rare variants. These results indicate the advantages

of the SPA over normal approximation in terms of type

I error rates control.

At a genome-wide significance level a ¼ 5310�8, we

identified a total of 611 loci, of which 88.2% (539 loci)

are common SNPs with an MAF > 0.05 (Figure S10). We

clustered variants within 200 kb region or at the same

gene region as one locus. For each locus, we treated the

case-control status as a binary phenotype, included the

top four PCs, birth year, and gender as covariates, and

calculated p values using SPACC.18 Figure S11 shows that

p values of SPACox and SPACC were comparable and

that most of the loci identified by SPACox could also be

identified by SPACC. This is expected because they use
an Journal of Human Genetics 107, 222–233, August 6, 2020 227



Figure 4. Empirical Powers of SPACox, Firth, Wald, Score, and SPACC Tests When g Is Positive
From left to right, the plots considered three MAFs of 0.01, 0.05, and 0.3. From top to bottom, the plots considered five ERs of 0.2%, 1%,
10%, 20%, and 50%. Empirical powers were evaluated at the significance level 5310�8. Sample size n ¼ 100,000. For each pair of MAF
and event rate, we simulated 1,000 replications.
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Figure 5. Manhattan Plots for 12 Phenotypes from UK Biobank
Manhattan plots were based on p values calculated from the SPACoxmethod. The red line represents the genome-wide significance level
a ¼ 5310�8.
the same set of data to indicate affected (event) or unaf-

fected (right-censoring) individuals, and event rate is

generally low. Figure S12 shows the survival curves of the

strongest SNP associations for each disease.

We highlighted 38 loci (of the 611 loci) that were not

significantly associated in SPACC at a ¼ 5310�8. Detailed

information including hazard ratios, p values, and gene

annotation38 can be seen in Table S3 and Figure 6. The

Wald test produced p values that were very close to the

SPACox p values. Several of the observed associations

have been previously identified. For example, SPACox

identified a genome-wide significant association between

hypertension and a variant in FGD5 (MIM: 614788,

rs13062241, p ¼ 5.06 3 10-9), whereas SPACC did not (p

¼ 1.39 3 10-7). FGD5 is a protein coding gene and belongs

to the family of FGD5-guanine nucleotide exchange fac-

tors (FGD5-GEFs). Several GWAS studies have identified

the association of FGD5 with different blood pressure-
The Americ
related phenotypes.39–41 Other examples include the asso-

ciation between coronary atherosclerosis and COL4A2

(MIM: 120090, rs9515203, SPACox p ¼ 1.28 3 10-8,

SPACC p ¼ 5.99 3 10-8) and the association between hy-

pertension and HLA-DQB1 (MIM: 604305, rs28724242,

SPACox p ¼ 4.26 3 10-8, SPACC p ¼ 2.05 3 10-7).42–50

We also conducted another SPACC analysis in which

time-to-event was used to replace the birth year as a covar-

iate. The results show that, of the 611 significant loci iden-

tified by SPACox, 188 loci did not pass significance level

5310�8 (Figure S11).

The genome-wide summary information of the 12 phe-

notypes and the cumulative risk curves of the identified

611 loci can be downloaded via our personal website

(Web Resources). Of the 611 loci, SPACox p values of 375

loci (61.4%) are smaller than the corresponding SPACC p

values, and SPACC gave smaller p values for the remaining

236 loci (38.6%). We further extended the SPACC analysis
an Journal of Human Genetics 107, 222–233, August 6, 2020 229



