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Abstract Drought stress is an important environmental

stress that clearly affect biological systems of plants. There

is a possibility that growth regulators are able to protect

plants under drought conditions. Ascorbic acid (AsA) plays

a particular role on growth of plants and protects cells from

oxidative damage caused by environmental stresses. This

study emphasized the impacts of AsA on improving the

drought tolerance of the pepper plants. Based on a factorial

arrangement in a completely randomized design, the

experiment had two factors. The first factor was drought:

irrigation within the field capacity, moderate stress (irri-

gation within the 60% field capacity) and severe stress

(irrigation within the 30% field capacity). The second

factor was AsA: 0 mM sprayed with distilled water,

0.5 mM and 1 mM. The experiment had three replications.

Drought stress inhibited plant growth parameters including

fruit number, height, weight, yield, chlorophyll a and b,

total chlorophyll, carotenoid contents, it caused improve-

ment in activity of catalase (CAT), peroxidase (POD),

superoxide dismutase (SOD), proline content, antho-

cyanins, soluble sugars, malondialdehyde (MDA) and

H2O2 in the leaves of sweet pepper. Application of AsA

contributes to an increase in antioxidant enzymes activity

such as SOD, CAT, POD and proline contents, chlorophyll

a and b, total chlorophyll, carotenoids, soluble carbohy-

drates. However, it reduced the content of anthocyanins,

MDA and H2O2. Based on this study, it can be suggested

that ascorbic acid adjusted antioxidant activity, especially

after it has been subjected to drought stress.

Keywords Chlorophyll � Field capacity �
Malondialdehyde � Superoxide dismutase

Introduction

Sweet pepper (Capsicum spp.) contains an incredible intra

and inter-specific variety in color, shape, taste, fruit type

and biochemical content (Sakaldas and Kaynas 2010). The

fruits of pepper are an abundant sources of antioxidants

nutrients such as provitamin A (carotenoids) which are

important nutritional antioxidants in food (Yasuor et al.

2015). In various types of pepper, carotenoid pigments are

responsible for yellow, orange and red colors. In the pepper

fruits, levels of these compounds depend on many factors,

including variety, maturity, growth and weather conditions

(Hwang et al. 2012). However, this crop is particularly

sensitive to soil water deficit. It is well-known that drought

stress during the initial developmental and reproductive

stages can reduce the number and size of buds and fruits

(Campos et al. 2014).

Drought stress is a harmful non-biological factor that

reduces growth and development of plants as well as yields

(Rasheed et al. 2020). Most areas are classified as dry and

semi-arid in Iran, therefore drought-resistant plants with

high performance are essential (Ding et al. 2015). One of

the most important scientific and economic issues in arid

areas is to improve plant performance to mitigate the

adverse conditions of drought (Penella et al. 2014).

Ascorbic acid (AsA) can improve plant growth and

elevate yield through improvement of resistance to stress

(Zhou et al. 2016). Also, AsA maintains plant’s water at an
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optimal amount in conditions of drought stress (Noman

et al. 2015). Previous study addressed that AsA is involved

in multiple physiological and biochemical steps from seed

germination until senescence plants, for example, oxidative

stress, cell division and enlargement, flowering, growing

fruit signaling, resistance against invading pathogens,

increasing yield and stress tolerance in plants (Latif et al.

2016). In the past, the research has been conducted to

confirm incremental effect of AsA on the growth and

quality of fruit in plants, which can be pointed out to flame

seedless grapevine by El-Sayed et al. (2000); mangoes by

Ahmed (2001); Washington Navel orange by Ragab

(2002); banana by Mostafa (2004); white flame seedless

grapevines by Wassel et al. (2007). Moreover, Maksoud

et al. (2009) has shown that foliar application of AsA

elevates yield and quality of fruit of olive trees. Yousef

et al. (2009) reported that a month before the harvest of

olive trees, a 90 ml AsA foliar spray improved the chem-

ical properties of the fruit and had a positive effect on the

characteristics of olive oil. Production of reactive oxygen

species under stress conditions increases and internal pro-

tective activities may be insufficient (Arafa et al. 2007).

There are various advanced defense systems in plants

(Dolatabadian et al. 2008) which contains non enzymatic

antioxidant compounds (ascorbic acid, salicylic acid, glu-

tathione, tocopherols, etc.) and antioxidant enzymes such

as superoxide dismutase (SOD), peroxidase (POD), and

catalase (CAT) for elimination of ROS (Mohammadi et al.

2020; Athar et al. 2008). Moreover, ASA in all plants exists

as a natural antioxidant compound in normal conditions

and under stress conditions would increase (Dolatabadian

et al. 2008) and it plays a vital role in preserving the

activity of enzymatic antioxidant like SOD, CAT, and POD

(Arafa et al. 2007). The effect of AsA on the activity of

antioxidant enzymes can be varied. Mekki et al. (2015)

reported that AsA decreases the activities of SOD, CAT, of

corn (Zea mays L) under drought stress and decreased

hydrogen peroxide (H2O2) content and oxidative damage

while Aroca (2006) confirmed that AsA increased the

activity of SOD and Liu et al. (2014) explained that AsA

increased the activity of POD in plums (Prunus domestica).

