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Vernier frequency division with
dual-microresonator solitons
Beichen Wang 1,4, Zijiao Yang1,2,4, Xiaobao Zhang1,3 & Xu Yi 1,2✉

Microresonator solitons are critical to miniaturize optical frequency combs to chip scale and

have the potential to revolutionize spectroscopy, metrology and timing. With the reduction of

resonator diameter, high repetition rates up to 1 THz become possible, and they are

advantageous to wavelength multiplexing, coherent sampling, and self-referencing. However,

the detection of comb repetition rate, the precursor to all comb-based applications, becomes

challenging at these repetition rates due to the limited bandwidth of photodiodes and elec-

tronics. Here, we report a dual-comb Vernier frequency division method to vastly reduce the

required electrical bandwidth. Free-running 216 GHz “Vernier” solitons sample and divide the

main soliton’s repetition frequency from 197 GHz to 995 MHz through electrical processing

of a pair of low frequency dual-comb beat notes. Our demonstration relaxes the instru-

mentation requirement for microcomb repetition rate detection, and could be applied for

optical clocks, optical frequency division, and microwave photonics.
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Optical frequency combs have revolutionized metrology,
time keeping and spectroscopy1–3, and the past decade
has witnessed its miniaturization through optical

microresonators4,5 and dissipated Kerr solitons6,7. These solitary
wave packets leverage Kerr nonlinearity to compensate cavity loss
and to balance chromatic dispersion8–10. They output a repetitive
pulse stream at a rate set by the resonator roundtrip time, which
can range from GHz to THz11–13. The reduction of resonator
mode volume increases the intracavity Kerr nonlinearity, lowers
the operation pump power and extends the comb spectrum span.
This has enabled demonstrations of battery-operated soliton
combs at 194 GHz repetition rate14, and octave-spanning soliton
generation for self-referencing in a resonator with 1 THz free-
spectral-range (FSR)15. High repetition rates (rep-rates) are also
desired in many comb-based applications. For instance, the
maximum acquisition speed in dual-comb spectroscopy16–18,
ranging19,20, and imaging21,22, all increase linearly with the comb
repetition rate.

However, to detect the high repetition rate, a microresonator-
based frequency comb (microcomb) system has to include an
auxiliary frequency comb whose repetition rate can be directly
detected by a photodiode (PD). The detectable repetition fre-
quency is then multiplied up optically through the equally-spaced
comb lines to track the microcombs in action4,15. This limits the
miniaturization of microcomb system as the area occupied by the
resonator scales inverse quadratically with the repetition rate. For
the popular electrical K-band, the auxiliary resonator diameter
has to exceed several millimeters23–26. An approach to divide and
detect microcomb repetition frequency beyond photodiode’s
bandwidth will be critical to eliminate this restriction, and will
advance the frequency comb technology in terms of miniatur-
ization, power consumption and ease of integration.

In this article, we introduce a Vernier frequency division
method to detect soliton microcomb repetition rate well above
the electrical bandwidth in use. In contrast to the conventional
approaches, the Vernier frequency division does not require low-
rate frequency combs. Instead, the rate of the auxiliary combs, fr2,
can be higher than that of the main combs, fr1, and it can be free-
running and stay unknown. The concept is illustrated in Fig. 1.
The main and Vernier soliton comb lines create two free-running
graduation markings on the optical frequency domain, and
similar to a Vernier caliper, these markings coarsely align peri-
odically. Detectable frequency beat notes can be created when the
frequency of the N-th higher-rate comb line catches up with that
of the (N + 1)-th lower-rate comb line. These beat notes can be
utilized to divide the soliton repetition frequency through an
electrical frequency division followed by the subtraction of dual-
comb repetition rate difference. Fig. 1 presents one conceptual
example, where the main soliton repetition rate divided by N can
be obtained from the sum of the first beat frequency Δ1, and the
N-th beat frequency ΔN divided by N. ΔN denotes the beat fre-
quency between the N-th Vernier comb line and its nearest main
soliton comb line.

