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Abstract Finger millet is an important cereal that is grown

in semi-arid and arid regions of East-Africa. Salinity stress

is a major environmental impediment for the crop growth

and production. This study aimed to understand the phys-

iological and biochemical responses to salinity stress of six

Kenyan finger millet varieties (GBK043137, GBK043128,

GBK043124, GBK043122, GBK043094, GBK043050)

grown across different agroecological zones under NaCl-

induced salinity stress (100, 200 and 300 mM NaCl). Seeds

were germinated on the sterile soil and treated using vari-

ous concentrations of NaCl for 2 weeks. Early-seedling

stage of germinated plants were irrigated with the same salt

concentrations for 60 days. The results indicated depres-

sion in germination percentage, shoot and root growth rate,

leaf relative water content, chlorophyll content, leaf K?

concentration, and leaf K?/Na? ratios with increased salt

levels and the degree of increment differed among the

varieties. On the contrary, the content of proline, malon-

aldehyde, leaf total proteins, and reduced sugar increased

with increasing salinity. At the same time, the leaf Na? and

Cl- amounts of all plants increased substantially with

increasing stress levels. Clustering analysis placed

GBK043094 and GBK043137 together and these varieties

were identified as salt-tolerant based on their performance.

Taken together, our findings indicated a significant varietal

variability for most of the parameters analysed. The

superior varieties identified could be used as promising

genetic resources in future breeding programmes directed

towards development of salt-tolerant finger millet hybrids.

Further analysis at genomic level needs to be undertaken to

better understand the genetic factors that promote salinity

tolerance in finger millet.
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analyses � Salinity stress � Varietal differences

Introduction

Salinity is a major environmental constraint that adversely

affects growth and productivity of many agricultural crops

globally (Qadir et al. 2014). This abiotic stress mostly

characterizes arid and semi-arid regions that experience

low rainfall and scarcity of good quality water. Accumu-

lation of soluble salts due to irrigation without proper water

drainage systems, coupled with underlying rocks rich with

high salt contents, leads to gradual salinization of arable

land, thereby affecting soil characteristics (Asfaw et al.

2018). The problem is expected to aggravate further owing

to the effects of climate change and rising sea levels as
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farmers will be forced to use saline water for irrigation in

arid and semi-arid regions due to the adequate rain and

shortage of good quality water (Neocleous et al. 2017). If

existing salinity stress phenomenon continues to persist, it

is estimated that more than 50% of the world’s arable land

could be severely affected by salinity by the year 2050

(Machado and Serralheiro 2017).

Salinity stress triggers complex adaptive responses that

function to synchronize the ions in order to ameliorate

hyperosmolarity and reinstall cellular ionic homeostatic

conditions (Chen et al. 2019; Ganie et al. 2019). Collec-

tively, these coordinated and regulated responses inhibit

growth and development and subsequently reduce crop

yields. Combating salinity stress to increase crop produc-

tion necessitates application of various parameters which

underlie salinity tolerance. It is therefore imperative to

identify the genetic resources with high tolerance levels

and to understand their mechanisms of salinity tolerance.

The response of plants to salinity is a quantitatively

inherited trait and varies according to the species, varieties

and genotypes and is also influenced by their interactions

with the environment (Bertazzini et al. 2018; Shabala et al.

2013). Many reports have shown that short term salinity

stress significantly affects the germination rate, seedling

and root growth, levels of ion contents and relative water

content, photosynthetic pigments, proline content, level of

membrane lipid peroxidation as well as the amounts of

reducing sugars and total protein (Dugasa et al. 2019;

Sarabi et al. 2017; Kumar and Khare 2016). These physi-

ological and biochemical indices have been used for clas-

sification of salt-sensitive and salt-tolerant varieties in plant

breeding programmes. The most feasible approach to

evaluate performance of plants against salinity under lab-

oratory conditions is through assessing their physiological

and biochemical responses on the application of different

concentrations NaCl.

Finger millet [Eleusine coracana L. (Geartn)] is a

valuable cereal crop cultivated in arid and semi-arid

regions of Asia and Africa (Chivenge et al. 2015). The crop

is well adapted to heat, drought and degraded soils. Its

cereals have comparatively better antioxidant, nutraceuti-

cal properties and storage qualities than other cereals

(Kumar et al. 2016). Like other members of the poaceae

family, finger millet, is glycophytic in nature and hence is

adversely affected by salinity stress (Ibrahim 2016; Hema

et al. 2014). There is limited information which is available

on the physiological and biochemical responses of different

finger millet varieties of under salinity stress. Under-

standing these responses in finger millet is therefore of

great importance for breeding salt resistant and tolerant

crops. Owing to the wide disparity in agro-ecological

regions across finger millet growing regions, several finger

millet landraces exhibit an adaptation to a large range of

environmental conditions. Such landraces represent valu-

able sources of useful genetic material that might be

exploited to improve salinity tolerance of finger millet

varieties adapted to distinct geographical zones affected by

salinity. We therefore investigated the physiological and

biochemical responses to salinity stress of six finger millet

varieties under NaCl induced salinity stress.

