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Artificial van der Waals hybrid synapse and its
application to acoustic pattern recognition
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Jaewoo Shim 4, Keun Heo1, Saeroonter Oh 5 & Jin-Hong Park 1,6✉

Brain-inspired parallel computing, which is typically performed using a hardware neural-

network platform consisting of numerous artificial synapses, is a promising technology for

effectively handling large amounts of informational data. However, the reported nonlinear and

asymmetric conductance-update characteristics of artificial synapses prevent a hardware

neural-network from delivering the same high-level training and inference accuracies as those

delivered by a software neural-network. Here, we developed an artificial van-der-Waals

hybrid synapse that features linear and symmetric conductance-update characteristics.

Tungsten diselenide and molybdenum disulfide channels were used selectively to potentiate

and depress conductance. Subsequently, via training and inference simulation, we demon-

strated the feasibility of our hybrid synapse toward a hardware neural-network and also

delivered high recognition rates that were comparable to those delivered using a software

neural-network. This simulation involving the use of acoustic patterns was performed with a

neural network that was theoretically formed with the characteristics of the hybrid synapses.
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It is predicted that a large amount of unstructured data in the
upcoming Big Data era will not be processed efficiently via
conventional serial computing technology based on the von

Neumann architecture1. Thus, a brain-inspired parallel comput-
ing technology suitable for dealing with such unstructured data
was recently proposed2,3. Brain-inspired computing is generally
performed using a hardware neural-network (HW-NN) platform
consisting of numerous artificial synapses4,5. Therefore, con-
siderable effort has been directed toward the implementation of
artificial synapses mimicking the behavior of biological synapses,
such as short-term plasticity and long-term plasticity6,7. Synaptic
devices based on various operating mechanisms and materials
have been reported, including resistive random-access memory
(RRAM), phase-change memory (PCM), field-effect transistors
(FETs) with ferroelectric or charge-trapping layer, electro-
chemical memory, optoelectronic memory8–20. However, it has
not been demonstrated that an HW-NN composed of such
synaptic devices can perform training and inference tasks with
the same level of accuracy as a software-based neural-network
(SW-NN). This is because such devices do not sufficiently satisfy
the synaptic characteristics, such as the cycle-to-cycle variation
(CCV), device-to-device variation (DDV), retention time,
endurance, number of conductance states, dynamic range, and
linear/symmetrical conductance change20–23. In particular, the
linearity and symmetricity of the conductance change are known
to significantly affect the inference accuracy after the training
process of HW-NNs24,25.

J. Woo et al. and S. Park et al. reported HfOx RRAM and AlOx/
TiN PCMO-based synaptic devices, respectively, where the non-
linear and asymmetrical conductance change resulted in a low
inference accuracy of <40% for the Modified National Institute of
Standards and Technology (MNIST) dataset26,27. For the HfOx

RRAM, an AlOx barrier layer was introduced, consequently
improving its conductance change more linearly, but this device
inherently presented low dynamic range and high CCV18,26. For
the hafnium-zirconium oxide FeFET-type synapse reported by M.
Jerry et al., a highly symmetric conductance change was achieved,
leading to a high inference accuracy of 90% for the MNIST
dataset28. However, in the FeFET synapse, non-identical spikes
were applied for controlling the conductance state. This is
because most of the reported synaptic devices operate on the basis
of a physical mechanism that cannot change the conductance
linearly with respect to the applied voltage. Meanwhile, E. J. Fuller
et al. reported an ionic floating gate (IFG)-based synaptic device
featuring a very linear conductance change that was achieved by a
gradual composition modulation in the IFG29. Recently, various
studies to approach the training/inference accuracy of an SW-NN
have been attempted by designing synaptic unit cells with highly
linear and symmetric conductance change characteristic24,30,31.
S. Kim et al. reported a very linear conductance change in their
synaptic unit cell consisting of three transistors and one capa-
citor30. Although the excellent linearity allowed an accurate
training process, the volatility of the cell made inference based on
the trained information difficult. S. Ambrogio et al. and X. Sun
et al. applied nonvolatile memory elements, such as PCM and
ferroelectric capacitors, to their synapse cells, yielding high
training and inference accuracies simultaneously24,31. However,
such synapse cells require highly complex peripheral circuits for
operation, as well as a large number of devices. Therefore, addi-
tional studies on artificial synapses should be performed to
achieve desirable synaptic characteristics required for high-
performance HW-NNs.

