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Objective. Gestational diabetes mellitus (GDM) is a pathological condition, affecting an increasing number of pregnant women
worldwide. Safe and effective treatment for GDM is very important for the public health. In this study, we utilized a high-fat diet-
induced GDM model to evaluate the effects of LBP on GDM and examined the changes of exosomal microRNA expression
profiling to decipher the potential underlying mechanism of LBP.Methods. Female C57BL/6J mice were fed a control diet, HFD,
or 150mg/kg LBP-supplemented HFD for 6 weeks before conception and throughout gestation. Oral glucose tolerance test and
plasma lipid levels were determined, and liver histopathology was assessed. Sequencing was used to define the microRNA
expression profiling of plasma exosomes in the three groups of mice, and protein expression levels of the candidate target genes
were analyzed. Results. LBP significantly relieved glucose intolerance, abnormal plasma lipid levels, and pathomorphological
changes of liver histopathology in HFD-induced GDM mice. Moreover, we found that this effect of LBP was mediated by
downregulation of the increase of 6 miRNAs (miR-93-3p, miR-188-5p, miR-466k, miR-1188-5p, miR-7001-3p, andmiR-7115-5p)
and reversing the increase of the protein expression of CPT1A, which is the target gene of miR-188-5p. Conclusions. Our findings
provide novel insights into the biological activities of LBP in the treatment of GDM.

1. Introduction

Gestational diabetes mellitus (GDM) is a pathological
condition, characterized by glucose intolerance or hyper-
glycemia resulted from insufficient insulin production or
signaling in pregnant women [1]. GDM now affects 2% to
10% of pregnancies and up to 20% of pregnancies in some
countries, such as China and India [2, 3]. Not only has GDM
been associated with elevated risks of other complications
during pregnancy but also poses long-term risks for both
mothers and their offspring [4, 5]. *erefore, safe and ef-
fective treatment for GDM is very important for the public
health.

MicroRNAs (miRNAs) are a class of RNA molecules
which play important roles in many biological processes [6].
Extensive studies showed that dysregulation of miRNA
expression has been associated with diabetes mellitus [7, 8].
Furthermore, growing evidences indicate that miRNAs are
involved in the pathogenesis of GDM [9, 10]. miRNAs show
great potential as first trimester biomarkers for GDM as they
are located within extracellular vesicles such as exosomes
and can be highly stable in body fluids [11]. Exosomes are
characterized as 30–100 nm spherical, bilayer lipid vesicles
which were generated inside multivesicular endosomes or
multivesicular bodies of most nucleated cells and are se-
creted by exocytosis [12]. Exosomes can mediate cellular
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communication under both normal and pathological con-
ditions [13]. It has been demonstrated that the concentration
of exosomes in plasma increased with gestational age in
pregnant women with GDM [14]. Studies have shown that
miRNAs within exosomes can be profiled and used as
biomarkers for GDM [15, 16]. Consequently, it is necessary
to study the role of exosome miRNAs in GDM in-depth.
However, the role and miRNA expression profiles of exo-
somes in GDM remain largely unknown, with studies all
specifically focused on human samples [17–23].

Lycium barbarum is well known in traditional Chinese
herbal medicine and has been widely used as popular
functional food for maintaining and promoting the health.
Lycium barbarum polysaccharide (LBP) is the major active
ingredient isolated from Lycium barbarum and possesses a
large variety of biological activities. Previous studies have
demonstrated that LBP can improve lipid metabolism
profiles in animal and human models [24, 25]. Moreover,
LBP showed antidiabetic effects in diet-streptozotocin-in-
duced diabetic rats [26] and in patients with type 2 diabetes
[27]. However, whether LBP exhibited beneficial effects
against GDM is still unclear.

In this study, we utilized a high-fat diet-induced GDM
model [28, 29] to evaluate the effects of LBP on GDM and
examined the changes of exosomal microRNA expression
profiling to decipher the potential underlying mechanism
explaining the beneficial role of LBP on GDM.

