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Human progenitor cells (HPCs) support human cytomegalovirus
(HCMV) latency, and their differentiation along the myeloid line-
age triggers cellular cues that drive reactivation. A key step during
HCMV reactivation in latently infected HPCs is reexpression of viral
major immediate early (MIE) genes. We recently determined that
the major immediate early promoter (MIEP), which is primarily
responsible for MIE gene expression during lytic replication,
remains silent during reactivation. Instead, alternative promoters in
the MIE locus are induced by reactivation stimuli. Here, we find that
forkhead family (FOXO) transcription factors are critical for
activation of alternative MIE promoters during HCMV reactivation,
as mutating FOXO binding sites in alternative MIE promoters
decreased HCMV IE gene expression upon reactivation and significantly
decreased the production of infectious virus from latently infected
primary CD34* HPCs. These findings establish a mechanistic link by
which infected cells sense environmental cues to regulate latency
and reactivation, and emphasize the role of contextual activation
of alternative MIE promoters as the primary drivers of reactivation.
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eactivation of latent human cytomegalovirus (HCMV) in-

fection poses a significant threat to patients with compro-
mised immune systems. While primary infections in healthy
adults are typically associated with little or mild disease, reac-
tivation in immunocompromised individuals, such as solid organ
and stem cell transplant recipients, can lead to significant mor-
bidity and mortality (1). Despite this, little is known regarding
the mechanisms controlling HCMV reactivation.

Following an initial burst of viral gene expression upon en-
tering cells that support latency (e.g., CD34™ human progenitor
cells [HPCs]), HCMV gene expression is largely silenced,
allowing the virus to persist in a quiescent or latent state (2, 3).
Proinflammatory cytokines and cellular cues that drive differ-
entiation induce the reexpression of viral lytic cycle genes, cul-
minating in the production of infectious virus that can spread
throughout the host and cause disease (4, 5). Critical to HCMV
reactivation is the reexpression of the viral immediate early 1 and
2 proteins (IE1 and IE2), which drive the expression of the
HCMV lytic cycle (6-8). Defining factors that regulate IE1 and
IE2 expression during reactivation is thus critical for under-
standing the mechanisms controlling reactivation and resulting
HCMV disease.

In cells permissive for lytic replication such as fibroblasts, the
expression of both UL123 and UL122 transcripts (encoding IE1
and IE2, respectively) is largely driven by the major immediate
early promoter (MIEP), which is silenced during latency. Until
recently it was presumed that reactivation of the lytic cycle relied
on the resumption of MIEP activity. However, we recently dis-
covered two alternative promoters (iP1 and iP2, together re-
ferred to as intronic promoters) within the first intron of the
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canonical major immediate early locus (9). Rather than inducing
MIEP activity, HCMV reactivation stimuli instead induce tran-
scription from the iP1 and iP2 promoters, which correlates with
the increase in UL123 and UL122 mRNA levels and IE1 and
IE2 protein levels (10). Deletion of the intronic promoters sig-
nificantly attenuates the production of infectious virus after
reactivation, revealing that the iP1 and iP2 promoters play crit-
ical roles in IE1 and IE2 reexpression and HCMYV reactivation.

Here we begin to unravel the mechanisms by which HCMV
senses cellular cues to trigger IE1 and IE2 reexpression by de-
fining FOXO transcription factors (TFs) as key players linking
cellular differentiation to HCMV reactivation. These data pro-
vide mechanistic insights into HCMV reactivation and suggest
that manipulating FOXO transcription factor activity may be a
future means to limit HCMV disease.

Materials and Methods

Cells and Viruses. MRC-5 fibroblasts and HeLa cells were grown in Dulbecco’s
modified Eagle medium (DMEM) supplemented with 10% fetal bovine serum
(FBS) and penicillin/streptomycin. HCMV TB40E derived from a bacterial artificial
chromosome (BAC) containing an SV40 promoter-driven GFP reporter (11)
was used as wild-type (WT) virus, and served as the backbone for the
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generation of recombinant viruses. Titers of cell-free virus were deter-
mined by the 50% tissue culture infective dose (TCID5o) method on MRC-5
fibroblasts. Unless otherwise noted, all infections were performed at a mul-
tiplicity of infection (MOI) of 1 for 1 h, followed by removal of the inoculum.