Materials and methods

Plant material germination assay and salinity

treatment

Six finger millet varieties (GBK043124, GBK043122,

GBK043137, GBK043128, GBK043094 and GBK043050)

were grown in different agroecological zones in Kenya as

detailed in Supplementary Table 1. Ten healthy seeds were

planted in round pots containing sterile soil to a depth of

1 cm and irrigated with 100, 200 and 300 mM NaCl at an

interval of 3 days for 2 weeks. The control seeds were

irrigated with distilled water. Germination rate was scored

on the 17th treatment day. Germinated seedlings were

grown for 2 weeks under greenhouse (25 ± 2 �C and

60–70% humidity, with a 16/8-h photoperiod provided

sunlight). Seedlings were irrigated with 100, 200 and

300 mM NaCl for 21 days at an interval of 3 days. Control

plants were watered with distilled water. Five replications

were used for each set of treatment and 5 plants were

randomly sampled and their shoot length and root length

recorded.

Relative water content

A leaflet was removed from a plant on the 21st day and

fresh weight (FW) measured. Each leaflet was immersed in

deionized water for 4 h and wiped before taking its turgid

weight (TW) measured. The leaflet was then dried in an

oven for 24 h and its dry weight (DW) measured. Relative

water content (RWC%) was calculated as: RWC =

[(FW - DW)/(TW - DW)] 9 100.

Determination of chlorophyll and proline contents

Chlorophyll a, b and total chlorophylls (a ? b) were

determined according to Arnon (1949). 0.2 g fresh leaves

were taken from 21 days-old NaCl stressed plants and

finely ground by vortexing. The extract was centrifuged for

3 min and absorbance of the supernatant was measured at

645 and 663 nm. Total chlorophyll content, mg/g fresh

mass (FM), was calculated as: TC = 20.2(A645) ? 8.02(

A663) 9 V/1000 9 W where V is the volume of total

extract/l and W is the mass of material.
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Measurement of proline content

Proline accumulation was determined as described by

Bates et al. (1973). 50 mg fresh leaf was homogenized in

10 ml of 3% w/v sulphosalicylic acid. The homogenate

was filtered and mixed solution of acidic ninhydrin. The

reaction mixture was heated at 100 �C for 60 min and then

cooled in ice for 5 min and toluene was added. Absorbance

was measured at 520 nm and proline content [lmol/g fresh

weight (F. WT)] was calculated from L-proline standard

curve.

Lipid peroxidation assay

0.3 g of fresh leaves were homogenized in 0.1% (w/v)

trichloroacetic acid and the homogenates were centrifuged

for 15 min at 4 �C. The supernatant was mixed with 0.5 ml

of 1.5 ml 0.5% thiobarbituric acid (TBA) diluted in 20%

trichloroacetic acid (TCA) incubated at 95 �C for 25 min

before incubating it on ice for 10 min. Absorbance was

measured at 532 and 600 nm with 1% TBA in 20% TCA as

control. Malondialdehyde (lmol/g FW) amount was cal-

culated according to Heath and Packer (1968).

Estimation of reducing sugar

The amount of reducing sugar in shoots was determined as

described by Johnson et al. (1964). Sugar was extracted

from 1.0 g homogenized tissue using 80% ethanol at

95 �C, then centrifuged for 10 min. Resulting supernatant

was dried for 2 h at 80 �C, before dissolving the residue in

10 ml of water 2.0 ml alkaline copper reagent. The mixture

was heated at 100 �C for 10 min and cooled. 1.0 ml Nel-

son’s reagent was added and the volume was adjusted to

10 ml with water. Absorbance was taken at 520 nm.

Reducing sugar (mg/g FW) amount was calculated using

standard glucose curve.

Estimation of leaf total protein

Total sample protein was extracted using the acetone-tri-

chloroacetic acid (TCA) precipitation (Damerval et al.

1986). 500 g of leaf tissue from each treatment was

homogenized in 10% TCA in ice and incubated overnight

at 4 �C. The homogenate was centrifuged at for 15 min at

4 �C and the pellet was washed with 100% acetone. The

pigment-free pellet was first washed with 80% ethanol,

ethanol/trichloromethane (3:1 v/v), then ethanol/ethox-

yethane (3:1 v/v) and finally with ethoxyethane. Washed

pellet was suspended in 0.1 N NaOH for protein estima-

tion. Sample proteins were estimated at 750 nm using

bovine serum albumin as standard.

Measurements of Na1 K1 and Cl2 ion content

in plant tissue

Mature leaves were powdered and ashed. The ashes were

dissolved in 5 ml 30% ammonia, and further diluted with

deionized water (Cheng et al. 2004). Concentrations of

Na? and K? ions were measured using a flame atomic

absorption spectrometry. Cl- ions were extracted from 1 g

of plant material and amount was determined using Eaton

et al. (1995) method.

Statistical analysis

A completely randomized block design with five replica-

tions for each experiment was used and the results repre-

sent mean ± standard error. ANOVA was performed using

the Minitab statistical software 17 (Minitab Inc., State

College, PA, USA) and differences between means were

separated using the Fisher’s protected LSD test at a con-

fidence level of 95%. Relationships between assessed fea-

tures were performed by Pearson’s correlation. Principal

component analysis and Cluster analysis were carried out

using the FactoMineR package (Lê et al. 2008).

Results

The present study investigated the changes in growth

parameters, relative water content, lipid peroxidation level,

proline content, reducing sugar and total protein under

NaCl induced salinity stress in six finger millet varieties.

The parameters analyzed exhibited significant variations

among the varieties.