2. Materials and Methods

2.1. Animals and Diet. Animal experiments were approved
by the Animal Care and Use Committee of Jinan University
(approval no. 2017031705005). Animal experiments were
performed in the laboratory animal research center of Jinan
University.*emethods were carried out in accordance with
the approved guidelines. Sixty female C57BL/6 J mice at the
age of 8 weeks were obtained from Guangdong Medical
Laboratory Animal Center (approval no. SCXK (Yue)
2013–0002). All the animals were maintained in a tem-
perature-controlled room (22°C–25°C; 35–55% humidity)
with a twelve-hour light/dark cycle. Mice were allowed free
access to food and water. Mice were randomly divided into
three groups (n� 20 per group): control diet (control,
D12450B, 10 kcal% fat), high-fat diet (HFD, D12451, 45 kcal
% fat), and 150mg/kg LBP-supplemented high-fat diet
(HFD+LBP). LBP was purchased fromNingxia Agricultural
and Forestry College. After six-week dietary intervention,
female mice were mated with lean male mice. Mating was
confirmed by the presence of a vaginal mucous plug the
following morning, which represented gestation day (GD) 0.

2.2. BodyWeight and Lipids. Body weight was recorded on a
top-loading balance (Fisher Scientific) before dietary in-
tervention after 6 weeks of HFD and at GD7 and GD16.
Lipid levels were measured at gestation day 20. Mice were
anesthetized with pentobarbital sodium (60mg/kg ip), and
blood was collected by removing the left eyeball of the mice.
*en, the blood samples were rapidly centrifuged at 1000 g at

4°C for 10min. Plasma levels of triglycerides (TG), total
cholesterol (TC), low-density lipoprotein-cholesterol (LDL-
C), and high-density lipoprotein-cholesterol (HDL-C) were
measured using a multifunctional biochemistry analyzer
(Olympus AU2700, Tokyo, Japan).

2.3. Oral Glucose Tolerance Test. Glucose tolerance was
measured at GD16. Following a 6 h fast, mice were given 2 g/
kg glucose solution via oral gavage [30]. Blood samples were
collected from the tail at 0, 30, 60, 90, and 120min, and
glucose was measured using a hand-held glucometer (Roche
Diabetes Care GmbH, UK).

2.4. Histopathology. At GD20, mice livers from all groups
were removed and fixed immediately in 10% neutral buff-
ered formalin, dehydrated in gradual ethanol (50%–100%),
cleared in xylene, and embedded in paraffin. Sections
(4–5 μm thick) were prepared and stained with hematoxylin
and eosin (H&E) for morphologic analysis by light
microscopy.

2.5. Western Blot. Liver tissues were homogenized in radi-
oimmunoprecipitation assay (RIPA) buffer containing
protease inhibitor cocktail and phenylmethylsulfonyl fluo-
ride (PMSF). Liver extracts were centrifuged at 13,000 rpm
for 10min, and the supernatant was collected for use in
western blot. Protein concentration in supernatants was
quantified using the BCA reagent. Aliquots of proteins were
analyzed by 12% SDS-PAGE and transferred to the nitro-
cellulose membrane. *e membrane was then immersed in
blocking buffer (PBS, 0.1% Tween 20) containing 5% nonfat
milk for 1 h and then incubated with primary antibodies
HMGCR (ab174830) and CPT1A (CST-12252) (1 :1000
dilution in blocking buffer) overnight at 4°C. *e mem-
branes were further incubated with horseradish peroxidase-
conjugated secondary antibodies (1 : 2000; Santa Cruz,
USA). Chemiluminescence was detected by the Pierce® ECLwestern blotting substrate (*ermo Fisher Scientific, USA).
*e intensity of the bands was quantified using the western
blotting detection system Quantity One 4.31 (Bio-Rad,
USA).

