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Extensive empirical evidence suggests that there is a maximal
number of people with whom an individual can maintain stable
social relationships (the Dunbar number). We argue that this arises
as a consequence of a natural phase transition in the dynamic self-
organization among N individuals within a social system. We pre-
sent the calculated size dependence of the scaling properties of
complex social network models to argue that this collective behav-
ior is an enhanced form of collective intelligence. Direct calculation
establishes that the complexity of social networks as measured by
their scaling behavior is nonmonotonic, peaking around 150,
thereby providing a theoretical basis for the value of the Dunbar
number. Thus, we establish a theory-based bridge spanning the
gap between sociology and psychology.

Dunbar number | allometry relation | network calculations | complexity |
functionality/size

Dunbar hypothesized, on the basis of archeological, evolu-
tionary, and neurophysiological evidence, that 150 is the

limit on the number of people with whom a typical person can
maintain stable social relationships (1, 2). We suggest that this is
a consequence of internal dynamics producing self-organized
criticality within a social network consisting of N people. We
use two distinct complex network models of social group dy-
namics that lead to phase transitions (3), termed criticality in the
physics literature, to determine the optimal size of networks and
compare this with the Dunbar number. Such criticality generates
intermittent events, with time intervals between successive events
being independent (renewal) and having an inverse power law
distribution. The inverse power law index in both network
models is shown herein by direct calculation to increase rapidly
in magnitude from 0.5, reach a maximum of ∼0.67, and then
decrease slowly back to 0.5, as the size of the network increases.
This nonmonotonic dependence of the scaling index on network
size is a signature of complexity (4) and is used to argue that the
collective social behavior at criticality supports optimal infor-
mation transmission within the group. Consequently, the time to
transmit information between generic complex networks is
minimal when both system sizes coincide with the predicted
Dunbar number. Thus, the calculations presented herein yield a
theory-predicted value of the maximum group size that closely
agrees with the empirical Dunbar number, as well as showing
that networks of this size have optimal information transmission
properties. These results provide a theory-based bridge that uses
network science model calculations to span the current concep-
tual gap between psychology and sociology.
In order for a group, organization, or living network to

maintain its functionality as its size increases, macroscopic dy-
namic modes must emerge to replace those that no longer sup-
port the system’s evolving purpose as driven by the increase in
complexity. The network’s size and functionality increase and
decrease together as determined by their separate relationships
to changing complexity, but not in direct proportion to
one another.

Another way to view the relation between network complexity
and network size is by relating the functionality of the network of
interest to its complexity. West (5) established that the more
sophisticated the functionality, the greater the complexity nec-
essary to support that function. For example, the degree of
complexity necessary to sustain the functionality of a modern city
is, proportionately, significantly greater than that necessary to
sustain the functionality of a primitive village. Consequently, we
interpret the many empirical relations, between functionality and
size as being the result of an implicit relation between size and
complexity, with complexity being manifest through the system’s
functionality. This subtle, yet ubiquitous, driving of complexity by
size and in turn functionality being driven by complexity, has long
been known from the study of allometry (5): Average network
functionality is typically a noninteger power of average network
size, without an explicit dependence on complexity.
In the recent past it has been argued that biological systems

function best when their dynamics are close to criticality (6). This
hypothesis is in keeping with the more general observations of
Anderson (7) regarding the disconnect between microdynamics
and emergent macrodynamics in complex dynamic systems that
undergo phase transitions. For example, when a liquid is boiled it
becomes a gas and the corresponding volume increases discon-
tinuously as a manifestation of criticality. This universal behavior
is manifest in the scaling behavior of certain system parameters
called critical exponents, on which there is now a vast literature.
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Dunbar hypothesized, on the basis of empirical evidence, that a
typical individual can have a stable relation with at most 150
other people. We establish that this number results from the
internal dynamics of a complex network. Two network models
having phase transitions are used to determine the optimal
size for the most efficient information exchange. Such criti-
cality generates intermittent events, with time intervals be-
tween successive events being independent (renewal) and
scaling. The scaling index depends nonmonotonically on net-
work size and direct calculations show that the index is maxi-
mum for networks the size of the Dunbar number and provides
maximal information exchange efficiency. This result provides
a theory-based bridge to span the conceptual gap between
psychology and sociology.
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In the complex networks used herein the universal properties are
criticality, a dependence of critical parameters on network size
N, and fluctuations due to the finite size of the network whose
intensity varies as as N−1/2 (3).
The social organizations of primates provide a well-studied

example of biological social networks. A quarter century ago
Dunbar (1, 2) related measures of the average neocortical ratio
C to mean group size N of a sample of 36 primate genera and
constructed a version of the social brain allometry relation
(SBAR):