Figure 6. p Values of SPACC and SPACox for 38 Highlighted
SNPs from UK Biobank
Wehighlight 38 loci that are significant on the basis of SPACox but
not significant on the basis of SPACC. The red lines represent the
genome-wide significance level a ¼ 5310�8.
(with birth year as a covariate) to all loci and identified 17

loci whose SPACox p values> 5 3 10-8 and SPACC p values

< 5 3 10-8 (Table S4).
Discussion

In this paper, we have proposed SPACox, a fast and accu-

rate approach to perform genome-wide time-to-event

data analyses in large cohorts. The method fits a null

Cox PH model only once for genome-wide analysis, which

greatly improves the computational efficiency. Empirical

SPA is used to calibrate p values so that type I error rates

can be well controlled. Through extensive simulation

studies and application to UK Biobank data, we have

demonstrated that SPACox is much faster than currently

existing methods, while retaining well-controlled type I er-

ror rates and powers. We implemented SPACox in the R

package SPACox (see Data and Code Availability). Another

computationally efficient two-step strategy is to use a logis-

tic regression for the genome-wide analysis and then apply

the Cox regression to analyze variants with p values less

than a pre-selected cutoff.51,52 In terms of computation

time, this strategy is similar to SPACox because they both

only need to fit one model for the genome-wide analysis.

When we calculate empirical CGF, we use a covariate

adjusted genotype ~G ¼ G� ~Xð~XT ~XÞ�1 ~X
T
G to account for

the linear restrictions in martingale residuals. Another co-

variate-adjusted genotype _G ¼ G� XðXTVXÞ�1XTVG is

possible because the score statistic S ¼ _G
T
R and variance

VarðSÞ ¼ _G
T
V _G. That is, when _G is used to replace G, the

score statistic remains the same and its asymptotic variance

does not explicitly depend on the covariate matrix X. How-

ever, we have found that using _G, the empirical variance
230 The American Journal of Human Genetics 107, 222–233, August
dVarempðSÞj _G ¼ Pn
i¼1

_G
2

i $
bM 00

0ð0Þ greatly deviates from dVarðSÞ,
which resulted in deflated p values (Figure S2). This might

be because _G is not centered, that is,
Pn
i¼1

_Gis0. Another

possible approach is using G� ~Xð~XT
V ~XÞ�1 ~X

T
VG as the co-

variate-adjusted genotype vector in which ~X ¼ ½1n; X�.
However, because ~X

T
V ~X is irreversible (Appendix A), the co-

variate-adjusted genotype vector cannot be directly calcu-

lated. Thus, we did not consider this adjustment.

Family relatedness is commonly observed in a large

biobank dataset. To adjust for the sample relatedness,

BOLT-LMM and SAIGE methods used several optimiza-

tion strategies so that a generalized linear mixed model

could be computationally feasible in large cohorts.19,53

As for the Cox PH model, some approaches have been

proposed to adjust for sample relatedness. However,

most of them are based on a sparse kinship matrix, not

a dense genetic relationship matrix (GRM). In the future,

we plan to extend the current method to adjust for sam-

ple relatedness via a GRM. As a score test, SPACox

cannot estimate the genetic effect size. We recommend

using SPACox as the first step to identify potential ge-

netic variants, followed by time-to-event analysis of Firth

correction for more details about the identified variants.

In the future, we plan to extend our method to effi-

ciently estimate the genome-wide effect sizes, which is

important for some applications, such as meta-anal-

ysis.26 Another future research of interest is to design a

fast and accurate algorithm to identify rare variants

based on a gene- or region-based multiple-variant

test.54,55 In Supplemental Methods, we discussed how

to apply SPACox to analyze time-varying covariates,

and we showed that the SPA correctly controls type I er-

ror rates at genome-wide significant levels. However, the

considered scenarios for the time-varying covariates were

limited. Additional simulations covering more extensive

scenarios are still needed, and these are left to future

work.