2.6. Exosome Isolation from Plasma and RNA Extraction.
Twelve of the pregnant mice in each group were used to
perform miRNA sequencing. Exosomes from plasma were
isolated using RiboTMExosome Isolation Reagent (RiboBio,
Guangzhou, China) according to the manufacturer’s in-
structions. For exosomal RNA extraction, total RNA was
extracted using TRIzol reagent (Invitrogen, Carlsbad, CA).
*e concentration and purification of RNAwere determined
by a spectrophotometer (NanoDrop Technologies, Wil-
mington, DE). *e RNA integrity was evaluated by the
Agilent 2200 TapeStation (Agilent, Santa Clara, CA). Fixed
quantities of RNA of four samples from one group were
combined into a single sample. *us, each group has three
biological repeats.
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2.7. miRNA Library Preparation and Sequencing. Library
preparation and sequencing was conducted at RiboBio Co.,
Ltd. Total RNAs from exosomes were subjected to RNA 3′
adapter ligation and RNA 5′ adapter ligation. *en, the first
strand cDNA was synthesized, and PCR amplification was
performed. Small RNAs ranging between 18 and 40 nu-
cleotides (nt) were used for library preparation. Finally,
sequencing was performed using the Illumina HiSeq 2500
next-generation sequencing platform.

We performed several filtering steps after obtaining the
raw reads. Reads that met the following filtering criteria were
removed: (1) no 3′ adapter, (2) 5′adapter, (3) excessively
long poly A/T sequence, (4) short-sequence reads
(length< 18 nt), or (5) low quality. A low-quality read was
defined as a read in which >20% of the read bases had a
quality value (the error rate of each base sequencing) of ≤20.
We also removed reads containing >10% of N bases among
the total. *en, further analysis can be conducted. Further
analysis identified several categories of small RNAs (miRNA,
rRNA, tRNA, snRNA, snoRNA, and piRNA). *e annota-
tion of measured small RNAs (rRNA, tRNA, snRNA, and
snoRNA) was mapped to Rfam 12.1 (rfam.xfam.org).
*e annotation of piRNA was mapped to piRNABank

(pirnabank.ibab.ac.in). *e remaining sRNAs were mapped
to miRBase 21.0 (http://www.mirbase.org) to identify the
known miRNAs. miRNA expression levels were estimated
by the number of reads per million (RPM).

2.8. Bioinformatics Analysis of miRNA. Target genes of the
differentially expressed miRNAs with P< 0.05 were pre-
dicted by four databases, TargetScan, miRDB, miRWalk, and
miRTarBase. Gene ontology (GO) functional annotation and
Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathway enrichment analysis were performed on candidate
target genes of the common differentially expressedmiRNAs
in the three groups using KOBAS 2.0 software.

2.9. Real-Time Quantitative RT-PCRVerification of RNA-Seq
Data. To further confirm the findings from the RNA-seq
analysis, we used the real-time quantitative RT-PCRmethod
to examine the common differentially expressed miRNAs
(miR-93-3p, miR-188-5p, miR-466k, miR-1188-5p, miR-
7001-3p, and miR-7115-5p) identified in the HFD/control
and HFD+LBP/HFD comparisons. Total RNA was
extracted from liver tissues of mice in each group using the
TRIzol reagent (Invitrogen, CA, USA) according to man-
ufacturer’s protocol.*emiRNAs’ primers were designed by
RiboBio Co., Ltd (Guangzhou, China). qRT-PCR was per-
formed with SYBR Premix ExTaqTM II (Takara, Dalian,
China) using CFX96 PCR System (Bio-Rad). Relative ex-
pressions were normalized to the expression of U6 and
calculated using the 2-ΔΔCT method.

2.10. Statistical Analysis. All data are expressed as mean-
± SEM. One-way analysis of variance (ANOVA) was used to
detect statistical significance followed by Tukey post hoc

multiple comparisons using software SPSS 22.0. Values of
P< 0.05 were considered to be significant.

3. Results

3.1. Effect of LBP on Body Weight in Experiment Mice. As
shown in Table 1, body weight of the control group mod-
erately increased throughout the pregnancy, from a mean of
17.9 g before the feeding trial to 20.8 g at the end of HFD,
23.1 g at GD7, and 29.3 g at GD16. In contrast, the HFD
group rapidly increased in body weight from a mean of
17.8 g before the feeding trial to 22.4 g at the end of HFD,
25.1 g at GD7, and 30.9 g at GD16. *e HFD-treated mice
weighed significantly more than the control at the end of
HFD and GD7. Body weight of mice in the HFD+LBP
group was not significantly different as compared with that
of the HFD group.