Effect of salinity on shoot Na, K and Cl ion contents

The salinity treatments, varieties and the synergy effects

were significant for the concentrations of all leaf ions

(Fig. 1a–c, Supplementary Table 2). As expected, the level

of Na? and Cl- in all varieties was higher under salt stress

but differed in the degree of the increment. The gradual

increase of salinity stress triggered a gradual rise of both

ion concentration in finger millet leaves. The average

levels of Na? in leaves ranged from 5.37 to 7.82 mg/g DW

for plants grown in control conditions and from 12.3 to

96.2 mg/g DW for salinity stressed plants (Fig. 1a). Under

300 mM NaCl stress treatments, the different varieties

increased their Na? ion concentration from 6.8- to 13.1-

fold when compared to the controls. GBK043124,

GBK043137 and GBK043094 displayed statically the

minimum increase of Na? under salinity stress (Fig. 1a).

On the other hand, the leaf Cl- levels ranged from 2.5 to

5.1 mg/g DW for finger millet plants under control
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conditions and from 5.0 to 17.8 mg/g DW for plants under

salinity stress (Fig. 1c). GBK043050 had the lowest con-

centration of Cl- under untreated and salinity stress treat-

ments. GBK043124 had the least (3.0.5-fold) increase in

Cl- ion concentration under salt treatment, while

GBK043094 had the largest (4.2-fold) increase (Fig. 1c).

In contrast, salinity stress induced significant reduction of

K? concentration in leaves of finger millet plants irrigated

with three NaCl doses (Fig. 2). In comparison to control

experiments, potassium ions concentration decreased by

about 18.6, 53.3 and 72.6% in leaves of plants grown under

100, 200 and 300 mM NaCl respectively. GBK043094

upheld the highest concentration of K? and had a 74.0%

decline in K? concentration while, GBK043050 had the

highest decrease in K content (78.9%) under salinity con-

ditions (Fig. 1b). The lowest potassium ion concentration

under salinity was found in GBK043128 followed by

GBK043124 (Fig. 1b). The leaf K?/Na? ratios differed

among the varieties of finger millet studied, ranging from

0.05 in both GBK043094 to 0.02 in GBK043050. Varieties,

GBK043094 and GBK043137 presented the greatest K?/

Na? ratio under salinity stress owing to low concentration

of Na? in the leaves (Fig. 1d).

Effects of salt stress on seed germination

The effect of salinity stress on finger millet seeds germi-

nation, evaluated by the percentage of germinated seeds

after 17 days, is as shown in Table 1. Our results indicated

that for all varieties, the germination rate decreased with

increase of the NaCl concentration and varied among the

varieties. This decrease in germination rate was most

profound at 200 mM and 300 mM NaCl concentrations

where 0% germination rate were recorded for all the six

varieties. In contrast, at moderate stress levels (100 mM

NaCl), significant differences in germination profile was
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Fig. 1 Effect of salinity stress on ion concentration of finger millet

under salinity stress. a Na? concentration, b K? concentration, c Cl-

concentration, d K?/Na? ratio. For each NaCl treatment, values

within sharing same letter comparing NaCl treatments are not

significantly different at p\ 0.05 [Fishers LSD]. Each value repre-

sented as mean ± SD are the mean of three replications
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observed with GBK043122 having the highest germination

rate (46.25%) compared to others whose germination rates

ranged from 3.75 to 22.50%. The germination percentage

under control conditions was also distinct among the six

finger millet varieties and ranged from 90.00% for

GBK043137 to 56.25% for GBK043122 (Table 1).

Growth characteristics in finger millet varieties

under salt stress

After phenotypic observation, chlorosis (yellowish color)

was observed in all plants under salinity conditions. Leaf

chlorosis, leaf scorching, slowed and delayed growth and

enlargement of the leaves were distinctly observed in

seedlings of all varieties under salinity stress. Plants

growing under control conditions exhibited healthy leaves

GBK043137

GBK043124

GBK043050

GBK043094

GBK043128

GBK043122

0 10 20 30 40 50
L2 dissimilarity measure

a

GBK043137

GBK043094

GBK043128

GBK043124

GBK043050

GBK043122

0 50 100 150 200
L2 dissimilarity measure

b

Fig. 2 Dendrogram of the

studied finger millet varieties,

obtained by cluster analysis

based on their physiological and

biochemical characteristics

under salinity stress. a 0 NaCl;

b 100 mM NaCl; c 200 mM

NaCl; d 300 mM NaCl
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and normal shoot and root developmental stages (Fig. 3).

The shoot length progressively retarded with increase in

NaCl concentration (Table 2). Particularly, the shoot

height of GBK043128 population was significantly reduced

under severe salt stress conditions (300 mM NaCl) by

about 72.1% while GBK043124 had the least shoot height

reduction rate at 63.3% when compared to the control

plants (Table 2). Significance variations on the effect of

NaCl on shoot length were only observed at 200 mM NaCl

concentration. Higher salt concentrations did not record

any varietal difference on shoot length (Table 2). Simi-

larly, increasing salinity stress resulted in gradual reduc-

tions in plant root lengths in all studied varieties ranging

from 20.9% for GBK043137 to 36.1% for GBK043128

compared to their respective controls (Table 3). We also

observed significant differences between varieties in root

length values across the salt concentrations, signifying that

increased salt stress adversely affected root length growth

in the varieties at different degrees (Table 3).
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Fig. 2 continued

1574 Physiol Mol Biol Plants (August 2020) 26(8):1569–1582

123



Relative water content

The changes in leaf RWC along with increase in salinity

stress are presented in Table 4. The RWC of all varieties

under control conditions were similar ranging from 79.44

to 87.86%. Exposition to increasing salinity stress pro-

gressively reduced water potential of leaves in all varieties

compared to their respective control plant leaves and they

exhibited variation in their relative water content. Variety

GBK043094 tolerated salinity stress better with the least

reduction in relative water content under severe salinity

stress (300 mM NaCl) compared to the others (Table 4).