Construction of Recombinant Viruses. BAC-mediated recombineering was
used to generate viral mutants on the TB40E genomic background using a
two-step recombination approach, as before (9). Briefly, the iP2 locus was
replaced with a kanamycin/levansucrase fusion cassette (KanSacB) using
homology-mediated recombination in recombination-competent SW105
Escherichia coli (12). The KanSacB cassette was then replaced with the iP2
sequences containing the indicated mutation in a second round of recombi-
nation. The entire genomes of the wild-type and recombinant BACs were
then sequenced to ensure no additional changes were present other than the
intended mutations.

THP-1 Latency Model. Latency studies were conducted as described previously
(10, 13, 14). Briefly, cells were infected with HCMV (TB40/E; refs. 5 and 15) at
a multiplicity of 2 plaque-forming units (pfu) per cell. After 5 d, cells were
treated with 100 nM 12-o-tetradecanoylphorbol-13-acetate (TPA) to induce
reactivation, or with dimethyl sulfoxide (DMSO) solvent control. Whole cell
lysates, DNA, and RNA were collected at each of the indicated time points.
Detailed experimental methods are found in S/ Appendix.

Assay of Infectious Centers for Latency and Reactivation. The frequency of
HCMV reactivation in CD34* HPCs was quantified as previously described (10,
13, 14). Briefly, pure populations of CD34* HPCs were infected with TB40E
WT or FOXOmut123 recombinant virus (MOI = 2). Twenty-four hours after
infection, latently infected cells were purified and cocultured with stromal
cells to maintain latent infection. After 10 d, latently infected cells were
cocultured with naive MRC-5 fibroblast monolayers to quantify the number
of infectious centers produced. Detailed experimental methods, including
isolation and purification of these cells, are found in SI Appendix.

gRT-PCR Analysis. mRNA abundance was quantified by gRT-PCR as described
previously (10, 16). Briefly, RNA was extracted and then treated with DNase.
The RNA was reverse transcribed and then quantified by real-time PCR using
SYBR green incorporation and transcript-specific primers. For transfected
cells, RNA abundance was determined by comparison to a standard curve
generated from gPCR analysis of 10-fold serial dilutions of a DNA standard
specific for each primer pair. Transcript abundance in latently infected cells
was measured as previously described (10). Detailed methods are provided in
SI Appendix, Supplementary Materials and Methods.

Plasmid Construction. Luciferase reporter vectors containing the distal pro-
moter (dP), MIEP, iP1, or iP2 promoters have been previously described (9).
Details of additional plasmids used in this study are described in S/ Appendix,
Supplemental Materials and Methods.

Luciferase Assays. Luciferase assays were performed as described previously
(17). Luciferase activity was measured 24 h after transfection of Hela cells
and normalized to the protein concentration in the sample. Luciferase reac-
tions were performed in duplicate for each sample and averaged, and the
graphs show the mean values of at least three biological replicates performed
on different days. Detailed methods are provided in S/ Appendix, Supplemental
Materials and Methods.

Electrophoretic Mobility Shift Assays (EMSA). Double-stranded DNA probes
were incubated with 500 ng purified recombinant FOXO3a protein (Abnova)
on ice for 20 min. The reaction was resolved on polyacrylamide gel and then
transferred to a nylon membrane. Membranes were probed with streptavidin-
horseradish peroxidase (HRP) according to manufacturer’s instructions (Thermo
Fisher) and visualized by chemiluminescence (BioExpress). Detailed methods are
provided in S/ Appendix, Supplementary Materials and Methods.

Western Blotting. Western blotting was performed as described previously
(18). Briefly, cells were lysed in radioimmunoprecipitation assay buffer
containing protease inhibitors and equal amounts of protein were resolved
on sodium dodecyl sulfate/polyacrylamide gel electrophoresis gels. Proteins
were transferred to nitrocellulose membranes (Amersham) and probed with
primary antibodies followed by horseradish peroxidase-coupled secondary
antibodies. Membranes were visualized by chemiluminescence (ECL) reagent
(BioExpress) using a chemiluminescence detection system (Bio-Rad). Detailed
methods are provided in S/ Appendix, Supplementary Materials and Methods.

Hale et al.