3.2. Effect of LBP on Glucose Intolerance in Experiment Mice.
At the end of HFD and GD16, glucose tolerance was ex-
amined by oral glucose tolerance test. HFD feeding tended to
increase glucose AUC at the end of HFD, but this effect failed
to reach statistical significance (Figures 1(a) and 1(b)). At
GD16, the HFD group showed significantly higher fasting
blood glucose level than the control group (10.24± 0.29 vs.
8.98± 0.15). HFD dams exhibited prominent glucose in-
tolerance compared with the control group as indicated by
significantly elevated glucose levels at 30, 60, 90, and 120min
and greater AUC (Figures 1(c) and 1(d)). LBP treatment was
able to largely alleviate glucose levels at 0, 90, and 120min
and glucose AUC in comparison with the HFD group
(Figures 1(c) and 1(d)).

3.3. Effect of LBP on Plasma Lipid Levels in Experiment Mice.
Table 2 shows significant increases in the levels of plasma
TG, TC, and LDL-C and a decrease in the level of plasma
HDL-C of the HFD group in comparison with the control
group. *e administration of LBP prevented increase of TC,
TG, and LDL-C and decrease of HDL-C in HFD mice. *e
results indicated that LBP could attenuate the abnormal
changes of lipid profiles in GDM.

3.4. Histopathological Analysis. As shown in Figure 2, liver
sections of mice in the control group had a normal structure
in the hepatic cell with distinct nucleus, preserved cyto-
plasm, and central vein. Livers of HFD-treated mice dis-
played lymphocytic infiltration, massive fatty degeneration,
and loss of cellular boundaries. Mice in the HFD+LBP
group exhibited marked improvements in fat deposition and
inflammatory cell infiltration, suggesting that LBP can
prevent the pathomorphological changes of liver
histopathology.

3.5. Exosomal Small RNA Transcriptome Profiling.
Exosomes have been demonstrated to contain several cat-
egories of small RNAs, including miRNA, tRNA, rRNA,
snRNA, snoRNA, piRNA, Y_RNA, and unannotated RNAs.
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*e percentages of miRNA in the total small RNA isolated
from the control group, HFD group, and HFD+LBP group
corresponded to 16.76, 17.83, and 15.77%, respectively
(Figure 3). *e clean miRNA reads of each sample were
mapped to miRBase 21.0. *e results of sequence statistics
among the samples are listed in Table 3.

3.6. Differentially Expressed miRNAs between Samples.
Using P< 0.05 as the threshold cutoff, the differentially
expressed miRNAs between groups were analyzed. Com-
pared with the control group, 18 miRNAs were found to be
significantly differentially expressed in the HFD group (7
downregulated and 11 upregulated). Compared with the
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Figure 1: Effect of LBP on glucose intolerance in experiment mice. Glucose tolerance in dams at the end of HFD (a, b) and GD16 (c, d) of
mice fed control, HFD, or HFD+LBP diets. ∗P< 0.05 vs. control. #P< 0.05 vs. HFD. GD: gestation day; HFD: high-fat diet; LBP: Lycium
barbarum polysaccharide.

Table 1: Effect of LBP on body weights of mice in the three groups.

Time Control group HFD group HFD+LBP group
Before HFD 17.9± 0.2 17.8± 0.3 17.6± 0.2
End of HFD 20.8± 0.2 22.4± 0.6∗ 22.7± 0.4∗
GD7 23.1± 0.3 25.1± 0.5∗ 24.9± 0.3∗
GD16 29.3± 0.5 30.9± 0.9 31.0± 0.4
∗P< 0.05 vs. control group. GD: gestation day; HFD: high-fat diet; and LBP: Lycium barbarum polysaccharide.
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HFD group, 16 miRNAs were found to be significantly
differentially expressed in the HFD+LBP group (6 down-
regulated and 10 upregulated). As shown in Table 4, 6
common differentially expressedmiRNAs (miR-93-3p, miR-
188-5p, miR-466k, miR-1188-5p, miR-7001-3p, and miR-
7115-5p) were identified in the two comparisons, and LBP
treatment can recover the expression levels of 6 miRNAs to
normal level.

