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Abstract
The advancements in automated diagnostic tools allow researchers to obtain more and more information from medical images. 
Recently, to obtain more informative medical images, multi-modality images have been used. These images have significantly 
more information as compared to traditional medical images. However, the construction of multi-modality images is not 
an easy task. The proposed approach, initially, decomposes the image into sub-bands using a non-subsampled contourlet 
transform (NSCT) domain. Thereafter, an extreme version of the Inception (Xception) is used for feature extraction of the 
source images. The multi-objective differential evolution is used to select the optimal features. Thereafter, the coefficient of 
determination and the energy loss based fusion functions are used to obtain the fused coefficients. Finally, the fused image 
is computed by applying the inverse NSCT. Extensive experimental results show that the proposed approach outperforms 
the competitive multi-modality image fusion approaches.
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1  Introduction

Biomedical images are extensively utilized for automated 
diagnosis of various diseases such as COVID-19, pneumo-
nia, tuberculosis, cancer, etc. Biomedical imaging systems 
play an efficient role to monitor and diagnose the internal 
body organs without utilizing any kind of surgery. Biomedi-
cal images come up with various modalities to understand 
the internal body organs (Du et al. 2016). These modali-
ties are positron emission tomography (PET), magnetic 
resonance imaging (MRI), computerized tomography (CT), 
X-ray, ultrasound, etc. (James and Dasarathy 2014). Every 
modality comes up with its own significance during its usage 
in the diagnosis process. Due to a single modality, these 
images are limited to certain diseases or issues. Therefore, 

multi-modality biomedical images are desirable. A multi-
modality image can be obtained by using the efficient fusion 
approach (Daniel et al. 2017). Thus, these images have more 
information as compared to classical images and also more 
helpful to diagnose various kind of diseases (Du et al. 2016).

Recently, many researchers have designed and imple-
mented fusion approaches to obtain efficient multi-modal-
ity biomedical images (Ravi and Krishnan 2018; Hu et al. 
2020). However, many researchers have utilized the exist-
ing image fusion approaches. Therefore, the obtained multi-
modality fused images may suffer from various issues such 
as gradient and texture distortion, especially for the infected 
region. To overcome the issues associated with the existing 
approaches, many researchers have utilized deep learning 
and dictionary learning kind of approaches. These are dic-
tionary learning (Hu et al. 2020), local-features fuzzy sets 
(Ullah et al. 2020), deep learning (Algarni 2020; Xia et al. 
2019; Zhou et al. 2019), deep learning and NSST (Wang 
et al. 2019), etc. that found to be the best tool to obtain effi-
cient multi-modality fused images.

The design and development of an efficient multi-modal-
ity biomedical image fusion approach is still an open area 
for research. Deep learning is found to be one of the best 
fusion approaches to obtain promising results. Additionally, 
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a deep transfer learning-based multi-modality biomedical 
fusion approach can provide better results.

The main contributions are summarized as:

•	 A multi-objective differential evolution and Xception 
model based multi-modality biomedical fusion model is 
proposed.

•	 The proposed approach, initially, decomposes the image 
into subbands using a non-subsampled contourlet trans-
form (NSCT).

•	 An extreme version of the Inception (Xception) is then 
used for feature extraction of the source images.

•	 The multi-objective differential evolution is used to select 
the optimal features.

•	 To obtain the fused coefficients, a coefficient of deter-
mination and the energy loss based fusion functions are 
used.

•	 Finally, a fused image is computed by applying the 
inverse NSCT.

•	 The proposed and the competitive approaches are com-
pared by considering the benchmark multi-modality 
image fusion dataset.

The remaining structure of this paper is organized as: Exist-
ing literature is presented in Sect. 2. The proposed medical 
image fusion is illustrated in Sect. 3. Experimental results 
and comparative analyses are discussed in Sect. 4. Section 5 
concludes the proposed work.