Effects of salt stress on chlorophyll content

Analysis of total chlorophyll content demonstrated signif-

icant differences in photochemistry among varieties and

the salt treatments (Table 5). More specifically, for all the

varieties, the addition of NaCl elicited significant decrease

in chlorophyll content compared to the non-saline treat-

ments and inverse relationship between salinity stress and

total chlorophyll content in all finger millet varieties was

observed. In contrast, plants grown under normal condi-

tions maintained a relatively high level of total chlorophyll

content and interestingly, they did not have similar

chlorophyll content. Under saline conditions,

photosynthetic pigment of varieties GBK043137 and

GBK043128 were found to be extremely reduced with

reduction percentages of 48.2% and 39.5%, respectively.

However, GBK043124 retained a relatively higher

chlorophyll content compared to its respective control

value, under 300 mM NaCl stress conditions (Table 5).

Table 1 Effects of NaCl on

germination rate of six finger

millet varieties

Variety Germination rate (%)

0 mM 100 mM 200 mM 300 mM

GBK043137 90.0 ± 3.5a 3.8 ± 3.8c 0.0 ± 0.0a 0.0 ± 0.0a

GBK043128 65.0 ± 3.5bc 18.8 ± 2.4bc 0.0 ± 0.0a 0.0 ± 0.0a

GBK043124 80.0 ± 8.4a 37.5 ± 7.8ab 0.0 ± 0.0a 0.0 ± 0.0a

GBK043122 56.3 ± 5.2c 46.3 ± 9.7a 0.0 ± 0.0a 0.0 ± 0.0a

GBK043094 63.8 ± 1.3bc 22.5 ± 11.6bc 0.0 ± 0.0a 0.0 ± 0.0a

GBK043050 76.3 ± 3.7ab 18.85 ± 5.5bc 0.0 ± 0.0a 0.0 ± 0.0a

Values within a column marked with different superscript in each column differ significantly at p\ 0.05

[Fishers LSD]. Each value represented as mean ± SD are the mean of three replications

Fig. 3 Effect of salinity stress on growth of finger millet. a Seedling growth on 300 mM NaCl. b Seedling growth on 200 mM NaCl. c Seedling
growth on 100 mM NaCl; d seedling growth on 0 mM NaCl

Table 2 Effect of NaCl on growth of finger millet

Variety Seedlings shoot length (cm) under NaCl stress

0 mM 100 mM 200 mM 300 mM

GBK043137 3.8 ± 0.4ab 2.5 ± 0.3a 1.6 ± 0.2ab 1.2 ± 0.1a

GBK043128 4.3 ± 0.2a 2.6 ± 0.4a 1.9 ± 0.2a 1.2 ± 0.2a

GBK043124 3.0 ± 0.3b 2.4 ± 0.2ab 1.6 ± 0.3ab 1.1 ± 0.1a

GBK043122 3.2 ± 0.4b 2.5 ± 0.2a 1.2 ± 0.2bc 1.0 ± 0.0a

GBK043094 3.1 ± 0.3b 2.3 ± 0.2ab 1.0 ± 0.0c 1.1 ± 0.1a

GBK043050 3.1 ± 0.2b 1.7 ± 0.1b 1.3 ± 0.2bc 1.1 ± 0.1a

Values within a column marked with different superscript in each

column differ significantly at p\ 0.05 [Fishers LSD]. Each value

represented as mean ± SD are the mean of three replications
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Proline accumulation and lipid peroxidation assay

The effect of free proline content in the six finger millet

varieties at early seedling growth stage under NaCl induced

osmotic stress is shown in Table 6. Increasing salt con-

centrations from 100 to 200 and 300 mM NaCl application

remarkably induced increased free proline content in the

plants by an average of 39.8%, 54.2% and 66.4% respec-

tively, relative to the levels in the control plants (Table 6).

GBK043094 variety had the significantly highest proline

content, followed by GBK043137, GBK043124 and

GBK043122 while GBK043128 and GBK043050 had the

lowest (Table 6). In unstressed plants, proline concentra-

tion was similar. As shown in Table 7, we observed con-

tinuous increment in malondialdehyde content in leaves of

all varieties tested in response to salinity stress relative to

their respective controls and the magnitude of response

differed among the varieties. A continuous increase in the

level of lipid peroxidation was observed with increasing

level of salinity in all the varieties. The malondialdehyde

levels was elevated to 20.7%, 31.3% and 51.2% at 100, 200

and 300 mM NaCl, respectively, as compared to unstressed

plants (Table 7). Malondialdehyde content was signifi-

cantly elevated in GBK043050, GBK043122, GBK043124

and GBK043128 under severe salinity stress (300 mM

NaCl) treatments signifying higher rates of oxidative

damage and lipid peroxidation whereas GBK043094 and

GBK043137 had lower levels of malondialdehyde at cor-

responding salinity stress (Table 7).

Reducing sugars and protein contents under NaCl

stress

The impact of salinity treatment triggered substantial ele-

vation in reducing sugar amounts in the stressed plants

when compared to control the experiments (Table 8).