3.7. Enriched GO and KEGG Pathway Analysis.
Candidate target genes for 6 common differentially
expressed miRNAs in the two comparisons were predicted
bioinformatically. GO analysis classified genes by biological
process, molecular function, and cellular component. In
biological process, genes were mainly enriched in protein
modification by small protein conjugation or removal,
cellular protein catabolic process, and ubiquitin-dependent
protein catabolic process. In the cellular component, genes
were mainly enriched in the synapse part, postsynapse, and
synapse. In molecular function, genes were mainly enriched
in ubiquitin-like protein transferase activity, ubiquitin-
protein transferase activity, and GABA receptor activity
(Figure 4).

KEGG pathway analysis suggested that the genes were
evidently enriched in the phospholipase D signaling path-
way, MAPK signaling pathway, FoxO signaling pathway,
dorsoventral axis formation, insulin resistance, choline
metabolism in cancer, renal cell carcinoma, insulin signaling
pathway, and cAMP signaling pathway (Figure 5).

3.8. Effect of LBP on Common Differentially Expressed
miRNAs by qRT-PCR. qRT-PCR was used to validate the
expression levels measured by RNA-seq for common dif-
ferentially expressed miRNAs (miR-93-3p, miR-188-5p,
miR-466k, miR-1188-5p, miR-7001-3p, and miR-7115-5p)

in livers. As demonstrated in Figure 6, qRT-PCR showed
significant increase in the expression of the 6 miRNAs in the
HFD group than the control group, and LBP can decrease
the expression levels of the 6 miRNAs, which was in cor-
respondence with the findings from the RNA-sequencing
analysis.

3.9. Effect of LBP on Proteins Associated with Insulin Resis-
tance in Livers. We used western blot to determine the effect
of LBP on proteins’ expression level of the candidate target
genes involved in insulin resistance in mice livers. In HFD
and HFD+LBP groups, the protein expression of 3-hy-
droxy-3-methylglutaryl-coenzyme A reductase (HMGCR),
which is the target gene of miR-93-3p, was similar to that of
the control group (Figure 7(a)). In the HFD group, protein
expression of the miR-188-5p target gene carnitine O-pal-
mitoyltransferase 1 (CPT1A) was significantly reduced
compared with that of the control group (Figure 7(a)). *e
decrease of the protein expression of CPT1A in HFD mice
was notably reversed by LBP treatment (Figure 7(b)).

4. Discussion

*e pathogenesis of GDM is complex. Previous studies have
demonstrated that genetic predisposition and pregnancy
hormones contribute to the development of GDM [31, 32].
However, genetic and hormonal factors are unable to fully
explain the pathogenesis of GDM. Environmental factors such
as HFD are important constituents of promoting insulin re-
sistance and obesity in pregnancy [33]. Recently, increasing
numbers of women are consuming diets high in fats during
their pregnancy. As a consequence, being overweight or obese
before or throughout pregnancy is amajor risk factor forGDM.
In the present study, we utilized a HFD (45% kcal fat) in female
mice 6 weeks prior to mating to induce weight gain before
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Figure 2: Photomicrograph of a section of the liver of a control diet-fed mouse (a), a HFD-fed mouse (b), and a HFD+LBP diet-fed mouse
(c). HFD: high-fat diet; LBP: Lycium barbarum polysaccharide.

Table 2: Effect of LBP on lipid profiles of mice in the three groups.