2 � Literature review

Shu et al. (Zhu et al. 2019) implemented local laplacian 
energy and phase congruency based fusion approach in 
the NSCT domain (LEPN). Local laplacian energy utilized 
weighted local energy and sum of laplacian coefficients to 
obtain the regulated details and features of input images. 
Zhu et al. (2020) designed a diffusion-based approach by 
using the synchronized-anisotropic operators (DSA). A max-
imum absolute value constraint was also utilized for base 
layers fusion. The fusion decision map was computed by 
considering the sum of the modified anisotropic Laplacian 
approach by using the similar corrosion sub-bands obtained 
from the anisotropic diffusion. Kumar et al. (2020) proposed 
a co-learning based fusion maps for obtained more efficient 
multi-modality fused biomedical images. A convolutional 
neural network (CNN) was also used for the prediction and 
segmentation of potential objects.

Lu et al. (2014) designed an edge-guided dual-modality 
(EGDM) approach to obtain the multi-modality images. 
It performs significantly better even on highly under-sam-
pled data. Lifeng et al. (2001) utilized wavelet and qual-
ity analysis to obtain the biomedical multi-modality fused 

images. The pyramid wavelet used for the fusion process. 
Ma et al. (2020) designed a dual-discriminator conditional 
generative adversarial network (DDcGAN) to obtain multi-
modality fused images. It obtained a real-like fused image 
by using the content loss to dupe both discriminators. Two 
discriminators were also considered intention to differenti-
ate the composition variations between the fused and source 
images, respectively.

Wang et al. (2019) developed a 3D auto-context-based 
locality adaptive multi-modality GANs (3GANs) to obtain 
more efficient multi-modality fused images. A non-unified 
kernel was also used along with the adaptive approach 
for multimodality fusion. Gai et al. (2019) utilized pulse 
coupled neural network (PCNN) by considering the edge 
preservation and enhanced sparse representation in the non-
subsampled shearlet transform (NSST). It completely uti-
lized the features of various modalities that can handle edge 
details well and improves the results.

Liu et al. (2020) utilized a VGG16 based deep transfer 
learning approaches for image fusion to improve the clas-
sification process. VGG16 can obtain more efficient features 
as compared to the traditional deep learning approaches. The 
obtained features were then used to fuse the multi-modality 
biomedical images. Tavard et al. (2014) designed a multi-
modal registration and fusion approach to improve the car-
diac re-synchronization. The approach helps in improving 
therapy optimization.

Zhu et al. (2016) designed a novel dictionary learning-
based image fusion approach for multi-modality biomedical 
images. Due to the use of dictionary learning, this approach 
achieves higher accuracy. But it is computationally com-
plex in nature. Liu et al. (2018) proposed the biomedical 
image decomposition approach using NSST to fuse the 
multi-modality images. This approach has shown signifi-
cant results over the existing approaches, but, suffer from 
the edge degradation issue. Wang et al. (2020) utilized CNN 
and contrast pyramid to fuse the biomedical multi-modality 
images. CNN can fuse the images efficiently. However, it is 
a computationally extensive approach, and some time also 
not provide promising results if the biomedical images are 
very similar to each other.

From the literature review, it has been observed that 
multi-modality image fusion is still an open area for 
research. The deep learning is found to be the best promis-
ing techniques to obtain better multi-modality fused bio-
medical images. But these approaches can provide better 
results if pre-trained deep transfer learning approaches are 
used. Additionally, the initial parameter selection of the 
deep learning and deep transfer learning approach is also a 
challenging issue (Pannu et al. 2019; Kaur and Singh 2019; 
Pannu et al. 2018). Therefore, in this paper, a well-known 
multi-objective differential evolution is used to enhance the 
results.
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3 � Proposed multi‑objective differential 
evolution based deep transfer learning 
model for multi‑modality image fusion

Assume that I1 and I2 show source images. Initially, NSCT 
is used to decompose I1 and I2 into sub-bands. Our primary 
objective is to fuse the respective sub-bands of both source 
images. The fusion of high sub-band is achieved by using 
the extreme version of the Inception (Xception) model. 
The coefficient of determination is utilized to evaluate the 
significance of the computed fused high sub-bands. Low 
sub-bands fusion is achieved by using the local energy 
function. Inverse NSCT is utilized to compute the multi-
modality fused image. Figure 1 shows the step by step 
methodology of the proposed model.