N = aCb,

where a and b are the empirical constants: a = 1.239 and b =
3.389. Here, C is the ratio of neocortical volume to that of the
total volume of the brain minus that of the neocortex. The av-
erage neocortex ratio for humans was measured to be C = 4.1
(8), which when inserted into the SBAR model yields an average
group size of N = 147.8. This value was rounded off to 150 in the
subsequent literature and is now called the Dunbar number.
The social brain hypothesis (2) from which the Dunbar num-

ber results, heuristically bridges the gap between psychology and
sociology, in that it relates an empirical measure of cognition to
the average size of a social group consisting of individuals
sharing that average cognition measure through the SBAR. Al-
though the Dunbar number is widely known, no first principles
explanation as yet exists for it. Consequently, the search for a
theory to predict the Dunbar number has shifted from explaining
the social brain hypothesis to establishing a rationale as to why
the number turns out to be ∼150.
The back and forth exchange of information between complex

networks has been predicted theoretically with the principle of
complexity matching (4) and is observed experimentally in, for
example, turn-taking in dyadic conversations (9), the therapeutic
influence of arm-in-arm walking (10), and the influence of
zealots on group behavior (3). Human social networks, in par-
ticular, are best viewed as being designed to solve coordination
problems (11), and these lend themselves naturally to the format
sometimes known as opinion dynamics models (12, 13). The
greater the complexity of a network the more information the
network contains and just as an entropy gradient provides an
entropic force in a physical network, a complexity gradient
provides an information force between living networks. Conse-
quently, with the brain of the individual modeled as one complex
network and the social group as a second complex network, the
tools of network science are used herein to provide a theoretical
explanation for the value of the Dunbar number as the value of
network size that optimizes information transport.
In keeping with the criticality hypothesis, it is reasonable to

implement the SBAR association of functionality and size with
the emergence of complexity from criticality. This is achieved
dynamically by critical dynamics generating crucial events.
Complexity, as measured by functionality, is manifest in the
collective behavior of nonlinear dynamic networks to model
cognition, using the concept of collective intelligence (14). Long-
range correlations are amplified at the onset of phase transition
and are often studied by means of dynamic networks that are
members of the Ising universality class (15), which provides the
mathematical rationale for the complex network models used in
the numerical calculations presented herein. These network
models at criticality generate intermittent (16) and crucial events
(3, 17), which according to Alligrini et al. (18) is a manifestation
of consciousness.

Materials and Methods
Wisdom and Goldstone (19) conducted and interpreted a sequence of ex-
periments on problem-solving tasks using the social concepts of innovation
and imitation. These same two concepts are fundamental in the network

science decision-making model (DMM) used in our calculation. The DMM is
based on a two-state master equation for each individual in the network (3).
In the DMM an isolated individual randomly switches between two states,
and the random switching mechanism is identified as innovation. An indi-
vidual also imitates those with whom she or he interacts so that the imita-
tion parameter determines the influence of others on the switching time of
the individual. We demonstrate by network science model calculations that
N cooperatively interacting units generate criticality, namely, long-range
correlations enabling the system to make cooperative decisions and prop-
erly respond to environmental perturbations. The efficiency of this response
requires a balance between the fluctuation intensity (proportional to N−1/2)
and the inverse power law regime in the limit of N very large. We prove that
this balance occurs in the neighborhood of N = 150.

We use a statistical analysis of time series generated by criticality-induced
intelligence, based on a method recently proposed to detect crucial events
by Culbreth et al. (20) to find the criticality point in the complex network
dynamical models. This method is based on converting empirical time-series
data into a diffusion process from which the probability density function (SI
Appendix) is calculated and the entropy determined. The procedure is called
diffusion entropy analysis (DEA) and is used to determine the scaling be-
havior of the empirical process driving the diffusion. When criticality-
induced intelligence (collective intelligence) becomes active, the driven
process is expected to depart from ordinary diffusion signified by having a
scaling index different from δ = 0.5. The modified DEA (MDEA) illustrated in
Culbreth et al. (20) filters out the scaling behavior of infinite stationary
memory, when it exists (21), and the remaining deviation of the scaling in-
dex from δ = 0.5 is solely due to crucial events.