Control group HFD group HFD+LBP group
Plasma TC (mmol/L) 0.94± 0.06 2.03± 0.08∗ 1.49± 0.08#
Plasma TG (mmol/L) 0.53± 0.03 0.99± 0.06∗ 0.70± 0.04#
Plasma LDL (mmol/L) 0.14± 0.01 0.31± 0.02∗ 0.20± 0.02#
Plasma HDL (mmol/L) 0.45± 0.04 0.28± 0.02∗ 0.48± 0.05#
∗P< 0.05 vs. control group; #P< 0.05 vs. HFD group. HFD: high-fat diet; LBP: Lycium barbarum polysaccharide.
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Figure 3: *e percentage of small RNA categories in all reads mapped to noncoding RNA databases of mice in the control, HFD, and
HFD+LBP groups. HFD: high-fat diet; LBP: Lycium barbarum polysaccharide.
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pregnancy and observed elevated gestational weight gain,
impaired glucose tolerance, and abnormal plasma lipid levels,
which are clinically similar to human GDM.

Although increasing studies have been conducted on
diabetes, very few research studies were specifically tailored
towards GDM. LBP has been reported to possess a beneficial
effect on diabetes [25, 26]. Given the relative similar cause
and symptoms between diabetes and GDM, LBP is highly
likely to exhibit similar functions in alleviating GDM. In-
deed, out results demonstrated that LBP could remarkably
ameliorate maternal glucose intolerance, suggesting that
LBP functioned as a potential antidiabetic agent not only
under general diabetic condition but also under gestation
diabetic condition. *e antidiabetic effect of LBP may as-
cribe to the improvement of abnormal plasma lipid levels

and pathomorphological changes of liver histopathology of
LBP in HFD-induced GDM mice.

To further explore the mechanism of the beneficial role of
LBP on GDM, we examined the changes of exosomal
microRNA expression profiling in all three groups of mice. To
our knowledge, this is the first study investigating miRNAs in
GDMmice. Previous studies investigatingmiRNAs inGDMall
focused on humans. For example, Zhao et al. reported that
miR-29a, miR-222, and miR-132 were decreased in serum of
women with GDM [17]. Zhu et al. reported that miR-16-5p,
miR-17-5p, miR-19a-3p, miR-19b-3p, and miR-20a-5p were
increased in plasma of women with GDM [20]. Recently,
Almohammadi et al. identified that the expression level ofmiR-
518a-5p, miR-518b, miR-518c, miR-518e, miR-520c-3p, and
miR-525-5p in placental exosomes isolated fromGDMpatients

Table 3: Summary of sequence statistics of the samples.

Group Total reads Clean reads Mapped clean reads Mapping ratio (%)
Control 15,260,745 13,801,051 10,901,115 79.0
HFD 13,924,992 12,783,536 10,191,842 79.7
HFD+LBP 14,557,650 13,240,453 10,955,990 82.7
HFD: high-fat diet; LBP: Lycium barbarum polysaccharide.

Table 4: Differentially expressed miRNAs in the three groups.