In Silico Analysis of FOXO Binding Sites in the MIE Locus. The program Find
Individual Motif Occurrences (FIMO; ref. 19) was used to search intron A of
the MIE genomic locus for the two known FOXO binding motifs RWAAAYAA
and MMAAAYAA. Only sites with a threshold P value of P <0.01 were
considered.

Results

We recently described a mechanism by which the reexpression of
the UL123 and UL122 mRNAs during HCMYV reactivation is
driven by the alternative promoters iP1 and iP2 (Fig. 14), rather
than the MIEP (10). While iP1 and iP2 promoters are necessary
for efficient reactivation, the factors regulating their activity are
unknown. Reactivation is induced by differentiation of mono-
cytes into macrophages or by treating latently infected cells with
phorbol esters (e.g., TPA) (10) or LY294002 (20, 21), a chemical
inhibitor of the PI3K/mTOR pathway. Phorbol esters, L'Y294002,
and monocyte differentiation all activate the FOXO family of
transcription factors (22). An in silico analysis of the HCMV MIE
locus identified three potential FOXO binding sites located be-
tween the iP1 and iP2 transcription start sites (TSSs) (Fig. 1B).
We thus hypothesized that FOXO transcription factors stimulate
iP1, iP2, or both, resulting in increased transcription of the UL123
and UL122 mRNAs and HCMYV reactivation.

To test this hypothesis, we first determined if FOXO TFs
stimulated the activity of the iP1 and iP2 promoters outside the
context of infection. Of the four members of the FOXO family of
transcription factors, FOXO1 and FOXO3a are ubiquitously
expressed in many tissues, including bone marrow, whereas
FOX04 and FOXO6 expression was limited to specific tissues or
not detectable (23). Further, FOXO1 and FOXO3a play critical
roles in hematopoietic stem cell maintenance and differentiation
processes linked to HCMV latency (24, 25). We cotransfected
vectors expressing FOXO1 and FOXO3a with reporter con-
structs containing the dP, MIEP, iP1, or iP2 promoters upstream
of luciferase. We found neither FOXO1 nor FOXO3a affected
the activity of the MIEP or the dP, but either FOXO1 or
FOXO3a significantly increased the activity of both iP1 and iP2
(Fig. 2 A and B). We mutated critical nucleotides in each po-
tential FOXO binding site in the iP2 construct, as iP2 was the
most FOXO-responsive promoter (shown in Fig. 1B), and also
generated a reporter construct containing mutations in all three
binding sites to determine if FOXO binding to multiple sites had
a cooperative effect. Mutating any of the three potential FOXO
binding sites, either alone or in combination, significantly de-
creased iP2 induction by FOXO transcription factors (Fig. 2 C
and D).

We next determined how FOXO transcription factors affect
IE1 and IE2 expression in the context of the MIE locus. To this
end, we measured IE1 and IE2 protein levels in cells cotrans-
fected with FOXO expression vectors and the plasmid pSVH,
which contains the entire MIE locus, from 840 base pairs up-
stream of the MIEP TSS through the 3" UTR of exon 5 (26-28).
In this construct, the MIEP is the predominant promoter driving
transcription of UL123 and UL122 mRNA, and both iP1 and iP2
are minimally active (9). We found expression of FOXO3a, but
not FOXO1, resulted in a slight, but reproducible, increase in
IE1 and IE2 protein levels (SI Appendix, Fig. S1).

To confirm that FOXO TFs increase IE1 and IE2 expression
independently of the MIEP, we repeated the above experiments
using a variant of the pSVH plasmid where the core MIEP is
deleted (pPSVHAMIEP). We previously showed that IE1 and IE2
expression from this plasmid is driven exclusively by the iP1 and
iP2 promoters (9). As before, deleting the core MIEP promoter
greatly decreased IE1 and IE2 protein levels (Fig. 34). In con-
trast to the luciferase reporters, FOXOL1 expression had minimal
effect on IE1 or IE2 protein levels in this setting. However,
FOXO03a expression significantly increased IE1 and IE2 protein
levels (Fig. 34). Surprisingly IE1 and IE2 protein levels were
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HCMV intronic promoters contain FOXO TF consensus sites. (A) Schematic showing the location of the intronic promoters iP1 and iP2 and potential

FOXO TF binding sites in the major immediate early intronic promoter locus. (B) The intronic promoters were searched against the two consensus binding
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the mutants described in Figs. 2-6.

comparable to levels in cells transfected with the wild-type MIE
locus in the presence of FOXO3a (Fig. 34).