Herein, we report an artificial vdW-hybrid synaptic device that
features linear and symmetric conductance change characteristics.
The excellent conductance controllability is accomplished by
using tungsten diselenide (WSe2) and molybdenum disulfide

(MoS2) hybrid channels, which are specialized for linear con-
ductance potentiation and depression, respectively. We also dis-
cuss the CCV & DDV, relative standard deviation (RSD),
endurance, symmetricity, and dynamic range for the long-term
potentiation (LTP)/long-term depression (LTD) characteristic
curves with respect to the conditions of weight control spikes. In
particular, our synaptic device is investigated and compared with
other devices reported heretofore, in terms of various synaptic
characteristics mentioned above, weight updating energy, and
active area (see Supplementary Table 1). Finally, we demonstrate
the feasibility of the vdW-hybrid synaptic device for an HW-NN
and present high recognition rates close to those for an SW-NN
via training and inference simulation, where both our designed
acoustic patterns and existing MNIST digit patterns are used.

Results
Artificial van der Waals hybrid synapse. Biological synapses are
known to transmit spike signals from the presynaptic terminal to
the postsynaptic terminal using neurotransmitters and to adjust
their synaptic weights on the basis of the timing of the spike
signals32. In this study, as shown in Fig. 1a, we implemented an
vdW-hybrid synaptic device that successfully mimics the opera-
tion of biological synapses and presented excellent synaptic
characteristics. This vdW-hybrid synaptic device features two
signal paths for potentiation and depression operations, which are
formed on WSe2 (for hole transport)/hexagonal-boron nitride (h-
BN) and MoS2 (for electron transport)/h-BN heterostructures,
respectively. Here, such vdW heterostructures are free from
concerns about lattice mismatching owing to the dangling-bond-
free surface nature of the vdW materials33–35, thereby allowing
the formation of interfacial defect-free floating gate structure36,37

or the modulation of the number of interfacial traps/dipoles for
achieving the synaptic functionalities12,18,38. The potentiation
and depression channels are tied by two electrodes, which are
defined as the presynaptic and postsynaptic terminals, and the
two channels have an individual gate electrode functioning as a
weight control terminal (WCT). Additional information regard-
ing the vdW-hybrid synaptic device, such as an optical micro-
scopy image, thickness profiles of vdW materials confirmed via
atomic force microscopy (AFM), and the Raman spectra of each
vdW material are provided in Supplementary Fig. 1. When a
voltage spike (Vpre) is applied to the presynaptic terminal, a
postsynaptic current (PSC) appears at the postsynaptic terminal,
which is the sum of the PSCs of the potentiation (PSCP) and
depression (PSCD) channels (PSC= PSCP+ PSCD). This indi-
cates that the conductance of the vdW-hybrid synaptic device (G)
is identical to the sum of the conductance values of the poten-
tiation (GP) and depression (GD) channels (G=GP+GD).
Therefore, as shown in Fig. 1b, the synaptic conductance of this
device can be potentiated (G↑=GP↑+GD) or depressed (G↓=
GP+GD↓) by applying only a positive voltage spike (+VWCT) to
the WCT. The conductance of the WSe2 and MoS2 channels is
modulated on the basis of the phenomenon that electrons are
only trapped in the weight control layer (WCL) formed on h-BN
under the positive voltage spike condition. This differs from the
conventional transistor-type synapse, where both trapping and
detrapping of electrons are used for potentiation and depression,
which allows highly symmetric operation of the synapse12,39. For
accurate operation of the vdW-hybrid synaptic device, two dif-
ferent polarity FET devices with a similar current level are needed
to be integrated. When voltage spikes with an amplitude of 1 V, a
duration of 20 ms, and a frequency of 2 Hz were applied to the
WCT for the potentiation channel four times consecutively, the
conductance of the vdW-hybrid synaptic device increased in steps
from 159 to 257 nS (potentiation operation). When the same
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voltage spikes were applied to the WCT for the depression
channel, the conductance decreased in steps to 163 nS, which was
similar to the initial conductance value (depression operation).