3.1 � Nonsubsampled contourlet transform

Nonsubsampled Contourlet Transform (NSCT) is a well-
known transform used to decompose the images into the 
wavelet domain. It is a shift-invariant transform which can 
provide rich directional details. This directionality is effec-
tive to convert the transformed images to the actual one 
with minimum root mean square error (for more details 
please see Da Cunha et al. 2006).

3.2 � Feature extraction using deep Xception model

CNN may suffer from the under-fitting issue, as many 
potential features may not be extracted. To overcome this 
issue, an extreme version of the Inception (Xception) 
model is used. Figure 2 represents the block diagram of 
the xception model (for mathematical and other informa-
tion please see Chollet 2017).

Both high sub-bands of source images are placed in 
parallel fashion in the Xception model. Consider �I1(p, q) 
and �I2(p, q) are the obtained features from respective high 
sub-bands by using the Xception model.

3.3 � Feature selection using multi‑objective 
differential evolution

In this step, the optimal features are selected from the 
features obtained from the Xception model. The fusion 
factor and entropy metrics are used as the fitness function 
to select the optimal features. A multi-objective differen-
tial evolution can solve many computationally complex 
problems (Babu et al. 2005). It can significantly balance 
the fast convergence and population diversity. It can be 
described in the following steps:

I. Initialization: First of all, various parameters related 
to differential evolution are defined such as population 
size ( tp ), crossover rate ( cr ), mutation rate ( mr ), etc. Ran-
dom distribution is used to generate the random solutions 
�0
�
(� = 1, 2,… , tp) . h defines the number of function evalu-

ations. It is used to control the iterative process of differen-
tial optimization with maximum function evaluations ( hM).

II. Iterative step Mutation and crossover operators are 
used to obtain the optimal number of features.

Mutation is implemented on a �h
�
 to evaluate a child vec-

tor Πh
�
 . In this paper, following mutation is used:

Here, � shows index values. di ≠ � ∀i = 1 ∶ 3 . d1 , d2 , and d3 
are random numbers selected from [1, tp, ].

Crossover is used to obtain the news solutions. A child �h
�
 

can be obtained from ∀ �h
�
 , as:

where D shows dimensions of the problem. �� ∈ [0, 1] and 
�dn ∈ [1, D].

III. Selection: A child vector �h
�
 can be drawn by consid-

ering its parent vector �h
�
 as:

IV. Stopping condition: If number of functional evalua-
tions are lesser than the total available evaluation then Steps 
II and III will be repeated.

3.4 � Fusion of high sub‑bands

The extracted and selected features using the Xception 
model from high sub-bands are then fused by using the coef-
ficient of determination (R). R between �I1(p, q) and �I2(p, q) 
can be computed as:

Here, �I1 and �I2 shows the average of high sub-bands, 
respectively.

The dominated features are preserved in the obtained fea-
ture maps as:

(1)Πh
�
= �h

d1
+ mr ⋅ (�

h
d2
− �h

d3
)

(2)�h
��

=

{
Πh

��
, �� ≤ cr or � = �dn

�h
��
, otherwise

� = 1, 2,… ,D,

(3)�h+1
�

=

{
�h
�
, f (�h

�
) ≤ f (�h

�
)

�h
�
, otherwise

(4)

RN(�I1, �I2)

=

�∑m

p=1

∑n

q=1
(�I1(p, q) − �I1)(�I2(p, q) − �I2)

�2

∑m

p=1

∑n

p=1
(�I1(p, q) − �I1)

2 ×

�∑m

p=1

∑n

p=1
(�I2(p, q) − �I2)

2

(5)Fs(p, q) = max(sI1 × RN + sI2 × (1 − RN))
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Here, sI1 and sI2 show high sub-bands of I1 and I2 , 
respectively.