Results
The Vernier division reduces the required electrical bandwidth
for rep-rate detection from the soliton repetition rate to
approximately the repetition rate difference between the main
and Vernier solitons, which can be coarsely controlled in
microfabrication. In our demonstration, the electrical bandwidth
is reduced from 197 GHz to 20s GHz. The Vernier method
directly applies to 100s GHz to THz rate soliton microcombs,
which are common in many material systems, such as Si3N4

27–30,
silicon31, AlN32, and LiNbO3

33–35. For a fixed electrical band-
width and rep-rate difference, a higher main soliton rep-rate will

demand a broader comb span in the Vernier method. This is
because the number of comb lines required for the comb line
frequency of Vernier solitons to overtake that of the main solitons
increases linearly with the main soliton repetition rate. At 1 THz
repetition rate, 50 comb lines on one side of the pump are needed
for 20 GHz rep-rate difference, and this comb span has been
reported previously12,13. The Vernier division demonstrated in
this manuscript could serve as a universal solution for repetition
rate detection in various microcomb systems and applications.

In this experiment, the main and Vernier solitons are generated
in bus-waveguide coupled Si3N4 microresonators36, which have
FSRs of 197 GHz and 216 GHz, intrinsic quality factors of 1.5 ×
106 and 2.2 × 106, and loaded quality factors of 1.3 × 106 and
1.8 × 106, respectively. To generate single soliton states, a rapid
laser frequency sweeping method37 is implemented, in which the
pump laser is derived from the first phase modulation sideband of
a continuous wave (cw) laser, and the sideband frequency can be
rapidly tuned by a voltage controlled oscillator (VCO). The pump
laser is then split and amplified to generate solitons in both
microresonators simultaneously. Thermoelectric coolers (TECs)
are used for both the main and Vernier resonators to coarsely
align their resonance frequencies at the modes that are being
pumped. The complete experimental setup is shown in Fig. 2.
Details of the soliton generation is included in the Methods
section. Dual-microcomb driven by one pump laser has been
previously reported in two cascaded resonators38, and in a single
resonator by counter-propagating and co-propagating pump
lasers39–41.

The optical spectra of single soliton states for main (red) and
Vernier (blue) resonators are shown in Fig. 3a. A zoomed-in
panel shows the optical spectra where the frequency of the N-th
Vernier soliton comb line coarsely aligns with that of the (N + 1)-
th main soliton comb line. An electrical spectrum of the beat
frequencies between the two combs is shown in Fig. 3b. Within
the 26 GHz cut-off frequency of our electrical spectrum analyzer
(ESA), four beat frequencies are observed: Δ1 = 19.3639 GHz,
Δ9 = 22.6815 GHz, Δ10 = 3.3157 GHz and Δ11 = 16.0449 GHz.
The strong VCO1 beat note near 14 GHz is derived from the
modulation of the cw laser, and can be removed by an optical or
electrical filter.

Beat frequencies Δ9 and Δ11 are selected for the main soliton
rep-rate division. Δ9(Δ11) is the beat frequency between the 9
(11)-th Vernier soliton comb line and the 10 (12)-th main soliton
comb line, where Δ9 = 10fr1 − 9fr2, and Δ11 = 11fr2 − 12fr1. In
the measurement, after combining the main and Vernier solitons
with a fiber coupler, a bandpass filter is used to pass the comb
lines associated with Δ9, Δ10, and Δ11 for optical amplification.
Then a second fiber coupler splits the power into two optical
paths, where in each path a bandpass filter is used to select the
comb lines of Δ9 or Δ11, and the corresponding beat note is
created on a photodiode. To divide the main soliton rep-rate, Δ9

and Δ11 are divided by 36 and 44 in frequency, respectively, and
sent to a RF mixer to produce their sum frequency, fv = Δ9/
36 + Δ11/44 = fr1/198, which is the main soliton repetition rate
divided by 198. The electrical spectra of Δ9/36, Δ11/44 and their
sum fv are shown in Fig. 3c–e. The complete experimental setup is
shown in Fig. 2. More experimental details are included in
Methods section. In principle, one can use the configuration in
Fig. 1, where Δ1 is mixed with ΔN/N to generate fr1/N. However,
limited by the selection of electrical mixers in our lab, we do not
have the capability to mix Δ1 (~20 GHz) and ΔN/N (~2 GHz for
N = 9, 11), and thus we select Δ9 and Δ11 instead.