Following the demonstration of the selective controllability of
the conductance in the vdW-hybrid synaptic device, we
compared its synaptic characteristics with those of a control
synaptic device with a WSe2 or MoS2 channel. As shown in
Fig. 1c, we confirmed the LTP/LTD characteristics in each
synaptic device, where 128 excitatory and inhibitory voltage
spikes were applied in a row to the WCTs of the devices. For the
WSe2 synaptic device, the conductance increased linearly and
decreased nonlinearly (red curve). The conductance change of the
MoS2 synaptic device (blue curve) exhibited the opposite
behavior. According to these results, the channels composed of
WSe2 and MoS2 were specialized for potentiation and depression,
respectively. Therefore, in the vdW-hybrid synaptic device that
selectively exploits the specialized channels for the LTP/LTD, the
conductance states are uniformly distributed (green curve). The
measurement setup for the synaptic devices is described in detail
in Supplementary Fig. 2. To evaluate the LTP/LTD characteristics
quantitatively, we extracted the nonlinearity from the character-
istic curves (βP from the LTP curve and βD from the LTD curve).
The nonlinearity values (βP/βD) of the WSe2 and MoS2 synaptic
devices were 2.3/21 and 8.6/2, respectively. For the vdW-hybrid
synaptic device, the nonlinearity values were 1.9/1.9. The
dynamic ranges of the WSe2, MoS2, and vdW-hybrid synaptic
devices, which were defined as the difference between Gmax and

Gmin (Gmax –Gmin), were 237, 210, and 191 nS, respectively. These
nonlinearity values were analyzed and compared with the values
of previously reported artificial synapses, as shown in Supple-
mentary Fig. 3. We then calculated the symmetricity indicating
the degree of symmetry between the LTP and LTD characteristic
curves in Fig. 1d (top). Details regarding the calculation are
provided in Supplementary Fig. 4. The symmetricity values of the
WSe2 and MoS2 synaptic devices were approximately 2.13 and
3.82, respectively, and the symmetricity was improved to 13.26
for the vdW-hybrid channel. Here, there are flake-to-flake
variations in the vdW channels in terms of defect density and
doping concentration, which consequently affect the synaptic
characteristics including the linearity and symmetricity of the
LTP and LTD curves. Detailed analysis regarding with this issue
is provided in Supplementary Fig. 5. In addition, the nonlinearity
and symmetricity values were investigated in multiple samples to
confirm the DDV in the nonlinearity and symmetricity, as shown
in Supplementary Fig. 6. Furthermore, we determined and
compared the effective conductance-state ratios, as shown in
Fig. 1d (bottom), because an insufficient conductance change
(ΔG) in the LTP and LTD curves has no effect on the recognition
rate in the HW-NN. The effective conductance-state ratio was
defined as the ratio of the number of conductance states in which
ΔG exceeded a certain percentage of Gmax/Gmin (thresholdΔG) to
the total number of conductance states. When thresholdΔG was
set as 0.3%, the WSe2 and MoS2 synaptic devices exhibited
effective conductance-state ratios of 43.75% and 69.14%,
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Fig. 1 vdW-hybrid synaptic device with excellent controllability of the conductance. a Functional and structural comparison of the biological synapse with
the vdW-hybrid synaptic device. b Demonstration of potentiation and depression operations with four spikes. c Long-term potentiation (LTP) and
depression (LTD) curves including extracted nonlinearity values for the control devices (WSe2 and MoS2 synaptic devices) and the vdW-hybrid synaptic
device, where 128 excitatory and inhibitory spikes were applied consecutively to the WCTs. d Symmetricity and effective conductance-state ratio
(thresholdΔG= 0.3%) extracted from the LTP/LTD curves. e Conductance responses when eight spikes were applied in a row (four excitatory and four
inhibitory) to the WCTs of the three types of devices, and extracted conductance variations |σ|.
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respectively, and the vdW-hybrid synaptic device exhibited a
relatively high ratio of 85.94%. As shown in Fig. 1e, we applied
eight spikes in a row for potentiation and depression (four
excitatory spikes and four inhibitory spikes) to the WCTs of the
three devices. Consequently, the conductance of the WSe2 and
MoS2 devices decreased (conductance variation σ= –32.9%) and
increased (σ=+25.1%), respectively, compared with the initial
values. For the hybrid synaptic device, a conductance similar to
the initial value was observed under the same spike conditions
(σ=+1.16%). Here, the conductance variation σ was calculated
using the equation shown in Fig. 1e (bottom). Additional results
measured under different combinations of eight spikes are
provided in Supplementary Fig. 7, (e.g., two excitatory spikes,
two inhibitory spikes, two excitatory spikes, and two inhibitory
spikes).