3.5 � Fusion of low sub‑bands

Motivated from (Hermessi et al. 2018), local energy is used 
to fuse the low sub-bands as:

Here, I = I1 or I2 . � × � represents neighbors of patch 
placed at (p, q). size of local patch is assigned as 5 × 5 . 
Fused coefficients of low sub-bands can be computed as:

(6)�I(p, q) =
∑

p�∈�

∑

q�∈�

|I(p + p�, q + q�)|

Fig. 1   Diagrammatic flow of the proposed multi-objective differential evolution based deep transfer learning model for multi-modality image 
fusion
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4 � Experimental results

To evaluate the performance of the proposed approach, 
benchmark multi-modality biomedical images dataset is 
obtained from Ullah et al. (2020). Fifteen different pairs 
of modality images are taken for comparative purposes. 
The main goal is to fuse these images to obtain multi-
modality fused images. To draw the comparisons, six com-
petitive multi-modality biomedical fusion approaches such 
as LEPN (Zhu et al. 2019), DSA (Zhu et al. 2020), CNN 
(Kumar et al. 2020), EGDM (Lu et al. 2014), DDcGAN 
(Ma et al. 2020), and 3GANs (Wang et al. 2019) are also 
implemented on the same set of images. The hyper-param-
eters of these approaches are assigned as mentioned in 
their respective papers.

(7)𝜓f (p, q) =

{
𝜓I1(p, q) |𝜒I1(p, q)| ≥ |𝜒I2(p, q)|
𝜓I2(p, q) |𝜒I1(p, q)| < |𝜒I2(p, q)|

4.1 � Visual analysis

Figures 3 and 4 represent the source images and their 
respective multi-modality fused biomedical images 
obtained from the LEPN (Zhu et al. 2019), DSA (Zhu et al. 
2020), CNN (Kumar et al. 2020), EGDM (Lu et al. 2014), 
DDcGAN (Ma et al. 2020), 3GANs (Wang et al. 2019) 
and the proposed approach. It is clearly shown that the 
obtained results have better modality as compared to the 
competitive approaches. Although, the existing approaches 
such as LEPN (Zhu et al. 2019), DSA (Zhu et al. 2020), 
CNN (Kumar et al. 2020), EGDM (Lu et al. 2014), DDc-
GAN (Ma et al. 2020), and 3GANs (Wang et al. 2019) 
provide significant visual results but have little edge and 
texture distortion. Figures 3i and 4j show the obtained 
results from the proposed approach. These images prove 
that the proposed approach provides a better visual appear-
ance of the obtained multi-modality fused images.

Fig. 2   Architecture of Xception model (obtained from Chollet 2017)
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4.2 � Quantitative analysis

In this section, we have compared the proposed approach 
with the existing approaches such as LEPN (Zhu et al. 2019), 
DSA (Zhu et al. 2020), CNN (Kumar et al. 2020), EGDM 
(Lu et al. 2014), DDcGAN (Ma et al. 2020), and 3GANs 
(Wang et al. 2019), by considering the some well-known 
performance metrics. The selected performance measures 
are as edge strength, fusion symmetry, entropy, and fusion 
factor (for mathematical information see Prakash et  al. 
2019).

A multi-modality biomedical image fusion approach gen-
erally provides significant entropy values. Table 1 depicts 
entropy analysis of the proposed deep transfer learning-
based multi-modality biomedical image fusion approach. 
It shows that the proposed approach provides significantly 
more entropy values than the existing multi-modality 

biomedical image fusion approaches. It is found that the 
proposed approach provides 1.8343% improvement over the 
best available approaches.

Mutual information represents the preserved details from 
the sourced image in the fused image. Therefore, it is desir-
able to be maximum. Table 2 depicts the mutual informa-
tion analysis of the proposed approach over the competi-
tive approaches. The proposed approach shows an average 
improvement of 1.8373%.

The fusion factor is a well-known performance metric 
that shows the strength of the fusion process. It is desirable 
to be maximum. Table 3 shows the fusion factor analysis 
of the proposed and competitive approaches. The proposed 
approach shows an average improvement of 1.3928% over 
the competitive fusion models.

Fusion symmetry evaluates the symmetric details between 
source and fused images. It is desirable to be maximum. 

Fig. 3   Analysis of multi-
modality biomedical fusion 
approaches: a MRI, b CT, c 
LEPN (Zhu et al. 2019), d 
DSA (Zhu et al. 2020), e CNN 
(Kumar et al. 2020), f EGDM 
(Lu et al. 2014), g DDcGAN 
(Ma et al. 2020), and h 3GANs 
(Wang et al. 2019) and i pro-
posed approach
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Table 4 shows fusion symmetry analysis of the proposed deep 
transfer learning model based multi-modality fusion model. It 
is found that the proposed model achieves an average improve-
ment of 1.1974% over the competitive models.