As FOXO1 had minimal impact on IE1/2 expression in the
context of the MIE locus, we focused further studies on FOXO3a.
Mutating any of the potential FOXO TF binding sites abrogated
the effects of FOXO3a on IE1 and IE2 protein (Fig. 3B) and
UL 123 and UL122 mRNA levels (Fig. 3C). The increase in UL123
and UL122 mRNA correlated with a matching increase in tran-
scription from the iP1 and iP2 promoters (Fig. 3C), suggesting
that FOXO3a increases UL123 and UL122 mRNA by stimulating
iP1 and iP2 activity.

To determine if FOXO TFs directly bind FOXO-responsive
sites in the MIE intronic promoters, we used an EMSA to
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Fig. 2. (A) MIE intronic promoters are activated by FOXO. (A and B) Hela
cells were cotransfected with FOXO overexpression plasmids and previously
described luciferase reporter constructs containing the four promoters in the
MIE genomic locus 5’ of the luciferase gene; the distal promoter (dP), the
major immediate early promoter (MIEP), intronic promoter 1 (iP1), and
intronic promoter 2 (iP2). Luciferase activity was measured at 24 h after
transfection and normalized to the amount of protein in the sample. A
previously characterized positive control ([+] control) was included which
contains three consensus FOXO binding sites 5’ of the luciferase gene. The
parental luciferase plasmid pGL3 basic, which lacks a promoter upstream of
luciferase, served as a control. The graphs show the fold change in activity of
each promoter in the presence of FOXO3a (A) or FOXO1 (B) compared to the
pGL3 basic control. (C and D) Each potential FOXO binding site in the iP2
promoter was mutated either alone (mut1, mut2, and mut3) or in combi-
nation (mut123).The reporters were cotransfected with either FOXO3a (C) or
FOXO1 (D), and luciferase assays were performed as above (n = 3; *P < 0.05,
**P < 0.05, ***P < 0.005).
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measure binding of recombinant FOXO3a to double-stranded
oligonucleotides containing each of the three potential FOXO
binding sites. FOXO3a bound to each of the three sites, with
FOXO site 3 exhibiting the greatest binding (Figs. 1 and 44). Mutating
each of the potential FOXO sites using the same strategy as
above decreased FOXO3a binding to each site (Fig. 4 4 and B).
Together with the results above, these data show FOXO3a can
directly bind specific sequences within the intronic promoter
region, suggesting that the effect of FOXO3a on ULI23 and
UL122 mRNA and IE1 and IE2 protein expression is not due to
an indirect effect on other cellular pathways.

We next sought to define the role of FOXO TFs in stimulating
iPs during HCMYV reactivation. We considered depleting FOXO
TFs from latently infected cells; however, FOXO TFs play crit-
ical roles in cellular differentiation (29). Therefore any reac-
tivation phenotypes found in FOXO-depleted, latently infected
cells could be due to defects in differentiation, defects in intronic
promoter activation, or both. To circumvent this issue, we gen-
erated a recombinant virus containing mutations in the FOXO
binding sites between iP1 and iP2 and measured the effects on
virus replication and latency. In fibroblasts, the recombinant virus
expressed viral immediate early (IE), early (E), and late (L)
proteins (SI Appendix, Fig. S2B) similarly to the wild-type virus
control, and replicated to equivalent titer and with similar kinetics
as wild-type virus (SI Appendix, Fig. S24). These results are con-
sistent with our previous results showing a minor role for iP1 and
iP2 in HCMV lytic replication in fibroblasts (9, 10).

To determine the role of FOXO binding to the iP1 and iP2
promoters in regulating reexpression of major immediate early
genes in hematopoietic cells, we infected THP-1 cells, a model
system for HCMV latency studies (30-33), with wild-type virus or
the recombinant containing mutations in all three FOXO binding
sites (Fig. 54). Although THP-1 cells are limited in their capacity
to recapitulate every aspect of HCMYV latency and reactivation,
our prior work demonstrates that HCMV gene expression is
largely silenced in THP-1 cells following a transient burst of gene
expression, and that TPA treatment induces a transcriptional
reexpression of HCMV MIE mRNAs and proteins, despite their
failure to produce high titers of viral progeny (10). THP-1 cells
were infected to similar levels with the wild-type and mutant
viruses, as determined by the percentage of GFP-positive cells
at day 1 after infection (Fig. 5B), and both WT and FOXOmut123
viral genomes were maintained during the latency period (days 1
through 5) prior to TPA treatment (Fig. 5C).