Table 3 Effect of NaCl on root growth

Variety Seedlings root length (cm) under NaCl stress

0 mM 100 mM 200 mM 300 mM

GBK043137 6.8 ? 0.4b 6.4 ? 0.4ab 5.9 ? 0.2a 5.4 ? 0.2a

GBK043128 8.0 ? 0.4a 7.2 ? 0.4a 5.9 ? 0.3a 5.1 ? 0.3ab

GBK043124 6.9 ? 0.6b 6.3 ? 0.6ab 5.6 ? 0.4a 5.0 ? 0.46ab

GBK043122 6.7 ? 0.2b 6.2 ? 0.5b 5.5 ? 0.3a 4.9 ? 0.2ab

GBK043094 6.8 ? 0.5b 6.2 ? 0.7b 5.9 ? 0.4a 5.4 ? 0.4a

GBK043050 7.1 ? 0.4b 6.4 ? 0.5ab 5.6 ? 0.2a 4.8 ? 0.3b

Values within a column marked with different superscript in each

column differ significantly at p\ 0.05 [Fishers LSD]. Each value

represented as mean ± SD are the mean of three replications

Table 4 Effect of NaCl on

relative water content
Variety Seedlings relative water content (%) under NaCl stress

0 mM 100 mM 200 mM 300 mM

GBK043137 85.3 ± 4.1a 71.5 ± 4.1a 35.0 ± 3.9a 37.1 ± 3.3b

GBK043128 87.9 ± 5.3a 71.5 ± 4.1abc 35.0 ± 3.9b 26.8 ± 2.3c

GBK043124 84.8 ± 4.9a 67.2 ± 3.4bc 34.2 ± 5.0b 28.2 ± 2.6c

GBK043122 83.0 ± 1.8a 68.0 ± 1.9bc 33.7 ± 3.3b 46.7 ± 9.2c

GBK043094 82.1 ± 6.7a 72.3 ± 3.7ab 51.3 ± 6.1a 46.7 ± 9.2a

GBK043050 79.4 ± 4.6a 65.4 ± 4.8c 33.2 ± 4.5b 27.6 ± 3.7c

Values within a column marked with different superscript in each column differ significantly at p\ 0.05

[Fishers LSD]. Each value represented as mean ± SD are the mean of three replications

Table 5 Effect of salinity stress

on total chlorophyll content of

finger millet varieties

Variety Seedlings chlorophyll content (mg/g FW) under NaCl stress

0 mM 100 mM 200 mM 300 mM

GBK043137 8.4 ± 0.4a 8.1 ± 1.8a 5.0 ± 0.4a 4.4 ± 0.6a

GBK043128 9.1 ± 1.0b 7.5 ± 1.5b 6.4 ± 0.5b 5.5 ± 0.1b

GBK043124 5.9 ± 0.1c 6.8 ± 0.1c 7.3 ± 0.2c 5.5 ± 0.1c

GBK043122 7.3 ± 1.9d 5.9 ± 0.1d 6.1 ± 1.0d 5.8 ± 0.7d

GBK043094 6.2 ± 0.5e 5.0 ± 0.9 5.0 ± 0.8e 4.7 ± 1.4e

GBK043050 5.1 ± 1.6f 4.0 ± 0.9f 5.0 ± 0.4f 3.9 ± 0.7f

Values within a column marked with different superscript in each column differ significantly at p\ 0.05

[Fishers LSD]. Each value represented as mean ± SD are the mean of three replications
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Increasing salt concentration caused an increase in reduc-

ing sugar amounts in the stressed plant shoots and highest

accretion of reducing sugar was found in 100 mM NaCl

stress followed by 200 mM and 300 mM NaCl treatments.

However, varietal differences were observed and the

increment was remarkably highest in GBK043094, fol-

lowed by GBK043050, GBK043137and GBK043122 while

GBK043128 had the lowest amount (Table 8). Plants under

control conditions had the lowest protein content ranging

from 1.2 to 2.2 mg/g FW reducing whereas the highest

reducing sugar content protein content of 4.5 to 6.5 mg/g

FW was found in plants treated with 300 mM NaCl

(Table 8). As shown in Table 9, increasing NaCl concen-

tration had a substantial impact on the protein content of

finger millet plants and the response was in a dose

dependent relationship. A clear varietal difference was

observed and significantly higher levels of protein were

found in GBK043094, GBK043050 and GBK043122 than

the rest, under control and also stress conditions (Table 9).

Cluster analysis

Clustering grouped the six finger varieties into two major

clusters based on their potential characteristics under con-

trol and salinity stress conditions, respectively (Fig. 2a–d).

Varieties grouped into specific classes indicate the

presence of greater diversity among finger millets under

different salinity stresses with varieties GBK043137 and

GBK043094 showing greater tolerance to salinity stress.

Discussion

Plants tolerance to salinity stress is a complex trait which is

ascribed to a plethora of related morphological, physio-

logical and biochemical adaptive responses, which operate

synergistically to lessen cell hyperosmolarity and the

ensuing ion disequilibrium (Parihar et al. 2015). In this

regard, screening and selection of finger millet varieties

tolerant to salinity stress is essential in order to understand

their adaptations under saline soils and for the successful

production of finger millet in salinity prone areas. In this

study, six finger millet varieties from different agroeco-

logical zones in Kenya were subjected to different levels of

salinity stress, and our findings showed tremendous vari-

abilities within the tested parameters.

Accumulation of ions in plant tissues, which is known to

cause fluctuations of macronutrients is regularly used to

evaluate the capability of a plant to resist salinity stress.

