Table 1.
Dataset(s) | Method | RMSE | MAE | MDAE | PCC | FFR, % |
Single omics | ||||||
GE | SVR | 0.102 3e-04* | 0.067 0.001* | 0.045 0.004 | 0.902 0.001 | 0 |
GE | RF | 0.127 0.001 | 0.077 4e-04 | 0.049 0.001 | 0.864 0.002 | 0 |
GE | ANN | 0.122 0.007 | 0.079 0.008 | 0.053 0.010 | 0.876 0.004 | 0 |
MGE | SVR | 0.115 0.003 | 0.070 4e-04 | 0.046 2e-04 | 0.872 0.006 | 0 |
MGE | RF | 0.130 0.001 | 0.079 4e-04 | 0.050 0.001 | 0.855 0.002 | 0 |
MGE | ANN | 0.139 0.008 | 0.091 0.008 | 0.065 0.011 | 0.838 0.005 | 0 |
MF | SVR | 0.203 0.006 | 0.117 0.003 | 0.065 3e-04 | 0.504 .033 | 100 |
MF | RF | 0.185 0.002 | 0.109 0.001 | 0.065 0.002 | 0.611 0.009 | 100 |
MF | ANN | 0.196 0.009 | 0.125 0.016 | 0.083 0.021 | 0.588 0.003 | 100 |
Early integration | ||||||
GE-MF | SVR | 0.132 0.009 | 0.079 0.004 | 0.048 0.004 | 0.828 0.029 | 36 |
GE-MF | RF | 0.126 0.001 | 0.077 0.001 | 0.048 0.001 | 0.866 0.003 | 36 |
GE-MF | ANN | 0.132 0.007 | 0.085 0.009 | 0.057 0.011 | 0.847 0.006 | 36 |
SGL data | SVR | 0.117 0.001 | 0.082 3e-04 | 0.058 0.001 | 0.867 0.002 | 34 |
SGL data | RF | 0.130 0.001 | 0.082 5e-04 | 0.053 0.001 | 0.844 0.003 | 34 |
SGL data | ANN | 0.163 0.011 | 0.105 0.013 | 0.072 0.019 | 0.805 0.005 | 34 |
NSGA-II data | SVR | 0.178 0.014 | 0.103 0.005 | 0.063 0.002 | 0.653 0.069 | 24 |
NSGA-II data | RF | 0.179 0.020 | 0.110 0.010 | 0.067 0.004 | 0.653 0.077 | 24 |
NSGA-II data | ANN | 0.154 0.011 | 0.100 0.014 | 0.067 0.017 | 0.804 0.013 | 24 |
iRF data | SVR | 0.108 0.002 | 0.072 0.001 | 0.050 0.001 | 0.891 0.002 | 0 |
iRF data | RF | 0.120 0.001 | 0.074 3e-04 | 0.049 0.001 | 0.870 0.002 | 0 |
iRF data | ANN | 0.136 0.008 | 0.090 0.010 | 0.065 0.014 | 0.854 0.003 | 0 |
Intermediate and | ||||||
late integration | ||||||
GE and MF | BEMKL | 0.182 1e-04 | 0.110 2e-04 | 0.066 1e-04 | 0.626 0.001 | 36 |
GE and MF | BRF | 0.145 0.001 | 0.086 3e-04 | 0.053 0.001 | 0.810 0.003 | 36 |
GE and MF | MMANN | 0.102 0.001* | 0.067 0.001* | 0.043 0.002* | 0.906 0.002* | 36 |
MGE and MF | BEMKL | 0.182 7e-05 | 0.110 1e-04 | 0.067 2e-04 | 0.625 3e-04 | 79 |
MGE and MF | BRF | 0.147 0.001 | 0.087 4e-04 | 0.054 0.001 | 0.803 0.003 | 79 |
MGE and MF | MMANN | 0.112 0.001 | 0.073 0.001 | 0.047 0.002 | 0.882 0.003 | 79 |
Values in boldface type represent the best scores for each data integration scenario, while the best global performance for each measure is highlighted by an asterisk. The MMANN model consistently outperforms all other models and, with 36% of the features being fluxomic, demonstrates the utility of the additional metabolic modeling stage in our pipeline.