Edge strength evaluates the degree of edge preservation and 
it is desirable to be maximum (Xydeas and Petrovic 2000). 
Table 5 shows the edge strength analysis of the proposed deep 
transfer learning-based multi-modality image fusion model. 
The proposed model achieves an average improvement of 
1.6928% over the competitive approaches.

5 � Conclusion

From the literature review, it has been found that multi-
modality image fusion is still an open area for research. 
The deep learning-based fusion approaches are found to 
be one of the best promising techniques to obtain better 
multi-modality fused biomedical images. However, these 
approaches are computationally complex in nature and 
also still suffer from the under-fitting issue. The proposed 
approach, initially, decomposes the image into sub-bands 

Fig. 4   Analysis of multi-
modality biomedical fusion 
approaches: a MRI, b CT, c 
LEPN (Zhu et al. 2019), d 
DSA (Zhu et al. 2020), e CNN 
(Kumar et al. 2020), f EGDM 
(Lu et al. 2014), g DDcGAN 
(Ma et al. 2020), and h 3GANs 
(Wang et al. 2019) and i pro-
posed approach
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using a non-subsampled contourlet transform (NSCT). 
Thereafter, an extreme version of the Inception (Xception) 
has been used for feature extraction of the source images. 
The multi-objective differential evolution has been used 
to select the optimal features. Thereafter, to obtain the 
fused coefficients, a coefficient of determination and the 
energy loss functions are used. Finally, the fused image 
has been computed by applying the inverse NSCT. Exten-
sive experimental results have shown that the proposed 

approach outperforms the competitive multi-modality 
image fusion approaches in terms of various performance 
metrics. In near future, one may use the proposed model 
for other applications such as remote sensing images 
(Singh et  al. 2018; Singh and Kumar 2019a), medical 
images, etc. Additionally, the proposed hyper-parameters 
tuning approach can be used to tune the hyper parameter of 
the other approaches such as visibility restoration models 

Table 1   Comparative analysis among the proposed deep transfer learning based multi-modality image fusion and the competitive approaches in 
terms of entropy (maximum is better)

Group LEPN (Zhu et al. 2019) DSA (Zhu et al. 2020) CNN (Kumar 
et al. 2020)

EGDM (Lu et al. 2014) DDcGAN 
(Ma et al. 
2020)

3GANs 
(Wang et al. 
2019)

Proposed

G
1

6.22 ± 0.75 6.33 ± 0.69 6.25 ± 0.67 6.56 ± 0.55 6.43 ± 0.68 6.73 ± 0.09 6.77 ± 0.35

G
2

6.18 ± 0.64 6.04 ± 0.62 6.18 ± 0.54 6.23 ± 0.45 6.73 ± 0.58 6.33 ± 0.08 6.77 ± 0.43

G
3

6.43 ± 0.75 6.35 ± 0.55 5.95 ± 0.45 6.48 ± 0.54 6.68 ± 0.55 6.42 ± 0.45 6.71 ± 0.41

G
4

6.09 ± 0.55 5.93 ± 0.55 6.29 ± 0.55 6.46 ± 0.45 6.47 ± 0.58 6.62 ± 0.57 6.69 ± 0.45

G
5

6.38 ± 0.72 6.44 ± 0.75 6.64 ± 0.64 6.26 ± 0.56 6.66 ± 0.47 6.57 ± 0.45 6.79 ± 0.39

G
6

6.28 ± 0.73 5.94 ± 0.65 6.39 ± 0.45 6.31 ± 0.44 6.53 ± 0.55 6.66 ± 0.35 6.73 ± 0.45

G
7

6.17 ± 0.66 5.96 ± 0.75 6.26 ± 0.55 6.58 ± 0.45 6.69 ± 0.68 6.65 ± 0.35 6.72 ± 0.35

G
8

5.91 ± 0.55 5.96 ± 0.55 6.06 ± 0.49 6.46 ± 0.46 6.28 ± 0.48 6.57 ± 0.35 6.81 ± 0.43