The MDEA applied to the signal generated by the criticality-induced in-
telligence implements the original DEA in conjunction with the method of
stripes. In the method of stripes the vertical axis is divided into many bins of
equal size and an event, either crucial or not, is recorded when the signal
moves from a given stripe to an adjacent stripe. A random walk (RW) step is
triggered by such an event and makes a step of constant length forward
each time an event occurs, thereby generating a diffusion-like trajectory
X(t). This trajectory contains information on the persistence of opinion
contained in the empirical time series, which can be detected by applying
the MDEA method to X(t) determined from the RW rate equation (SI
Appendix).

In order to explore the generality of our results, we have selected two
network models generating criticality-induced intelligence that have totally
different microdynamics, but both have transitions to criticality. The first is
the DMM, where N individuals each choose between two conflicting states,
which they do under the influence of their nearest neighbors (SI Appendix).
This model falls into the Ising universality class, thereby making it possible to
compare the results obtained herein to the predictions of Chialvo (22). The
second model is that of swarm intelligence (SI) proposed by Vicsek et al. (23)
and is also a member of the Ising universality class. These models are ap-
propriate for describing human social networks since human (and primate)
social groups exist to enable behavioral (and informational) coordination
(24). They are also appropriate for modeling the way in which an individual
models their own social network in the virtual world they construct within
their brain. These social and neurologic networks correlate incompletely
with one another, with information from the one influencing the way the
other organizes itself (we adjust our model network as formulated in our
mind/brain as a function of information received about observed changes in
the state of the social network).

To show that network size is optimal with regard to the transfer of in-
formation, we consider two complex networks, A and B, which interact with
one another at criticality. We seek the size at which they are identical, having
the same size N. For a time L, the global field ξA(t) of network A and the field
ξB(t) of network B are calculated and the cross-correlation between the two
time series determined.

This cross-correlation experiment is done in two ways. In the first, a small
percentage (5% of units of A, randomly chosen) make their choice on the
basis of the choices made by their nearest neighbors and one randomly
chosen unit of network B. Network B is influenced by network A through the
same interaction process. As a result of this back and forth interaction the
cross-correlation time is expected to be symmetric around τ = 0. This trivial
observation turns out to be the case and therefore its calculation is not
shown herein.

In the second case, the interaction is restricted to one direction with
network A perturbing B, but no return perturbation of B on A. As a con-
sequence of the unidirectional nature of the information flow, we expect
that the cross-correlation function ought to shift to a positive time delay as
the network size increases beyond the critical size. The time delay is a
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consequence of the information about A transmitted by 5% of them to the
B network and does not instantaneously change the behavior of all of the B
units. It requires a finite time to transmit the information from the one B
unit receiving the information about the motion of the A units to all of the
other B units. Attanasi et al. (25) made the conjecture that the transmission
of information from one peripheral individual in a network who acquires
some important item of environmental information (e.g., an approaching
predator) to all of the other members of the network occurs through a
diffusion process. Lukovi�c et al. (26) assigned an important role in infor-
mation transmission to the visible crucial events and argued that the phase
state of the network requires a sufficiently large number of dynamic
switches.

Material and Data Availability. The original sources for all data used herein
have been cited in the main text, SI Appendix, or the cited literature. The
research codes used in the calculations of the figures have been cited and
are available upon request from the University of North Texas authors:
G.F.M., G.C., R.F., and P.G.

Results
We evaluate first the mean field of a DMM network to produce
the signal and Fig. 1 illustrates the results of that analysis. Here
the calculation on the network is done in two different ways. One
way is with every individual interacting with every other indi-
vidual in the network (all-to-all, ATA). The other is that each
individual interacts only with its nearest neighbor on a 2D lattice,
with periodic boundary conditions (2D-lattice). Both calculations
yield criticality at the appropriate theoretical values of the con-
trol parameter, whose critical values depend on the size of the
network. Identifying the calculated value of the time rate of
change of the mean field variable with the empirical time series
ξ(t), we generate the RW and obtain the trajectory X(t) to which
we apply the MDEA to obtain the scaling index as a function of
network size (SI Appendix). The resulting scaling parameter δ is
shown in Fig. 1 and varies nonmonotonically with the size of the
network. The parameter peaks, achieving a maximum value close
to δ = 0.67, when N is in the vicinity of the Dunbar number 150.
The scaling index falls quickly to δ = 0.5 to the left of the peak,
for N < 150 and more slowly to the same value to the peak’s
right, for N > 150.
The same calculation is carried out using the SI model pro-

