Skip to main content
. 2020 Jul 16;117(31):18869–18879. doi: 10.1073/pnas.2002959117

Table 1.

Full set of accuracy scores across all 27 dataset–algorithm combinations, shown in Fig. 3: root-mean-squared error (RMSE), mean absolute error (MAE), median absolute error (MDAE), Pearson’s correlation coefficient (PCC), and fluxomic features representation (FFR, the percentage of metabolic flux features over the total number of features)

Dataset(s) Method RMSE MAE MDAE PCC FFR, %
Single omics
GE SVR 0.102 ± 3e-04* 0.067 ± 0.001* 0.045 ± 0.004 0.902 ± 0.001 0
GE RF 0.127 ± 0.001 0.077 ± 4e-04 0.049 ± 0.001 0.864 ± 0.002 0
GE ANN 0.122 ± 0.007 0.079 ± 0.008 0.053 ± 0.010 0.876 ± 0.004 0
MGE SVR 0.115 ± 0.003 0.070 ± 4e-04 0.046 ± 2e-04 0.872 ± 0.006 0
MGE RF 0.130 ± 0.001 0.079 ± 4e-04 0.050 ± 0.001 0.855 ± 0.002 0
MGE ANN 0.139 ± 0.008 0.091 ± 0.008 0.065 ± 0.011 0.838 ± 0.005 0
MF SVR 0.203 ± 0.006 0.117 ± 0.003 0.065 ± 3e-04 0.504 ± .033 100
MF RF 0.185 ± 0.002 0.109 ± 0.001 0.065 ± 0.002 0.611 ± 0.009 100
MF ANN 0.196 ± 0.009 0.125 ± 0.016 0.083 ± 0.021 0.588 ± 0.003 100
Early integration
GE-MF SVR 0.132 ± 0.009 0.079 ± 0.004 0.048 ± 0.004 0.828 ± 0.029 36
GE-MF RF 0.126 ± 0.001 0.077 ± 0.001 0.048 ± 0.001 0.866 ± 0.003 36
GE-MF ANN 0.132 ± 0.007 0.085 ± 0.009 0.057 ± 0.011 0.847 ± 0.006 36
SGL data SVR 0.117 ± 0.001 0.082 ± 3e-04 0.058 ± 0.001 0.867 ± 0.002 34
SGL data RF 0.130 ± 0.001 0.082 ± 5e-04 0.053 ± 0.001 0.844 ± 0.003 34
SGL data ANN 0.163 ± 0.011 0.105 ± 0.013 0.072 ± 0.019 0.805 ± 0.005 34
NSGA-II data SVR 0.178 ± 0.014 0.103 ± 0.005 0.063 ± 0.002 0.653 ± 0.069 24
NSGA-II data RF 0.179 ± 0.020 0.110 ± 0.010 0.067 ± 0.004 0.653 ± 0.077 24
NSGA-II data ANN 0.154 ± 0.011 0.100 ± 0.014 0.067 ± 0.017 0.804 ± 0.013 24
iRF data SVR 0.108 ± 0.002 0.072 ± 0.001 0.050 ± 0.001 0.891 ± 0.002 0
iRF data RF 0.120 ± 0.001 0.074 ± 3e-04 0.049 ± 0.001 0.870 ± 0.002 0
iRF data ANN 0.136 ± 0.008 0.090 ± 0.010 0.065 ± 0.014 0.854 ± 0.003 0
Intermediate and
late integration
GE and MF BEMKL 0.182 ± 1e-04 0.110 ± 2e-04 0.066 ± 1e-04 0.626 ± 0.001 36
GE and MF BRF 0.145 ± 0.001 0.086 ± 3e-04 0.053 ± 0.001 0.810 ± 0.003 36
GE and MF MMANN 0.102 ± 0.001* 0.067 ± 0.001* 0.043 ± 0.002* 0.906 ± 0.002* 36
MGE and MF BEMKL 0.182 ± 7e-05 0.110 ± 1e-04 0.067 ± 2e-04 0.625 ± 3e-04 79
MGE and MF BRF 0.147 ± 0.001 0.087 ± 4e-04 0.054 ± 0.001 0.803 ± 0.003 79
MGE and MF MMANN 0.112 ± 0.001 0.073 ± 0.001 0.047 ± 0.002 0.882 ± 0.003 79

Values in boldface type represent the best scores for each data integration scenario, while the best global performance for each measure is highlighted by an asterisk. The MMANN model consistently outperforms all other models and, with 36% of the features being fluxomic, demonstrates the utility of the additional metabolic modeling stage in our pipeline.