To validate the Vernier method, a conventional method by
using electro-optics modulation (EOM) frequency comb is
implemented as an out-of-loop verification. In the conventional
EOM method, two adjacent comb lines from the main solitons
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Fig. 1 Concept of Vernier dual-comb repetition rate division. a To divide and detect the main soliton (red) repetition rate, a free-running higher rate
microcomb (Vernier, blue) is generated to sample and divide down the main soliton rep-rate. Two pairs of low frequency dual-comb beat notes are
selected by optical bandpass filters (BPFs) and detected on photodiodes (PDs) to extract the high repetition frequency. b The zoomed-in optical spectra to
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are phase modulated at the frequency of a VCO to produce
modulation sidebands. The strong modulation results in a pair of
sidebands near the midpoint of the two comb lines, and they can
be optically filtered and detected27,42 (see Fig. 2, and Methods
section: electro-optics modulation (EOM) comb method). The
detected EOM beat note (Fig. 3f) has frequency of
fe = fr1 − M × fVCO2, where M is the number of modulation
sidebands, and fVCO2 is the modulation frequency. M and fVCO2
are set to 11 and 17.897 GHz in this experiment, respectively. It is
worth noting that the Vernier beat note fv has much narrower
linewidth than the EOM beat note fe, which implies that the rep-
rate of the main solitons is coherently divided down from
196.974 GHz to 994.82 MHz.

To show the coherent division in the Vernier dual-comb
method, the phase noise of the Vernier beat note, fv, and the out-
of-loop EOM beat note, fe, are measured with an ESA through
direct detection technique (Fig. 3g). For coherent frequency

division, the phase noise of fv (red trace) should be 1982 lower
than the phase noise of the undivided rep-rate, which is measured
through the EOM method (blue trace). This is verified in our
measurement, as the phase noise of fv multiplied by 1982 (orange
dash trace) agrees very well with the phase noise of fe at offset
frequency up to 30 kHz. Beyond 30 kHz offset frequency, the
phase noise of fv is comparable to the ESA sensitivity limit (black
dash trace). At high offset frequency, our phase noise measure-
ment might be affected by relative intensity noise (RIN). This is
common for direct detection technique, as the RIN cannot be
separated from the phase noise in the measurement.

The rep-rate of the main solitons can be derived by multiplying
the Vernier beat note, fv, by 198. A zero-dead-time frequency
counter is used to record fv. The main soliton rep-rate,
fr1 = 198 × fv, is shown in Fig. 3h (orange trace). The free-running
main solitons have repetition rate around 196.9740 GHz, and the
rate is drifting due to temperature and pump laser frequency
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fluctuations. This rep-rate measurement is compared to the rep-rate
measured with out-of-loop EOM method. The frequency of the
EOM beat note fe is recorded on a second zero-dead-time counter,
and the rep-rate is derived as fr1 = fe + M × fVCO2. The EOM-
measured rep-rate is shown in Fig. 3h (blue trace), and it overlaps
with the rep-rate measured by Vernier method perfectly. The
frequency difference between the Vernier-measured rep-rate and
EOM-measured rep-rate is calculated and shown in Fig. 3i, and it
has a mean value of (19 ± 37) Hz with a 95% confidence interval
under normal distribution. Figure. 3j shows the Allan deviation of
this frequency difference at various gate times, and it agrees with the
counter resolution limit at the frequency of fv (dash black trace)
multiplied by 198 (green dash trace), which is the counter limit for
fr1 = 198 × fv. This indicates that no frequency difference between
the Vernier method and the EOM method can be detected within
the sensitivity of our instruments. In all frequency measurements,
the counters and VCOs are synchronized to a rubidium clock.