Analysis of vdW-hybrid synaptic device. The excellent con-
ductance controllability of the vdW-hybrid synaptic device was
due to the electron-trapping phenomenon in the WCL, which
was formed by exposing CF4 plasma on top of the h-BN (details
are presented in the METHODS Section). As shown in Fig. 2a, we
examined the WCL via cross-sectional transmission electron
microscopy (X-TEM). By performing CF4 plasma treatment with
a reactive ion etcher power of 10W and a process time of 10 s, the
WCL was created at depths of 11.1 and 10.5 nm from the surface
underneath the potentiation and depression channels, respec-
tively. The regions inside the yellow dotted line in Fig. 2a were
analyzed via electron energy-loss spectroscopy (EELS) mapping,
yielding atomic-composition information for each region. As
shown in Fig. 2b and c, the WCL regions mainly exhibited signals
corresponding to C (green), F (yellow), and B (weak signal, blue).
As expected, signals corresponding to W (bright red), Se (bright
green), Mo (purple), and S (cyan) were obtained in the regions of
WSe2 and MoS2. The B (blue) and N (red) signals also appeared
in the region of h-BN. As shown in Supplementary Figs. 8, 9, and
10, we analyzed the energy distribution of the WCL/h-BN via
micro photoluminescence and micro X-ray photoelectron spec-
troscopy measurements40–42. Additionally, we estimated the trap
density in the WCL region containing C and F atoms, obtaining
density values of 5.2 × 1017 and 5.8 × 1017 cm–3 for the poten-
tiation and depression channels, respectively. These trap-density
values were on the same order as the number of electrons stored
in the floating gate of current flash memory cell, as discussed in
Supplementary Fig. 11 (http://www.itrs2.net/). As depicted in
Fig. 2d, we investigated carrier injection barrier heights and work
functions for the WSe2 (potentiation) and MoS2 (depression)
channels via the modified Richardson plotting method, based on
a thermionic emission-diffusion model and Kelvin probe force
microscopy (KPFM) analysis, respectively (see also Supplemen-
tary Fig. 12 and Note 8)43,44. A hole barrier height of 0.31 eV and
work function of 4.86 were estimated for the WSe2 channel,
where a platinum contact is formed between the pre/postsynaptic
terminals and channel. Meanwhile, an electron barrier height of
0.19 eV and work function of 4.75 eV were obtained for the MoS2
channel, where a titanium contact is formed between the pre/
postsynaptic terminals and channel. Therefore, the WSe2
(potentiation) and MoS2 (depression) channels were confirmed as
p- and n-type channels, respectively. We then investigated the
spike responses for the current flow through the potentiation and
depression channels in detail. When an excitatory voltage spike
was applied to the WCTs for the WSe2 and MoS2 channels, the
PSCs flowing through the potentiation and depression channels
increased from 20.2 to 25.6 nA and decreased from 21.1 to 16.1 nA
for 104 seconds, denoting that the trap states of WCL have high
confinement energy (see Fig. 2d). This is because the electrons