The concentration of Na? K? and Cl- ions and the Na?/

K? ratio are vital features that are usually used for

screening of salt tolerant plants (Sarabi et al. 2017). Leaf

Table 6 Effect of salinity stress

on free proline content of finger

millet varieties

Variety Proline content (lg/g FW) under NaCl stress

0 mM 100 mM 200 mM 300 mM

GBK043137 200.9 ± 2.4a 411.9 ± 13.4a 529.3 ± 3.0ab 655.2 ± 28.6b

GBK043128 224.3 ± 3.6a 340.3 ± 33.9b 471.3 ± 63.7bc 571.3 ± 37.1c

GBK043124 208.4 ± 30.6a 322.4 ± 34.0b 417.9 ± 50.6c 585.1 ± 86.6bc

GBK043122 234.5 ± 16.2a 344.0 ± 18.2b 433.2 ± 12.3c 666.7 ± 2.1b

GBK043094 208.2 ± 14.4a 401.6 ± 25.7a 558.0 ± 12.9a 801.9 ± 22.8a

GBK043050 212.8 ± 21.6a 319.7 ± 7.5b 404.4 ± 34.9c 560.5 ± 53.4c

Values within a column marked with different superscript in each column differ significantly at p\ 0.05

[Fishers LSD]. Each value represented as mean ± SD are the mean of three replications

Table 7 Effect of salinity stress

on Malondialdehyde content of

finger millet varieties

Variety Malondialdehyde content (lg/g FW) under NaCl stress

0 mM 100 mM 200 mM 300 mM

GBK043137 1.94 ± 0.1a 2.2 ± 0.3b 2.4 ± 0.5b 2.7 ± 0.4b

GBK043128 2.21 ± 0.3a 2.9 ± 0.2ab 2.9 ± 0.4ab 3.6 ± 0.2a

GBK043124 2.67 ± 0.4a 3.3 ± 0.3a 3.4 ± 0.5a 3.7 ± 0.6a

GBK043122 2.22 ± 0.4a 2.8 ± 0.2ab 3.3 ± 0.1a 3.8 ± 0.4a

GBK043094 1.96 ± 0.2a 2.3 ± 0.3b 2.47 ± 0.2b 2.8 ± 0.3b

GBK043050 2.19 ± 0.8a 2.5 ± 0.9b 3.0 ± 0.7ab 3.9 ± 0.5a

Values within a column marked with different superscript in each column differ significantly at p\ 0.05

[Fishers LSD]. Each value represented as mean ± SD are the mean of three replications
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tissues were used in this study because they are more

sensitive to salt and they start displaying toxicity much

earlier compared to other plant organs (Munns and Tester

2008). Our findings revealed that the NaCl treatments

increased the finger millet leaf Na? and Cl- concentra-

tions. On the contrary, salinity treatments caused decease

of K? ions in all varieties, probably due to membranes

depolarization and the loss of Ca? ion was due to the

displacement by Na? ions. Na? and K? ions have similar

cellular effects despite the fact Na? inhibits K? absorption

through binding and obstructing its transport system

(Flowers and Yeo 1986). Several studies have reported that

plants growing under high NaCl concentrations have low

ratios of K?/Na? ratio which is caused by deficiency of

intracellular K? (Dugasa et al. 2019; Cirillo et al. 2019;

Sandhu et al. 2017; Sarabi et al. 2017). The same phe-

nomenon was also observed in this study, where increment

of NaCl concentration decreased the leaf K?/Na? ratios. In

our study, we observed a clear association between K?/

Na? ratio and salinity tolerance and varieties, GBK043137

and GBK043094 showed the highest K?/Na? ratios under

both control and NaCl treatments. However, these varieties

were placed at the highest ranking for salinity tolerance

index. Cellular influx of Cl- ions require energy in a

reaction mechanism catalyzed by a Cl-/2H? coupled

antiporters and symporters. The Cl- ions are typically

taken up freely with water uptake, and are therefore

accumulated in leaf organs depending on the transpiration

rate (Munns and Tester 2008). Like Na?, Cl- ions may

also be sequestered in cell vacuoles. In our study, the

concentration of Cl- in leaves was higher than that of Na?

and this may be justified by the partial control of Na? at

roots. Comparable results were also exhibited by melon

(Sarabi et al. 2017) and cucumber (Colla et al. 2012).

Seed germination and seedling emergence are funda-

mental biological processes in plant growth and develop-

ment cycles. Excellent seed germination and emergence

are thus important for attainment of high yields. Increasing

concentrations of salt adversely affects germination pro-

cess (Laghmouchi et al. 2017; Anuradha and Rao 2001). In

the present study, the germination percentage was delayed

or constrained under salinity stress compared to control

growth conditions. The observed decrease in germination

rate under the salinity stress could be attributed to salt

toxicity and changes in cellular osmotic potential. We

found out that under higher salt concentration, the reduc-

tion in the germination rate was less for the salinity-tolerant

variety (GBK043094), compared with most salt sensitive

variety (GBK043050). This finding was in accordance to

previous work in lettuce (Ahmed et al. 2019), alfalfa

(Sandhu et al. 2017) and wheat (Tounsi et al. 2017) under

saline conditions. In addition, a high degree of shoot

Table 8 Effect of salt stress on

reducing sugars on finger millet
Variety Reducing sugars content (mg/g FW) under NaCl stress