The main soliton repetition rate can be stabilized by locking
the Vernier beat note fv to a radio-frequency reference. In this
demonstration, fv is locked to a rubidium-stabilized local
oscillator through servo control of the pump power using an
voltage-controlled optical attenuator (VCOA) to vary the main
soliton repetition rate (see Fig. 2). Rep-rate measurement with
the EOM method is utilized to verify the locking and the result
is shown in Fig. 4a. To eliminate the relative frequency drifts of
the electronic components, fVCO1, fVCO2, counter 1 and counter
2 are all synchronized to the same rubidium clock. Therefore,
the error in the rubidium clock has been corrected, and the
absolute stability of the reference will not affect our frequency
readouts. This allows us to evaluate the servo locking loop
without using high performance atomic clock reference. The
locking is turned on at the time near 50 s, and the soliton rep-
rate immediately stops drifting and is stabilized to
196,962,681,959 Hz (see Fig. 4a). The Allan deviations of the
free-running (red) and stabilized (green) rep-rate are calculated
from the EOM-based rep-rate measurements and are presented
in Fig. 4b. Above 0.3 ms gate time, the Allan deviation of the
locked rep-rate scales as 1/τ, where τ is the gate time. Below 0.3
ms gate time, the Allan deviation of the rep-rate follows that of
the free-running rep-rate. This behavior of the Allan deviation
is expected for a phase-locked oscillator with ~ kHz locking
bandwidth. Ultimately, the absolute stability of the rep-rate is
limited by the atomic clock reference. It is worth noting that the
repetition rate of the Vernier solitons is not stabilized in the
entire measurement.

Discussion
In summary, we have demonstrated the Vernier frequency divi-
sion method to detect and stabilize soliton repetition rate at
197 GHz with 20s GHz bandwidth photodiodes and electronics.
The Vernier method shall be applicable for a wide range of
repetition frequencies. It also applies to the case where the two
frequency combs do not share the same pump frequency/center
frequency. In this situation, one more pair of beat frequency
should be detected. As this additional beat note and the two
Vernier beat notes share the same offset frequency between the
two pump lasers, the offset frequency can be eliminated by fre-
quency subtraction. This will enable the Vernier method to be
applied to other types of high-rate combs, such as mode-locked
semiconductor lasers43. The concept of Vernier dual combs could
also be modified to assist carrier-envelope offset frequency (fCEO)
detection for self-referencing an octave-spanning microcomb. At
1 THz rep-rate, the fCEO given by the f-2f signal can range from 0
to 500 GHz, and it is challenging to keep this frequency in a
detectable range as it is subject to small fabrication variations.
However, if a Vernier comb is frequency doubled and beat against
the main comb, a series of f-2f beat frequencies can be created.
Their spacing equals to the dual-comb rep-rate difference, and
this can bring the f-2f signal to a detectable frequency. Finally, the
Vernier method has the potential to revolutionize optical and
electrical frequency conversion by eliminating the need for a
detectable repetition rate frequency comb, and it will have direct
applications in optical clock44, optical frequency division45, and
microwave frequency synthesis26.

Methods
Experimental setup of soliton microcombs. The complete experimental setup is
shown in Fig. 2. To overcome the thermal complexity in soliton generation process,
the first phase-modulated sideband from a continous wave (CW) laser is used as a
rapid-tuning pump laser. The phase modulator is driven by a voltage-controlled
oscillator (VCO). The first sideband from the phase modulation is selected by an
optical tunable bandpass filter (BPF). With the fast ramp voltage on the VCO, the
pump laser scans at a speed of ~20 GHz/μs. A 50/50 splitter after the BPF splits the
pump laser equally into two erbium-doped fiber amplifiers (EDFAs). The polar-
ization is carefully adjusted by a polarization controller after each EDFA. The
pump laser is coupled into the bus waveguide by a lensed fiber. Single solitons are
generated simultaneously in both microresonators by rapidly scanning the pump
laser from the blue-detuned regime to the red-detuned regime. The single soliton
existence detuning ranges of both microresonators are thermally tuned to overlap.
Each microresonator has a temperature controller with 0.01°C resolution. The
resonant frequencies are tuned ~2.5 GHz/°C. The main and Vernier solitons are
then combined by a fiber coupler. An optical tunable bandpass filter is used to pass
three pairs of comb lines, which correspond to Δ9, Δ10, and Δ11. These comb lines
are amplified by an EDFA and then split into two optical paths by a 50/50 fiber
coupler. The comb lines corresponding to Δ9 and Δ11 are then selected by optical
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bandpass filters in each path and detected with photodiodes (PDs). The beat notes
are amplified to the threshold power of electrical frequency divider for frequency
division. Electrical bandpass filters are used to filter out harmonics from dividers,
amplifiers, and mixers.