trapped in the WCL increased and decreased the number of holes
and electrons in the WSe2 and MoS2 channels, respectively,
decreasing and increasing the width of the tunneling barrier
(WTN) from the presynaptic terminal (Tpre) metal to the vdW
channels, as shown in Fig. 2d (bottom). When an inhibitory spike
was applied, as shown in Supplementary Fig. 13, the PSC
decreased and increased in the potentiation and depression
channels, respectively. The operating energy for reading and
updating a weight were approximately from 0.12 to 0.71 nJ (for
reading energy) and 0.79 (for updating energy in the potentiation
channel)/0.93 (for updating energy in the depression channel) pJ,
respectively, where a spike with 1 V of amplitude and 10 ms of
duration was applied45. Such dissipated energy per event were
determined by P= I × V × tduration12,16,18, and relevant details are
provided in Supplementary Fig. 14. The PSC responses with
respect to the amplitude and duration of the spike and with
respect to the conditions of CF4 plasma treatment were also
investigated, as shown in Supplementary Fig. 15. As shown in
Fig. 2e, when excitatory spikes with a 1-V amplitude, 20-ms
duration, and 2-Hz frequency were applied consecutively to the
WCTs underneath the WSe2 and MoS2 channels, the con-
ductance linearly increased (Case 1) and decreased (Case 2),
respectively. Under the excitatory-spike condition, the energy
band of the semiconductor near the WCL was instantly bent
downward, generating an electric field (E) that attracted electrons
toward the WCL (see Fig. 2f). Simultaneously, the probability of
trap states being filled increased because the Fermi level of the
semiconductor was close to its conduction band edge. Therefore,
the trap sites at the WCL were partially filled with electrons
during each excitatory spike, which gradually changed the con-
ductance of the potentiation and depression channels. In contrast,
as shown in Fig. 2g, when the same inhibitory voltage spikes were
applied in a row, the conductance nonlinearly decreased and
increased at the WSe2 and MoS2 channels, respectively. The
energy band of the semiconductor near the WCL was instantly
bent upward when the inhibitory spike was applied, generating an
electric field for electron detrapping (see Fig. 2h). Additionally,
because there were many empty states within the conduction
band of the semiconductor, which were well aligned with the
filled trap sites in the energy level, most of the trapped electrons
were released from the WCL during the initial few inhibitory
spikes. Consequently, when the inhibitory spikes were applied in
a row after the excitatory spikes, the conductance rapidly changed
at the beginning stages and then gradually became saturated. In
the proposed hybrid synapse device, the linearity of PSC was
determined by (i) the PSC updating origin (electron trapping into
the WCL or detrapping from the WCL), and (ii) the polarity of
the channel (p- or n-type channel) (see Supplementary Fig. 16).
We further investigated the spike response for the synaptic device
using an MoSe2 that normally functions as an n-type channel and
subsequently confirmed the similar LTP/LTD characteristics of
the MoSe2 and MoS2 synaptic devices (see Supplementary
Fig. 17). Meanwhile, the nonlinearity for the potentiation and
depression channels was investigated with respect to (i) the
amplitudes and durations of the spikes, and (ii) the conditions of
CF4 plasma treatment, as shown in Supplementary Fig. 18. The
information on the spike responses for the potentiation and
depression channels without WCL is provided in Supplementary
Fig. 19.

Synaptic characteristics of the vdW-hybrid synaptic device with
respect to various spike conditions. Next, we examined the CCV
and RSD for the LTP/LTD curves and the symmetricity and
dynamic range of the vdW-hybrid device under various voltage
spike conditions. These indices significantly affect the
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performance of an HW-NN composed of artificial
synapses20,23,46. Figure 3a explains the two voltage spike condi-
tions—one for potentiation and the other for depression—where
the number, amplitude, duration, and frequency of the pulses
were varied. As shown in Fig. 3b, we measured the LTP/LTD
characteristics 15 times and then evaluated the CCV and
RSD21,46. The CCV was estimated as <1% in the LTP/LTD
curves, as shown in Supplementary Fig. 20. Here, the nonlinearity
ranging from 1.75 to 2.2 for the potentiation channel and from
1.8 to 2.35 for the depression channel was confirmed. For the
RSD, which represents the ratio of the standard deviation (σ) to
the mean (μ), values of 0.05 and 0.03 were obtained in the LTP
and LTD curves, respectively. Also, as shown in Supplementary
Fig. 21, we investigated the endurance (>105 weight updating, 500