Similar to infection with viruses lacking the entire iP1 and iP2
elements (10), mutating FOXO binding sites in iP2 decreased IE
protein accumulation at 1 d postinfection (dpi) (Fig. 5D). A
quiescent infection was established after infection with either the
WT or FOXOmut123 viruses, as IE proteins were expressed at
levels below the limit of detection from 3 dpi through 9 dpi in the
DMSO-treated control groups. The mutant virus expressed ap-
preciably less IE1 and IE2 protein relative to the WT infection
(Fig. 5D) after the addition of TPA to stimulate reactivation. To
determine the promoters driving IE gene expression, we quantified

Hale et al.
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FOXO binding sites in the intronic promoters play an important
role in the initial early burst of MIE expression, and TPA-induced
MIE reexpression in THP-1 cells. Further, we analyzed FOXO TF

(8I Appendix, Fig. S3B. This finding aligns with differentiation-
induced changes in host TF abundance as a driver of reactivation
(20, 34).

expression in THP-1 cells pre- and postdifferentiation with TPA.
Consistent with FOXO3a playing a critical role in stimulating iP1
and iP2 (Figs. 3 and 4), accumulation of FOXO3a, but not
FOXO1, transcripts were induced following TPA treatment (S
Appendix, Fig. S34), and FOXO3a protein levels were increased
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We next measured the impact of FOXO TF binding to the
intronic promoters during infection of primary CD34% bone
marrow-derived HPCs, the gold standard experimental latency
model. Unlike the THP-1 cell line model, primary cells produce
quantifiable numbers of viral progeny during HCMV reactivation
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(35-37). Pure populations of infected CD34" HPCs were isolated
and cultured for 10 d. The frequency of infectious centers was
quantified following reactivation and compared to the frequency
present in a lysate prepared at the time of reactivation (pre-
reactivation control). We observed a significant decrease in the
amount of infectious virus produced following reactivation of the
recombinant virus as compared to wild-type virus (Fig. 64). The
reduced frequency of reactivation for FOXOmut123 virus cannot
be attributed to a defect in maintenance of the latent infection, as
recombinant genomes are present in similar, or even higher
numbers, when compared to wild-type genomes on day 10 of the
latency coculture (Fig. 6B). Together these data show that while
dispensable for lytic replication, FOXO TF binding sites in the
intronic MIE promoters play critical roles in HCMV reactivation.

Discussion

Contrary to the long-held paradigm that viral MIE gene reex-
pression during reactivation requires the MIEP, we recently
discovered two promoters in the MIE locus, iP1 and iP2 (9), that
are necessary for IE gene reexpression and HCMV reactivation
(10). Here we begin to unravel the regulatory mechanisms con-
trolling iP1 and iP2 activity by showing that the FOXO transcription
factors are critical positive regulators of MIE gene expression from
iP1 and iP2 in hematopoietic cells. As FOXO transcription factors
also drive cellular differentiation, our results provide a mechanism
by which HCMYV senses and responds to changes in cellular
differentiation to regulate reactivation.

Both FOXO1 and FOXO3a can activate the intronic pro-
moters (Fig. 2); however, our results suggest that FOXO3a is the
critical FOXO transcription factor required for reactivation.
While FOXOL1 increased intronic promoter activity from a luciferase
reporter (Fig. 2B), FOXO1 did not significantly impact IE1 and
IE2 protein expression in the context of the more complex MIE
genomic locus (Fig. 34). In the context of latent infection, both
FOXO1 and FOXO3a are induced above the basal expression
levels present in uninfected cells. However, only FOXO3a is
induced significantly following TPA-induced reactivation, which
mirrors with the reexpression of the HCMV major immediate
early genes from the intronic promoters (SI Appendix, Fig. S3).
While FOXO1 and FOXO3a are both expressed in hematopoi-
etic cells, FOXO3a more efficiently localizes to the nucleus in
myeloid progenitor cells, particularly during cellular stresses
such as those that induce reactivation (38, 39). Further, FOXO3a
regulates monocyte-to-macrophage differentiation (29, 40), while
FOXO1 promotes maintenance of stemness in CD34" HPCs (29).