posed by Vicsek et al. (23) and the results are displayed in Fig. 2.
The qualitative agreement observed between the DMM in Fig. 1

and SI in Fig. 2, with respect to the nonmonotonic dependence
of the scaling index on network size, is remarkable. Most note-
worthy for our purposes here is that both networks display
dominant peaks in the vicinity of the Dunbar number, which
given the empirical value of 148.7 from the SBAR is truly
astonishing.
Of course, theoretically predicting the Dunbar number does

not establish that this size of the network influences the trans-
mission of information, much less that the Dunbar size of a
network optimizes the exchange of information between net-
works. We can, however, determine network efficiency from the
cross-correlation of the time series for the perturbing network A
and the perturbed network B. Fig. 3 shows that the time delay
between the driven and the driving networks is extremely small
when N = 150 (the delay time is τ ≈ 0), whereas larger networks
require a finite nonzero time to reorganize and maximize their
correlation. The larger the deviation in network size from the
Dunbar number, the greater the delay in transmitting the in-
formation throughout the perturbed network. This is an evident
signal that the Dunbar effect facilitates the transport of infor-
mation from the individual who first acquires the information to
all of the other individuals in the network.
As the interaction strength (K) between individuals in a net-

work approaches the critical value (KC), the dynamics of indi-
viduals change from virtually independent behavior (K < KC) to
highly organized behavior at the critical point (K = KC). The two-
time correlation function changes from a rapid exponential re-
laxation of perturbations when the interaction strength is sub-
critical (K < KC), to a much slower inverse power law relaxation
of perturbations at criticality (K = KC), and then returns to the
rapid exponential relaxation when the interaction strength
becomes supercritical (K > KC). The substantially slower relax-
ation perturbations at criticality entails long-range correlations,
whose persistence facilitates the information transfer at criti-
cality. The measure of this persistence is manifest in the degree
to which the scaling index δ exceeds 0.5, but note that even at δ =
0.5 (the value obtained in an unbiased RW process), the network
index is μ = 1.5, denoting that the network is still at criticality (SI
Appendix).

Fig. 1. Scaling detection of the Dunbar number is obtained by calculating
the nonmonotonic dependence of the scaling index δ on a network of size N.
The two calculation are depicted using a DMM (3): The red circles with an
ATA interaction, the blue circles with a nearest-neighbor interaction on a
2D lattice.

Fig. 2. Scaling detection of the Dunbar number is obtained by calculating
the nonmonotonic dependence of the scaling index δ on a network of size N,
using the SI model of Vicsek et al. (23).
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Discussion
We have established that complexity can be a hidden variable
responsible for an empirical relation being directly observed
between a network’s size and functionality. Recall that this was
how Huxley (27) was able to “prove” the theoretical form of the

allometry relation by eliminating time from two rate equations
describing organs growing at different rates within the same
body. Assuming that time and complexity are directly propor-
tional (28, 29), the elimination of one is equivalent to the
elimination of the other in the allometry relation between the
average number of people in a social group and the average
cognitive measure in the SBAR. From this we establish by nu-
merical calculations that the Dunbar number is the optimal
group size. This conclusion is here entailed by a network science
theoretical model, but was reached by Dunbar using the archived
evolutionary and neurophysiological data for multiple species
over long time periods (1, 2).
The scaling index was used as a measure of the network’s

dynamic complexity as previously done in a broad range of ap-
plications (3). Consequently, determining the dependence of the
magnitude of the scaling parameter on the size of the network
enabled us to ignore the microdynamics of the two models used
in the calculations and determine that their complexities share
the same functional dependence on network size. The remark-
able result is that the two model calculations suggest that the
complexity that manifests itself in the control of information
transport in the dynamics of complex networks also determines
the empirical SBAR and consequently the Dunbar number. In
addition, the cross-correlation calculation indicates that the
Dunbar number is a consequence of the information transfer
being optimal for complex dynamic networks of this size. The
significance of this fact in terms of the flexibility and stability of a
social group cannot be overemphasized, since it provides an
evolutionary advantage in which collections of weaker individ-
uals find added strength in groups of a preferred size, whereby
they can respond to a predatory attack or other ecological
threats as a single collective entity and thus survive.
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