cycles of LTP/LTD) of the vdW-hybrid device. We then extracted
the symmetricity and dynamic range from the LTP/LTD curves
obtained when 32, 64, and 128 voltage spikes were applied, as
shown in Fig. 3c. While the symmetricity was not significantly
affected by the number of spikes, the dynamic range increased
rapidly as the number of spikes increased (symmetricity/dynamic
range: 7.95/96.12 nS for 32 states, 8.05/124.6 nS for 64 states, and
7.61/178 nS for 128 states). In addition to the effects of the
number of spikes, we investigated the symmetricity and the
dynamic range under different spike voltages. As the amplitude of
the spikes increased from 1 to 5 V, the symmetricity decreased
from 5.11 to 3.39, and the dynamic range increased from 95 to
326 nS (see Fig. 3d). As the duration of the spikes increased from
10 to 50 ms, the symmetricity decreased from 11.65 to 6.11, and
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the dynamic range increased from 91 to 270 nS (see Fig. 3e). As
the frequency of the spikes increased from 2 to 8 Hz, the sym-
metricity decreased from 8.79 to 5.11, and the dynamic range
increased from 71 to 95 nS (see Fig. 3f). As the amplitude,
duration, and frequency of the spikes increased, the symmetricity
was degraded and the dynamic range value increased,
indicating that these performance indices had a tradeoff rela-
tionship with each other. A detailed analysis of the results for the
symmetricity and the dynamic range is provided in Supplemen-
tary Fig. 22.

Acoustic pattern recognition task. Finally, we demonstrated the
feasibility of the vdW-hybrid synaptic device for an HW-NN via a
training and inference simulation. For this simulation task, we
defined a method to convert vocal signals into acoustic patterns
and then prepared training and inference datasets, as shown in
Fig. 4a and b. The first step was to express vocal signals as a
function of time or frequency. We recorded the sound wave of a
spoken word (“strawberry”) and obtained the sound information
as a function of time. The sound amplitude vs. time information
was transformed to the frequency domain via a Fourier trans-
form. The second step was sampling the sound signals. In this
step, we divided the sound signals into 200 time or frequency
points. Finally, in the third step, the discrete signal information
was transformed into an acoustic image with a 20 × 20 array size,
as shown in Fig. 4b. For example, the 109th data point in the
sound amplitude vs. time graph and the 61st data point in the
sound magnitude vs. frequency graph were transferred into

the pixels located at (6,11) and (14,1) in the acoustic pattern,
respectively (see dotted red line). Here, each pixel had a grayscale
value in the range of 0–255. Datasets with 3000 training and 400
inference acoustic pattern images were prepared similarly for five
distinct words: “apple,” “orange,” “kiwi,” “banana,” and “straw-
berry” (see Fig. 4c). Additional information about the datasets is
presented in Supplementary Fig. 23. We also prepared two types
of spoken digit datasets consisting of cochleagram patterns or our
acoustic patterns, where the Lyon’s auditory model was applied to
create the cochleagram patterns (see Supplementary Fig. 24)47.
Then, as shown in Fig. 4d, we theoretically designed a single-layer
artificial neural network (ANN) consisting of 400 input neurons,
five output neurons, and 400 × 5 artificial synapses connecting the
neurons. The voltage signals (Vn) corresponding to each pixel of
the acoustic pattern were assumed to be applied to the input
neuron layer. They were multiplied by the synapse weight (Wn,m)
and then summed at the output neurons. Consequently, output
currents ðIm ¼ P400

n¼1 Wn;mVnÞ were obtained at the output
neuron layer. The synapse weight was defined as the conductance
values of the synaptic device (W=G). Next, the output value (fm)
obtained via the sigmoid activation function ðf ðImÞ ¼ 1

1þe�ImÞ was
compared with each label value (km). Finally, the synapse weights
were updated via the backpropagation algorithm (details are
presented in the METHODS Section). Figure 4e shows the
hardware neural network (HW-NN) comprising the vdW-hybrid
synaptic devices, which is applicable to the implementation of the
conceptual neural networks for acoustic and MNIST digit pattern
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recognition tasks. Details on this HW-NN are described in
Supplementary Fig. 25.