FOXO3a also directly binds specific sequences in the intronic
promoters (Fig. 4) and strongly increases their activity (Fig. 2).
While additional studies are needed to more fully elucidate the
role of specific FOXO TFs in HCMV biology, these data suggest
that FOXO3a is a particularly crucial positive regulator of viral Iytic
gene expression in the contexts of HCMYV latency and reactivation.

Our data also provide new insight into the roles of intronic
promoters in the context of latency and reactivation. While de-
leting either iP1 or iP2 decreases reactivation, transcripts arising
from the iP2 promoter were more abundant upon reactivation
(10). Our data show that FOXO binding sites in the intronic
promoters are critical for efficient reactivation (Fig. 64), sug-
gesting that activation of iP1 and iP2 by FOXO TFs is critical for
MIE gene expression during reactivation. The effect of FOXO
binding site mutation on both iP1 and iP2 activity further sug-
gests that transcription from these elements is coordinated.

Our data also show that FOXO binding sites in iP1 and iP2 are
critical for the early burst of MIE gene expression immediately
after infection of THP-1 cells (Fig. 5), consistent with the re-
quirement for iP1 and iP2 for efficient MIE gene expression
early after infection of THP-1 cells (10). Going forward, it will be
important to understand how this early burst of MIE gene ex-
pression impacts latent infection and reactivation, and how
FOXO TFs regulate MIE expression during different stages of
infection. It is intriguing that mutation of the FOXO binding
sites in the intronic promoter region also leads to a statistically
significant reduction in the accumulation of MIEP-derived tran-
scripts at 1 dpi, but not during reactivation induced by TPA
treatment (Fig. 5E). These data suggest that the MIEP, iP1, and
iP2 share common regulatory elements, and that the activity of
these promoters may be coordinated to ensure proper contextual
and temporal regulation of MIE gene expression. Further sup-
port for this idea comes from recent studies showing that host TF
binding sites associated with the MIEP enhancer can also impact
the activity of the intronic promoters (34, 41).

While we define a role for FOXO TFs in reactivation, our data
also suggest additional factors regulate intronic promoter activity
and HCMYV reactivation, as mutation of all three FOXO binding
sites in the intronic promoter region did not result in a complete
loss of reactivation, highlighting the complexity of the MIE locus.
Several transcription factors are implicated in reactivation (7, §,
34, 42, 43) suggesting they may also regulate intronic promoter
activity. For example, AP1 transcription factor binding sites in
the MIE enhancer are required for efficient IE gene reexpression
and intronic promoter activation during reactivation (44). Further
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Fig. 6. FOXO binding sites are necessary for efficient HCMV reactivation in CD34* HPCs. CD34* HPCs were infected with TB40/E WT or FOXOmut123 at a MOI
of 2. Pure populations of infected (GFP*) CD34* HPCs were isolated by FACS and seeded into long-term bone marrow cultures. (A) At 10 dpi, viable CD34* HPCs
(reactivation) or an equivalent cell lysate (prereactivation control) were seeded by limiting dilution onto fibroblast monolayers in a cytokine-rich media to
promote myeloid differentiation. Infectious centers (GFP* fibroblasts) were scored 14 d later and are expressed as frequency of infectious centers. Error bars
represent SEM for three independent biological replicates. Statistical significance was determined using two-way analysis of variance (ANOVA) with repeated
measures by both factors (wild type vs. mutant and prereactivation vs. reactivation where *P < 0.05). (B) Total DNA was isolated at 10 dpi and viral genomes
were quantified relative to cellular DNA by qPCR using primers to the 2.7 region of the HCMV genome and the cellular gene RNase-P. Data from two

independent biological replicates are shown; mean is depicted.
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studies are needed to identify additional transcription factors that
regulate the intronic promoters in conjunction with FOXO TFs to
control HCMYV reactivation.

Data Availability. Data and associated protocols for this work are
provided herein or in ST Appendix. Unique biochemical reagents
are available by contacting the corresponding author.
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