0 mM 100 mM 200 mM 300 mM

GBK043137 1.6 ± 0.4bc 2.1 ± 0.6ab 4.0 ± 0.8bc 4.9 ± 0.9bc

GBK043128 1.2 ± 0.3c 1.6 ± 0.3b 3.7 ± 0.7bc 4.6 ± 0.8c

GBK043124 1.3 ± 0.3c 1.7 ± 0.3b 3.3 ± 0.5c 4.7 ± 0.3c

GBK043122 1.8 ± 0.4abc 2.1 ± 0.4ab 3.7 ± 0.5bc 5.5 ± 0.2bc

GBK043094 2.2 ± 0.3a 2.7 ± 0.2a 5.0 ± 0.0a 6.5 ± 0.5a

GBK043050 2.1 ± 0.4ab 2.5 ± 0.4a 4.4 ± 0.3ab 5.8 ± 0.4ab

Values within a column marked with different superscript in each column differ significantly different at

p\ 0.05 [Fishers LSD]. Each value represented as mean ± SD are the mean of three replications

Table 9 Effect of salt stress on

total protein on finger millet
Variety Total protein content (mg BSA/g FW) under NaCl stress

0 mM 100 mM 200 mM 300 mM

GBK043137 15.2 ± 1.3b 34.4 ± 1.6b 73.8 ± 7.3c 95.7 ± 9.8b

GBK043128 15.3 ± 2.1b 33.9 ± 3.0b 73.1 ± 7.4c 94.7 ± 8.0b

GBK043124 13.2 ± 1.9b 32.1 ± 3.1b 74.7 ± 7.1bc 85.6 ± 4.1b

GBK043122 20.0 ± 2.2a 42.5 ± 5.2a 95.9 ± 4.1a 111.9 ± 7.4a

GBK043094 20.5 ± 3.0a 45.1 ± 5.7a 90.5 ± 9.7a 119.2 ± 6.5a

GBK043050 20.4 ± 1.2a 43.3 ± 3.3a 89.2 ± 11.5ab 117.5 ± 5.4a

Values within a column marked with different superscript in each column differ significantly at p\ 0.05

[Fishers LSD]. Each value represented as mean ± SD are the mean of three replications
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growth depression in seedlings grown under salinity stress

was clearly noticeable, more in the salt-sensitive varieties,

which displayed reduced leaf area, leaf chlorosis, leaf

burns and plant death which are symptoms associated with

plant toxicity. Slow growth of both shoots and roots is an

adaptive characteristic for plant survival under salinity

conditions because this permits the plants to commit

numerous resources to mitigate the stress (Soares et al.

2018). Retarded shoot growth under salinity stress could be

ascribed to the reduction in osmotic potential due to extra

concentration of Na? and Cl- ions in the shoot and root

zone resulting in a nutritional imbalance. It could also be

due to the deviation of energy destined for growth and

development, to exclude Na? ions from cellular absorption

and biosynthesis of solutes for preservation of cell turgor

during hypertonic saline conditions. The observed reduc-

tion of leaf area under salinity treatments compared to

control plants also suggests that salinity stress may affect

plant growth through reduction in leaf area. Previous works

have disclosed that salt tolerant plants display less growth

retardation and have relatively higher growth rate com-

pared to sensitive ones under salinity stress (Carillo et al.

2019; Hussain et al. 2018; Sarabi et al. 2017). Conse-

quently, our findings suggest that GBK043128 and

GBK043137 have a better capacity to sustain growth and

development under salt treatments as compared to other

finger millet varieties studied (Table 2). Further, roots play

a key role in salt tolerance of plants as they are the first

organs that control uptake and translocation of nutrients

and salts throughout the plant. Due to their direct exposure

to saline environment, root growth is also vulnerable to salt

stress although the extend is lesser than that of the shoots

(Munns and Tester 2008). Inhibition of root growth in

plants adversely affects the survival and productivity of

plants and therefore root growth under saline conditions

may serve as good indicator in the first steps of screening

for salinity tolerance programs. Growth of roots varies

widely due to soil conditions because the status of all

nutrient in plants is maintained from the soil with the help

of roots. Root growth rate may be severely affected by

saline soils and reduction may even be recorded in salt-

tolerant plants. In agreement with previously published

studies on the effects of salinity on root elongation (Cirillo

et al. 2019; Dugasa et al. 2019), salinity treatments were

found to cause stunted root growth. The growth-promoting

effect under salinity stress could be due to an increase in

the osmotic potential of the cells in the elongation zone

coupled with enhanced cell division. The absorbed ions at

this point could be quickly compartmentalized into the

vacuoles without getting to the maximum capacity, thereby

increasing the turgor within the cells and stimulating cell

elongation. We also observed that the effects of salinity

stress on root growth was much less compared to that of the

shoot. This feature could be explained by the fact that roots

are less affected by salinity due to transport of ions to other

plant organs and hence the stressed roots were able to

maintain osmotic balance.

Several studies suggest chlorophyll content is a bio-

chemical marker of salt tolerance in plants (Ishikawa and

Shabala 2019; Taı̈bi et al. 2016; Sairam et al. 2005). It is

known that salt tolerant plants show increased or unchan-

ged chlorophyll levels under salinity conditions whereas

chlorophyll contents decreased in salt-sensitive plants

(Stepien and Johonson 2009; Ashraf and Harris 2013).