The conductance of the vdW-hybrid synaptic device was
updated by only trapping electrons in the WCL, which caused the
conductance state to no longer potentiate or depress when GP or
GD reached Gmax or Gmin. Therefore, for training the ANN
composed of the hybrid devices, we employed a conductance
updating method based on the operations of “refresh” and
“reprogram” for updating GP and GD. As shown in Fig. 4f (top),

when GP reached Gmax (GP_128), both GP and GD were refreshed
to Gmin (GP_128→0) and Gmax (GD_16→128). For the operation of
“refresh” in terms of implementation in hardware, (i) the
peripheral circuits to read the GP and GD separately and (ii) the
physical separation of the channels are required simultaneously.
Subsequently, GP was reprogrammed to the value of GD before
the refreshing step (GP_0→16), maintaining its conductance value
(G=GP_128+GD_16=GP_16+GD_128). For the operation of
“reprogram” in terms of implementation in hardware, the
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peripheral circuits and memory are required additionally, which
will store the conductance value and write it back to the device.
Similarly, as shown in Fig. 4f (bottom), when GD reached Gmin

(GD_0), GP and GD were refreshed, and then GD was
reprogrammed to the value of GP before the refreshing step
(GD_128→112). We also employed a conductance updating method
without the operations of “refresh” and “reprogram” as shown in
Supplementary Fig. 26. The training process was conducted for
three types of ANNs composed of hybrid (green curve), WSe2
(red curve), and MoS2 (blue curve) devices, and we calculated the
recognition rate every 100 training steps, as shown in Fig. 4g. The
same training process was performed with an SW-NN (purple
curve), for which the synaptic weights were updated using
the Widrow–Hoff learning rule48. Also, the recognition rates for
the acoustic patterns formed with frequency- and/or time-
domain data are provided in Supplementary Fig. 27. After the
training and inference tasks, as shown in Fig. 4h, the maximum
recognition rates and corresponding variation values, which
denote the degree of fluctuating in learning curves, were
examined. The maximum recognition rate/variation values were
73.6%/12.5%, 78.5%/7.9%, and 94.2%/4.9% for the WSe2, MoS2,
and vdW-hybrid synaptic devices. The values for the hybrid
device were closest to those for the SW-NN (95.3%/6.1%). Similar
training and inference analyses were performed for (i) various
spike conditions (number, amplitude, duration, and frequency of
spikes) with the designed acoustic patterns, (ii) different layer
numbers of the ANN (single- and multi-layer) using the MNIST
datasets, and (iii) the two types of spoken digit datasets consisting
of cochleagram patterns or acoustic patterns, as shown in
Supplementary Figs. 28, 29, 30, and Supplementary Table 2,
respectively21,49.

Discussion
We developed a vdW-hybrid synaptic device featuring linear and
symmetric update characteristics by utilizing WSe2 and MoS2
hybrid channels that are specialized for linear conductance
potentiation and depression, respectively. Excellent conductance
controllability of the vdW-hybrid synapse was achieved by uti-
lizing only electron-trapping phenomenon in the WCL. The
vdW-hybrid synaptic device exhibited nonlinearity and symme-
tricity of 1.9/1.9 (βP/βD) and 13.26, respectively, an effective
conductance-state ratio of 85.94% for thresholdΔG= 0.3%, a very
small variation (~1%) after state changes by excitatory and
inhibitory spikes, a CCV of <1%, and an RSD of 0.05/0.03 (weight
potentiation/depression). Such synaptic characteristics are high-
lighted in Supplementary Table 1, where our synaptic device is
investigated and compared with other devices reported here-
tofore. Through in-depth analysis and characterization of the
vdW-hybrid synaptic device, we demonstrated the feasibility of
the device for an HW-NN. It exhibited high recognition rates
close to those for an SW-NN via training and inference
simulation, in which our designed acoustic patterns were
employed. Using this hybrid synaptic device, we achieved
recognition of 93.8% for an acoustic pattern recognition task,
which was close to that for the SW-NN (95.3%). This work
indicates the potential for building HW-NNs for highly accurate
brain-inspired computing.