G
9

5.96 ± 0.76 6.19 ± 0.65 6.33 ± 0.47 6.74 ± 0.62 6.26 ± 0.52 6.75 ± 0.48 6.71 ± 0.41

G
10

5.93 ± 0.75 5.97 ± 0.53 6.38 ± 0.45 6.36 ± 0.54 6.79 ± 0.68 6.22 ± 0.53 6.66 ± 0.45

G
11

6.05 ± 0.66 6.33 ± 0.75 6.16 ± 0.47 6.77 ± 0.69 6.55 ± 0.43 6.77 ± 0.54 6.69 ± 0.39

G
12

6.18 ± 0.75 5.98 ± 0.55 6.82 ± 0.55 6.31 ± 0.64 6.44 ± 0.47 6.46 ± 0.57 6.75 ± 0.43

G
13

6.12 ± 0.65 6.32 ± 0.75 6.19 ± 0.66 6.39 ± 0.45 6.37 ± 0.55 6.72 ± 0.45 6.65 ± 0.41

G
14

6.31 ± 0.55 5.94 ± 0.65 6.14 ± 0.45 6.39 ± 0.67 6.77 ± 0.62 6.23 ± 0.45 6.75 ± 0.45

G
15

5.96 ± 0.75 6.38 ± 0.75 5.93 ± 0.53 6.64 ± 0.64 6.44 ± 0.69 6.25 ± 0.57 6.78 ± 0.39

Table 2   Comparative analysis among the proposed deep transfer learning based multi-modality image fusion and the competitive approaches in 
terms of mutual information (maximum is better)

Group LEPN (Zhu et al. 2019) DSA (Zhu et al. 2020) CNN 
(Kumar et al. 
2020)

EGDM (Lu et al. 2014) DDcGAN 
(Ma et al. 
2020)

3GANs 
(Wang et al. 
2019)

Proposed

G
1

0.63 ± 0.013 0.62 ± 0.011 0.61 ± 0.012 0.59 ± 0.012 0.61 ± 0.008 0.62 ± 0.009 0.63 ± 0.009

G
2

0.61 ± 0.014 0.61 ± 0.012 0.62 ± 0.012 0.61 ± 0.009 0.61 ± 0.011 0.64 ± 0.009 0.61 ± 0.009

G
3

0.63 ± 0.014 0.62 ± 0.011 0.62 ± 0.008 0.63 ± 0.008 0.59 ± 0.011 0.63 ± 0.008 0.63 ± 0.007

G
4

0.61 ± 0.013 0.62 ± 0.012 0.63 ± 0.012 0.61 ± 0.012 0.63 ± 0.012 0.62 ± 0.008 0.63 ± 0.007

G
5

0.61 ± 0.011 0.63 ± 0.012 0.63 ± 0.011 0.63 ± 0.012 0.64 ± 0.011 0.64 ± 0.012 0.63 ± 0.008

G
6

0.64 ± 0.014 0.61 ± 0.013 0.63 ± 0.012 0.59 ± 0.012 0.64 ± 0.011 0.61 ± 0.008 0.64 ± 0.009

G
7

0.63 ± 0.014 0.59 ± 0.012 0.59 ± 0.012 0.63 ± 0.009 0.64 ± 0.009 0.59 ± 0.007 0.64 ± 0.009

G
8

0.64 ± 0.014 0.62 ± 0.013 0.59 ± 0.012 0.61 ± 0.008 0.61 ± 0.009 0.61 ± 0.012 0.64 ± 0.007

G
9

0.62 ± 0.011 0.59 ± 0.011 0.59 ± 0.009 0.63 ± 0.009 0.62 ± 0.011 0.59 ± 0.008 0.63 ± 0.009

G
10

0.63 ± 0.015 0.63 ± 0.015 0.63 ± 0.008 0.63 ± 0.009 0.59 ± 0.011 0.61 ± 0.007 0.63 ± 0.009

G
11

0.62 ± 0.012 0.62 ± 0.013 0.59 ± 0.011 0.62 ± 0.012 0.62 ± 0.008 0.62 ± 0.009 0.62 ± 0.007