miRNA_ID
Log2 (fold change) P value

HFD/control HFD+LBP/HFD HFD/control HFD+LBP/HFD
mmu-miR-466k 10.414 − 10.414 0.011 0.010
mmu-miR-93-3p 10.274 − 10.274 0.013 0.013
mmu-miR-7115-5p 10.009 − 10.009 0.019 0.018
mmu-miR-1188-5p 9.570 − 9.570 0.032 0.030
mmu-miR-7001-3p 9.421 − 9.421 0.046 0.039
mmu-miR-188-5p 9.403 − 9.403 0.049 0.042
mmu-miR-666-5p 10.124 — 0.001 —
mmu-miR-30c-2-3p − 10.867 8.184 0.002 0.161
mmu-miR-7048-3p − 9.827 8.638 0.004 0.104
mmu-miR-6981-5p 9.998 − 1.511 0.019 0.508
mmu-miR-369-5p − 9.812 8.858 0.024 0.099
mmu-miR-6540-5p − 10.048 — 0.025 —
mmu-miR-374b-5p 3.731 — 0.026 —
mmu-miR-709 − 3.26 7.534 0.031 0.338
mmu-miR-8097 9.616 − 2.344 0.031 0.365
mmu-miR-5129-5p 9.437 − 1.336 0.037 0.470
mmu-miR-547-3p − 9.506 6.849 0.046 0.465
mmu-miR-7676-3p − 9.187 — 0.049 —
mmu-miR-7073-5p — − 10.009 — 0.002
mmu-miR-29b-3p − 1.625 7.143 1 0.004
mmu-miR-190b-5p 3.26 − 6.839 0.239 0.019
mmu-miR-378a-5p — − 9.311 — 0.024
mmu-miR-6952-5p 1.158 − 9.586 0.615 0.028
mmu-miR-382-3p − − 9.597 — 0.035
mmu-miR-10b-3p − 4.143 4.737 0.308 0.036
mmu-miR-6967-3p − 9.202 9.462 0.072 0.040
mmu-miR-6994-3p — 9.431 — 0.048
mmu-miR-7036b-5p — 9.588 — 0.049
HFD: high-fat diet; LBP: Lycium barbarum polysaccharide.
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was increased when compared to normal pregnancy [23]. Our
results showed that compared with the control group, 18
miRNAs were found to be significantly differentially expressed
in the HFD group (7 downregulated and 11 upregulated).
However, our results and previous studies share no miRNA in
common. Of the 11 upregulated miRNAs, the increase of 6
miRNAs’ (miR-93-3p, miR-188-5p, miR-466k, miR-1188-5p,
miR-7001-3p, and miR-7115-5p) expression was significantly
reversed by LBP. Studies have proved that some of these
miRNAs are related to diabetes. miR-93 was related with in-
sulin resistance [34], and it was observed that the plasma level
of miR-93-3p was associated with higher risk to develop type 2
diabetes in humans [35]. *e expression of miR-188-5p in-
creased in human proximal tubular epithelial (HK-2) cells
stimulated by high glucose level [36]. *e current state of
evidence for the relationship betweenmiR-466k, miR-1188-5p,
miR-7001-3p, and miR-7115-5p and diabetes has so far been
unknown.

We did the GO and KEGG pathway analysis of the
candidate target genes for the 6 miRNAs, and KEGG
pathway analysis showed that the genes were evidently

enriched in the phospholipase D signaling pathway, MAPK
signaling pathway, FoxO signaling pathway, dorsoventral
axis formation, insulin resistance, etc. Insulin resistance
plays an important role in the development of diabetes.
HMGCR and CPT1A, the target gene of miR-93-3p and
miR-188-5p, respectively, are closely related not only to
insulin resistance but also to abnormal lipid metabolism.
Our results showed that GDM mice had hyperlipidemia.
*erefore, we choose the insulin resistance-related proteins
HMGCR and CPT1A to be verified by western blot. We
found that the protein expression of HMGCR, which is the
target gene of miR-93-3p, was similar in control and GDM
mice, while the protein expression of the miR-188-5p target
gene CPT1A was significantly reduced in GDM mice, and it
can be notably reversed by LBP treatment. CPT1A can
catalyze the entrance of fatty acids into the mitochondria,
and it is the rate-limiting enzyme of hepatic fatty acid
β-oxidation [37]. Our results suggested that LBP had a
positive effect on GDM mice which might be due to the
enhanced hepatic fatty acid oxidation, which resulted in
improved insulin resistance.
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Figure 4: GO enrichment analysis of 6 common differentially expressed miRNAs identified in the two comparisons of HFD/control and
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Figure 6: Effect of LBP on common differentially expressed miRNAs by qRT-PCR in livers. Relative mRNA expression of miR-93-3p (a),
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5. Conclusions

LBP significantly relieved glucose intolerance, abnormal
plasma lipid levels, and pathomorphological changes of liver
histopathology in HFD-induced GDM mice. Moreover, we
found that this effect of LBP was mediated by down-
regulation of the increase of 6 miRNAs (miR-93-3p, miR-
188-5p, miR-466k, miR-1188-5p, miR-7001-3p, and miR-
7115-5p) and reversing the increase of the protein expression
of CPT1A, which is the target gene of miR-188-5p. *e
results provide novel insights into the biological activities of
LBP in the treatment of GDM.
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