Methods
Fabrication of the synaptic devices. The individual electrodes for the WCT with
a width of 20 μm were patterned on a 90-nm-thick SiO2 oxide layer on a heavily B-
doped Si substrate using an optical lithography process, followed by the deposition
of 10-nm-thick Ti and 30-nm-thick Au using an electron-beam evaporator. h-BN
flakes were mechanically transferred onto the WCTs via a residue-free transfer
method based on adhesion energy engineering12. Then, CF4 plasma treatment was
conducted on the h-BN flakes using a plasma machine (Miniplasma Cube,
PLASMART). For stabilizing the chamber conditions, CF4 gas flowed for 1 min

before the CF4 plasma treatment. The CF4 plasma treatment conditions were
as follows: reactive ion etcher powers of 5, 10, and 20W; a plasma pressure of
500 mTorr; a CF4 flow rate of 5 sccm; and treatment times of 10, 20, and 90 s.
The WSe2 and MoS2 flakes were then transferred onto the WCL/h-BN via the same
transfer method. The postsynaptic and presynaptic electrodes (distance between
the two electrodes and width of the electrodes were 5 μm) were patterned on
the WSe2/WCL/h-BN (potentiation channel) and MoS2/WCL/h-BN (depression
channel) structure, followed by 10-nm-thick Pt contact for the potentiation
channel and Ti contact for the depression channel and 50-nm-thick Au pad
deposition.

Characterization of the synaptic devices. For structural and elemental
analyses of the WSe2/WCL/h-BN and MoS2/WCL/h-BN regions, X-TEM (JEM
ARM 200 F) and EELS (GIF Quantum ER, 200 keV) measurements were per-
formed. Raman analysis was performed at various positions on the WSe2/WCL/h-
BN and MoS2/WCL/h-BN samples using a WITec micro-Raman spectrometer
system with a frequency-doubled Nd-doped yttrium aluminum garnet (Nd-
YAG) laser beam (532-nm laser excitation). AFM was performed using an
NX10 system (Park Systems Corp.). Electrical measurements of the synaptic
devices were performed using an HP-4155A semiconductor parameter analyzer
connected to a voltage spike generator (Keysight, 33500B). The aforementioned
measurement setup for the synaptic devices is described in detail in Supplementary
Fig. 2.

Weight update for synaptic devices. Currents at output neurons were trans-
formed by a sigmoid activation function, resulting in output neuron signals (f).
Based on the delta value (δ), which is difference between the output neuron signals
and the label values (k) for input patterns (δ= k− f), the synaptic weight was
determined to be potentiated or depressed. If δ > 0 (potentiation phase), then G is
increased. In the depression phase (δ < 0), G is decreased. These conductance
changes (ΔG) were determined by the following equations:

Gnþ1 ¼ Gn þ ΔGP ¼ Gn þ αPe
�βP

Gn�Gmin
Gmax�Gmin ΔG> 0;G "ð Þ;

Gnþ1 ¼ Gn þ ΔGD ¼ Gn � αDe
�βD

Gmax�Gn
Gmax�Gmin ΔG< 0; G #ð Þ:

In these equations, Gn+1 and Gn denote the synaptic conductance when the n+ 1th
and nth pulses are applied, and parameters α and β are the conductance change
amount and the nonlinearity, respectively. Fitting results are provided in Supple-
mentary Table 3. The above pattern recognition processing was implemented with
MATLAB.

Data availability
The data that support the findings of this study are available from the corresponding
author upon request.

Code availability
Code from this study (MATLAB scripts) is available from the corresponding author
upon request.
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