Decrease of chlorophyll content under salt stress is con-

sidered to be a result of slow synthesis or fast breakdown of

the pigments in cells (Ashraf and Shahbaz 2003). The

decrease in total chlorophyll content may also be observed

due to ion accumulation and functional disorders observed

during stoma opening and closing under salinity stress

(Nawaz and Ashraf 2010). Another reason for the decrease

of chlorophyll content under salt conditions is stated to be

the rapid maturing of leaves (Yeo et al. 1991). In our study,

statistically significant decrease in total chlorophyll content

was observed with increasing salt concentration. Similar

results were reported by Ashraf (1998) and Ali et al. (2004)

who showed that total chlorophyll content of rice leaves

was generally reduced under high salinity. While the other

varieties recorded a decrease over the control plants,

variety GBK043094 recorded unchanged total chlorophyll

content with increase in stress (Table 4). These findings

signified that salinity stress damaged the photochemical

apparatus of the plant leaves. Our results also showed that

reduction in chlorophyll content was variety specific. Some

varieties had comparatively lesser quantum of negative

variation in chlorophyll content, thus signifying their

potential to grow and perform moderately well even under

higher levels of salt stress. High salt concentration induced

reduction of total chlorophyll content, suggesting that salt

stress induces chlorophyll degradation and destruction of

chloroplast structures.

All plants employ complex biochemical defensive

mechanisms against oxidative injury of free radicals and

reactive oxygen species (ROS) during abiotic stresses.

Among these defense systems is the aggregation of com-

patible solutes such as proline, an osmoprotectant that

preserves membrane integrity and mitigates oxidative burst

in plant challenged by salt stress (Rao et al. 2013; Rasool

et al. 2013). Proline exists in all plant organs, accumulating

in greater proportions compared to other amino acids in

salinity stressed plants (Islam et al. 2009). Although, the

beneficial outcome of proline overproduction in plants

during salinity stress have been explicated, the definite

roles of proline accretion are still obscure (Islam et al.

2009; Verbruggen and Hermans 2008). Our study reported

an increased concentration of free proline content in all six
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finger millet varieties, with GBK043094 and GBK043137

displaying higher free proline amounts at all salinity

treatments suggesting that they are comparatively more

tolerant to salinity stress than the rest and which may be

related to their competitive ability under saline stress

against oxidative stress. Based on these results, it is worth

noting that increased concentration of free proline content

in finger millet plants subjected to salinity treatments

corresponded to improved salinity tolerance. Likewise,

accumulation of protein compounds plays vital role in

physiological responses of plant to salinity stress. Increased

production of proteins and other nitrogen containing

compound may induce the biosynthesis of osmotically

active organic compounds including proteins with osmo-

protective capacities, thereby conferring salinity resistance

(Ashraf and Harris 2004). Generally, plants exposed to

NaCl stress have comparatively reduced protein levels

which often results to loss of cellular turgor. Just like in our

case, reduction in the content of soluble protein was

observed in maize plants subjected to salinity treatments

(von Alvensleben et al. 2013). Contrary to other osmolytes

such as proline and malondialdehyde which are present at

very low amounts except when their biosynthesis is trig-

gered by stress, compatible solutes such as reducing sugars

are elements of metabolism with different cell functional

roles, such as precursors of other metabolites, signalling

molecules and major source of energy. Their levels are

highly controlled by various systems to ensure cellular

homeostasis. Reducing sugars therefore play a crucial role

in plant cells osmotic adjustment during salinity stress. The

high reducing sugar levels measured in plants with high

salinity tolerant index clearly shows that sugar contributes

to osmotic adjustment during salt treatments thus, cush-

ioning the plants against the toxic effects of NaCl. These

results are substantiated by a remarkable increase in sugar

amounts in salt tolerant genotypes in pigeon pea (Awana

et al. 2019), Juncus sp. (Al-Hassan et al. 2016) and wheat

(Kerepesi and Galiba 2000).

Degradation of polyunsaturated fatty acids in plants

yields malondialdehyde (MDA), a biomarker for deter-

mining the degree of lipid peroxidation and cellular

membrane damage (Yang et al. 2018). Results from our

study reveal that MDA content in stressed plants raised

with increasing stress levels which corroborated with

results exhibited in other plant species like Lycium ruthe-

nicum (Li et al. 2019), wheat (Dugasa et al. 2019) and

Cucumis melo L. (Sarabi et al. 2017). Our results indicated

that some varieties of finger millet may tolerate saline

environments more than others depending on the severity

of the stress and do this by lowering the rate of lipid per-

oxidation and cell membrane damage. The salt-tolerant

varieties have an efficient and effective antioxidant defence

mechanism. The strong negative correlation witnessed

between MDA and shoot height (r = - 0.6872, Supple-

mentary Table 3), and root length (r = - 7555, Supple-

mentary Table 3) affirms that the NaCl stress triggered

lipid peroxidation is one of the reasons for the observed

stunted shoot and root growth in finger millet plants.

Salinity stress induces excessive production ROS without a

concomitant scavenging mechanism which causes reduc-

tion in chlorophyll (Nxele et al. 2017), which is a key

factor in growth and development of plants.

Lastly, it is imperative to note that this study was con-

ducted in a laboratory set-up (artificial conditions) which

may not mirror their complex natural environment under

which the crop is grown. Nevertheless, the findings give

suggestive index salinity tolerance to the studied finger

millet varieties.

Conclusions

This study provides analysis of the effect of NaCl stress

treatments on the physiological and biochemical underly-

ing stress-response mechanisms of finger millet. The find-

ings revealed significant variety specific salinity stress

responses in finger millet., It can be concluded that pro-

gressive salinity stress treatments significantly reduced

finger millet seed germination rate, growth and develop-

ment by differentially modulating several biochemical

responses among the finger millet varieties studied. From

the responses of GBK043094 and GBK043137, we

hypothesize that these varieties are promising genetic

resources with considerable high salinity tolerance, they

can be utilized for breeding programs of the crop towards

enhanced salinity tolerance. Further analyses are required

to explicate the genes and mechanisms of salinity tolerance

observed in some of finger millet varieties.
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