A time-to-event phenotype is different from binary,

continuous, and counts phenotypes because the outcome

of interest is not only whether an event occurred, but also

when the event occurred. A unique feature of the time-to-

event phenotype is censoring, that is, not all subjects expe-

rience the event by the end of the follow-up period. In

medical studies, time-to-event phenotypes were often

used to characterize outcomes such as death and cancer

progression. With the expansion of biobanks and EHRs

data, time-to-event phenotypes will become more readily

available for genetic studies. SPACox is scalable to analyze

hundreds of thousands of samples and is well calibrated for

common, low-frequency, and rare variants. Given all ad-

vantages, SPACox will facilitate the genome-wide time-

to-event data analysis in large biobanks and contribute to

the discovery of the genetic causes underlying complex

diseases.
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Appendix A

From the Breslow’s approximation for the tied survival

time, the log partial likelihood with respect to b and g is

lðb;gÞ¼
Xn
i¼1

di

0@XT
i bþGig� log

0@X
k˛Rti

eX
T
k
bþGkg

1A1A;

where Rti ¼ fk; tk Rtig is the set of subjects at risk at

time point ti. Let bb and bg be the estimates from the log par-

tial likelihood and P be an n3n matrix with the (i; j)-th

element

pij
�bb; bg� ¼

I
�
i˛Rtj

�
$dj$e

XT
i
bbþGibgP

k˛Rtj
eX

T
k
bbþGkbg

denoting the hazard of subject i at time point tj. Then, bLi ¼Pn
j¼1

pijðbb; bgÞ is an estimate of cumulative hazard of subject i

prior to time point ti, and the correspondingmartingale re-

sidual is Ri ¼ di � bLi. In addition, based on the definition of

the matrix P,

Xn
i¼1

pij
�bb; bg�¼

P
i˛Rtj

eX
T
i
bbþGibgP

k˛Rtj
eX

T
k
bbþGkbg$dj ¼ dj;

Xn
j¼1

pij
�bb; bg�dj

¼
Xn
j¼1

pij
�bb; bg� ¼ bLi;

that is, PT$1n ¼ d and P$d ¼ bL; where 1n; d; bL are n3 1

vectors with the i-th element’s being 1; di; bLi,

respectively.

LetX ¼ ðX1;.;XnÞT be an n3p covariate matrix, G be an

n31 vector with the i-th element being Gi, and V ¼
diagðbL1;.; bLnÞ� PPT , then the score vector Sðbb; bgÞ and

the observed information matrix Jðb;gÞ are

S
�bb; bg�¼

0BBBBB@
vl
�bb; bg�
vb

vl
�bb; bg�
vg

1CCCCCA ¼

0BBB@
Xn
i¼1

XiRi

Xn
i¼1

GiRi

1CCCCA; J
�bb; bg�

¼ �

0BBBBBBB@
v2l

�bb; bg�
vbvbT

;

v2l
�bb; bg�
vgvbT

;

v2l
�bb; bg�
vbvgT

v2l
�bb; bg�
vgvgT

1CCCCCCCA
¼

	
XTVX;
GTVX;

XTVG
GTVG



For any genetic variant, the score statistic S ¼ Pn

i¼1

GiRi

and its asymptotic variance Var (S) ¼ GTVG �GTVX

(XTVX)�1XTVG
The Americ
Because PT$1n ¼ d and P$d ¼ bL, we can deduce that

V$1n ¼ bL� PPT$1n ¼ 0. Define ~X ¼ ½1n; X�, then the

matrix

~X
T
V ~X¼

�
1T
n$V$1n V$1n

1T
n$V XTVX

�
¼

�
0 0
0 XTVX

�
is irreversible.
Data and Code Availability

The codes generated during this study are available at

https://github.com/WenjianBI/SPACox.
Supplemental Data

Supplemental Data can be found online at https://doi.org/10.

1016/j.ajhg.2020.06.003.
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Web Resources

Firth’s correct R package, https://cran.r-project.org/web/packages/

coxphf

Genome-wide summary statistics and the cumulative risk curves

of the identified 611 loci, https://www.leelabsg.org/resources

gwasurvivr R package, http://bioconductor.org/packages/release/

bioc/html/gwasurvivr.html

PheCode, https://phewascatalog.org/phecodes, https://

phewascatalog.org/phecodes_icd10

SPACC R package, https://cran.rstudio.com/web/packages/SPAtest

Survival R package, https://cran.r-project.org/web/packages/

survival/

UK Biobank, https://www.ukbiobank.ac.uk/
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