G
12

0.59 ± 0.011 0.59 ± 0.013 0.61 ± 0.008 0.62 ± 0.012 0.62 ± 0.013 0.62 ± 0.009 0.62 ± 0.007

G
13

0.61 ± 0.012 0.63 ± 0.012 0.62 ± 0.012 0.62 ± 0.012 0.63 ± 0.008 0.63 ± 0.008 0.63 ± 0.008

G
14

0.61 ± 0.013 0.63 ± 0.011 0.61 ± 0.008 0.61 ± 0.011 0.62 ± 0.011 0.64 ± 0.012 0.63 ± 0.007

G
15

0.59 ± 0.015 0.64 ± 0.011 0.63 ± 0.008 0.63 ± 0.011 0.64 ± 0.011 0.59 ± 0.008 0.64 ± 0.008



2491Multi‑modality medical image fusion technique using multi‑objective differential evolution…

1 3

(Osterland and Weber 2019; Singh and Kumar 2018, 
2019b; Wang et al. 2019; Singh et al. 2019a, 2019b), fil-
tering models (Gupta et al. 2019; Kaur et al. 2020; Wiens 

2019), deep learning models (Jaiswal et al. 2020; Basave-
gowda and Dagnew 2020; Kaur et al. 2019, 2020; Ghosh 
et al. 2020), etc.

Table 3   Comparative analysis among the proposed deep transfer learning based multi-modality image fusion and the competitive approaches in 
terms of fusion factor (maximum is better)

Group LEPN (Zhu et al. 2019) DSA (Zhu et al. 2020) CNN 
(Kumar et al. 
2020)

EGDM (Lu et al. 2014) DDcGAN 
(Ma et al. 
2020)

3GANs 
(Wang et al. 
2019)

Proposed

G
1

1.26 ± 0.026 1.22 ± 0.022 1.22 ± 0.022 1.22 ± 0.031 1.24 ± 0.022 1.26 ± 0.026 1.26 ± 0.022

G
2

1.22 ± 0.022 1.26 ± 0.028 1.18 ± 0.032 1.22 ± 0.029 1.22 ± 0.026 1.28 ± 0.025 1.29 ± 0.022

G
3

1.26 ± 0.022 1.24 ± 0.025 1.21 ± 0.033 1.24 ± 0.022 1.26 ± 0.022 1.24 ± 0.028 1.26 ± 0.022

G
4

1.23 ± 0.021 1.22 ± 0.024 1.22 ± 0.022 1.22 ± 0.025 1.28 ± 0.031 1.26 ± 0.022 1.28 ± 0.021

G
5

1.22 ± 0.03 1.24 ± 0.022 1.21 ± 0.026 1.28 ± 0.027 1.24 ± 0.024 1.24 ± 0.021 1.28 ± 0.021

G
6

1.26 ± 0.024 1.22 ± 0.035 1.28 ± 0.028 1.22 ± 0.021 1.28 ± 0.028 1.28 ± 0.028 1.28 ± 0.021

G
7

1.22 ± 0.028 1.24 ± 0.025 1.21 ± 0.026 1.22 ± 0.022 1.24 ± 0.031 1.24 ± 0.022 1.24 ± 0.022

G
8

1.24 ± 0.021 1.22 ± 0.028 1.22 ± 0.022 1.26 ± 0.021 1.26 ± 0.026 1.24 ± 0.021 1.26 ± 0.021

G
9

1.24 ± 0.031 1.26 ± 0.024 1.21 ± 0.024 1.24 ± 0.022 1.18 ± 0.022 1.27 ± 0.022 1.26 ± 0.022

G
10

1.24 ± 0.022 1.28 ± 0.028 1.24 ± 0.023 1.21 ± 0.024 1.24 ± 0.024 1.27 ± 0.026 1.28 ± 0.022

G
11

1.22 ± 0.026 1.28 ± 0.028 1.26 ± 0.026 1.21 ± 0.032 1.26 ± 0.022 1.24 ± 0.024 1.28 ± 0.022

G
12

1.24 ± 0.031 1.26 ± 0.028 1.26 ± 0.022 1.26 ± 0.028 1.24 ± 0.032 1.26 ± 0.021 1.26 ± 0.021