Vernier frequency division in our experiment. Vernier frequency division
method can use two pairs of comb lines in the overtaking regime, where the
frequency of the N-th higher-rate comb line catches up with that of the (N + 1)-th
lower-rate comb line. Here, we use the N-th pair and theM-th pair of comb lines as
an example, and ΔfN,M denotes the frequency difference between the N(M)-th
Vernier soliton comb line and its nearest main soliton comb line:

Δf N ¼ Nf r2 � ðN þ 1Þf r1 ¼ Nðf r2 � f r1Þ � f r1; ð1Þ

Δf M ¼ Mf r2 � ðM þ 1Þf r1 ¼ Mðf r2 � f r1Þ � f r1: ð2Þ
fr1 and fr2 are the rep-rates of the main solitons and Vernier solitons, respectively.
Eq. (1)/N subtracted by Eq. (2)/M will yield

1
M

� 1
N

� �
f r1 ¼

Δf N
N

� Δf M
M

; ð3Þ

where the repetition rate of the main solitons, fr1, is now expressed by two mea-
surable quantities. In the experiment, photodetecting the corresponding pair of
comb lines produces RF signals at the frequency of ΔM,N, where ΔM,N = ∣ΔfM,N∣.
The “±” ambiguity in ΔfM,N = ±ΔM,N can be resolved by measuring the optical
spectra of the main and Vernier solitons.

In our measurement, we select N = 11 and M = 9 for the Vernier frequency
division. Δ9 = 22.7 GHz and Δ11 = 16.1 GHz are obtained by photodetecting the
corresponding pairs of comb lines. These two RF signals are then amplified to ~3
dBm to meet the minimum input power requirement of our frequency dividers.
Both Δ9 and Δ11 are first divided by 4 so that their frequencies are within the
frequency bandwidth of the by-9 and by-11 dividers. The output frequencies after
division are Δ9/4/9 = 629 MHz and Δ11/4/11 = 366 MHz, respectively. These two
frequencies are then amplified to ~7 dBm and are frequency mixed on an RF
mixer. An electrical tunable bandpass filter is used to select the sum of Δ9/36 and
Δ11/44 at the mixer output port. According to Eq. (3), this frequency is equal to (1/
4/9 − 1/4/11)fr1 = fr1/198.

Electro-optics modulation (EOM) comb method. In our experiment, part of the
main soliton power is sent into the EOM setup for out-of-loop rep-rate verification.
The EOM configuration is shown in the purple panel in Fig. 2. An optical bandpass
filter is used to select two adjacent comb lines from the main soliton, which are
then amplified by an EDFA. They are then sent into an electro-optic phase
modulator which is driven by VCO 2 at a frequency of fVCO2. Modulation side-
bands are created for both comb lines, and when the modulation is strong enough,
a pair of sidebands will meet in the midpoint of the two comb lines42. This pair of
sidebands is then optically filtered by a Bragg-grating filter, and is detected on a
photodiode. In our measurement, this EOM beatnote frequency, fe, is ~100 MHz.
Using this method, the repetition rate of the main soliton can be derived as
fr1 = fe + M × fVCO2, where M is the number of modulation sidebands between the
two adjacent comb lines. M and fVCO2 are set to 11 and 17.897 GHz in our
experiment, respectively. The main soliton repetition rate shown in Fig. 4a is
obtained with this method. Allan deviation can then be calculated based on this
repetition rate measurement. Ultimately, the correction of the rubidium clock error
is limited by the noise added to the EOM sidebands, e.g. residual noise of locking
VCO 2 (model: Keysight PSG) to the rubidium reference. These additional noises
are not characterized in this experiment.

Data availability
Source data for Figs. 3 and 4 can be accessed at https://doi.org/10.6084/m9.
figshare.12609401. Additional information is available from the corresponding author
upon reasonable request.

Code availability
The codes that support the findings of this study are available from the corresponding
authors upon reasonable request.
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