G
13

1.28 ± 0.021 1.28 ± 0.026 1.24 ± 0.022 1.24 ± 0.026 1.18 ± 0.024 1.27 ± 0.024 1.28 ± 0.021

G
14

1.22 ± 0.022 1.24 ± 0.021 1.26 ± 0.023 1.22 ± 0.022 1.24 ± 0.024 1.28 ± 0.022 1.28 ± 0.021

G
15

1.24 ± 0.028 1.22 ± 0.022 1.24 ± 0.023 1.24 ± 0.026 1.18 ± 0.024 1.22 ± 0.026 1.24 ± 0.022

Table 4   Comparative analysis among the proposed deep transfer learning based multi-modality image fusion and the competitive approaches in 
terms of fusion symmetry (maximum is better)

Group LEPN (Zhu et al. 2019) DSA (Zhu et al. 2020) CNN 
(Kumar et al. 
2020)

EGDM (Lu et al. 2014) DDcGAN 
(Ma et al. 
2020)

3GANs 
(Wang et al. 
2019)

Proposed

G
1

0.31 ± 0.014 0.31 ± 0.014 0.31 ± 0.012 0.31 ± 0.012 0.32 ± 0.008 0.32 ± 0.012 0.33 ± 0.008

G
2

0.31 ± 0.012 0.32 ± 0.013 0.32 ± 0.012 0.32 ± 0.013 0.31 ± 0.014 0.32 ± 0.012 0.33 ± 0.007

G
3

0.29 ± 0.012 0.31 ± 0.012 0.31 ± 0.012 0.31 ± 0.014 0.32 ± 0.015 0.33 ± 0.008 0.34 ± 0.008

G
4

0.32 ± 0.013 0.31 ± 0.012 0.29 ± 0.009 0.31 ± 0.011 0.31 ± 0.008 0.31 ± 0.007 0.33 ± 0.007

G
5

0.31 ± 0.015 0.32 ± 0.012 0.31 ± 0.011 0.31 ± 0.011 0.32 ± 0.008 0.31 ± 0.007 0.33 ± 0.007

G
6

0.31 ± 0.013 0.31 ± 0.013 0.31 ± 0.013 0.33 ± 0.008 0.31 ± 0.008 0.31 ± 0.009 0.34 ± 0.008

G
7

0.29 ± 0.015 0.32 ± 0.013 0.32 ± 0.012 0.32 ± 0.014 0.31 ± 0.011 0.32 ± 0.007 0.33 ± 0.007

G
8

0.31 ± 0.011 0.31 ± 0.014 0.32 ± 0.009 0.31 ± 0.012 0.31 ± 0.011 0.33 ± 0.007 0.34 ± 0.007

G
9

0.29 ± 0.012 0.32 ± 0.012 0.31 ± 0.009 0.31 ± 0.013 0.32 ± 0.008 0.32 ± 0.009 0.33 ± 0.008

G
10

0.31 ± 0.014 0.31 ± 0.015 0.31 ± 0.008 0.32 ± 0.014 0.31 ± 0.011 0.32 ± 0.008 0.33 ± 0.008

G
11

0.28 ± 0.015 0.31 ± 0.012 0.31 ± 0.014 0.32 ± 0.015 0.32 ± 0.008 0.31 ± 0.012 0.33 ± 0.008

G
12

0.29 ± 0.011 0.32 ± 0.015 0.32 ± 0.012 0.32 ± 0.012 0.32 ± 0.013 0.31 ± 0.008 0.33 ± 0.008

G
13

0.31 ± 0.013 0.32 ± 0.015 0.31 ± 0.009 0.31 ± 0.012 0.33 ± 0.009 0.33 ± 0.008 0.34 ± 0.008

G
14

0.32 ± 0.012 0.31 ± 0.012 0.32 ± 0.012 0.32 ± 0.011 0.32 ± 0.011 0.31 ± 0.007 0.33 ± 0.007

G
15

0.31 ± 0.014 0.31 ± 0.013 0.32 ± 0.012 0.31 ± 0.013 0.31 ± 0.008 0.32 ± 0.012 0.33 ± 0.008
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