It can be said that osmotic adjustment is an important

process in postponing water stress, which takes place in

conditions of water shortages through the accumulation of

compatible solutes (Sun et al. 2013). Proline as an amino

acid is one of the most important cytosolutes, and acts as a

compatible solute and has been suggested as a general

index for drought stress tolerance (Liu et al. 2011). Amin

et al. (2009) reported that exogenous application of AsA

under drought stress showed positive increase in proline

content and led to stability of cell membrane and drought

resistance. Therefore, since AsA is one of the most

affordable plant growth regulators and has positive effects

on plant growth at both conditions of stress and control,

it can be used for increased resistance to drought stress in

sweet pepper seedlings.

The objective of this study was to investigate the effect

of a foliar spraying of AsA as agent to ameliorate the

adverse effects of drought on growth, physiological and

biochemical parameters of pepper seedlings.

Materials and methods

Plant materials and growth conditions

This research was carried out to assess influence of foliar

application of different concentrations of AsA on bio-

chemical and physiological attributes of sweet pepper

(Capsicum annuum L.) under normal and drought condi-

tions. The research was carried out in a greenhouse at the

Faculty of Agriculture, University of Ilam. The study was

conducted as a factorial experiment in a completely ran-

domized design with two factors. The main factors were

different levels of drought and AsA concentrations. Each

treatment had three replications. It lasted 4 months, from

seed cultivation to sampling. Seeds of sweet pepper were

provided by the Faculty of Agriculture. The peppers seeds

were surface sterilized with 1% sodium hypochlorite for

10 min before being washed with tap water for 1 min.

Then, the seeds were sown in plastic pots that measured

20 cm in height and 23 cm in diameter. The pots were

filling with a mixture of fine sand, sand, leaf mold and

garden soil with a ratio of 1:1:1. After filling, each pot

weighed 7 kg. The soil samples were analyzed for various

soil properties (Table 1)

The average temperature and relative humidity during

plant growth were 18/25 �C (day/night), and 60–70%,

Table 1 Physico-chemical properties of the experimental soil

Characteristics Units Values

Moisture content (%) 32

P (ppm) 3.47

K (ppm) 33.63

pH 7.3

Sand (%) 22

Clay (%) 11

Silt (%) 67

Soil texture Silty loam

EC (ds/m) 0.7

Organic carbon (%) 0.42

Total N (%) 0.04
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respectively. In the early stages of plant growth, irrigation

was complete. A few drops of Tween-20 (polyoxyethylene

sorbitan monolaurate) were added as a surfactant to a

solution of AsA to increase adhesion between leaves. The

AsA treatment started at the fourth leaf stage. AsA was

used at the concentration of 0, 0.5 and 1 mM. The AsA was

sprayed onto the leaves so that both sides of each leaf

became completely wet. The foliar spray was applied

twice. The first instance of application was 72 h before the

drought stress treatment. Accordingly, 72 h after the first

foliar spray, all plants were exposed to three levels of

drought stress: stress-free conditions (full irrigation, i.e. the

control group), moderate stress (60% of field capacity) and

severe stress (30% of field capacity). The second spray was

applied 2 weeks after the drought stress began. The

drought stress treatments were maintained until the end of

the experiment. All pots were weighed on a daily basis.

In this experiment, 27 sweet pepper plants were har-

vested at 80% maturity (in the green stage). Leaf samples

consisted of three replicates. Each replicate was obtained

from three pots, and therefore a total of 9 plants existed in

each treatment group. The samples were immediately

placed in liquid nitrogen after harvest. They were stored in

the freezer (- 80 �C) before measuring the biochemical

properties, the physiological features and the activity of

antioxidant enzymes.

Determination of fruit yield

The factors such as drought stress, high temperature

greenhouse and susceptibility of the cultivar reduced plant

growth, and economic performance therefore, fruit storage

in the greenhouse has not been possible. The fruit harvest

was carried out at four times. Pepper fruits were collected

when they were green and fully grown. At harvest time,

weight and number per plant as well as the total weight of

fruits per plant were recorded and the total yield was

calculated.

Determination of lipid peroxidation

MDA was evaluated by the Zhao et al. (1993) method. For

this purpose, 0.25 g of pepper leaf tissue at 5 ml of 1%

tricyclic acetic acid (TCA) was crushed and centrifuged at

5000 g for 10 min at 4 �C, then 1 ml of supernatant and

4 ml of 20% TCA containing 0.5% thiobarbituric acid

was mixed together and the mixture was exposed to a

temperature of 95 �C at 30 min, the mixture was imme-

diately cooled and read with a spectrophotometer at 450,

532, and 600 nm. To determine the MDA, the following

equation was used:

MDA ðlmol g�1 FWÞ ¼ 6:45 OD532�OD600ð Þ�0:56 OD450

Estimation of soluble carbohydrates

Carbohydrates from pepper leaf tissue were extracted

according to a method by Badour (1959). For this purpose,

1 ml of herbal extract and 9 ml of anthron sulfuric acid

were mixed in a glass tube and heated to 100 �C at 7 min.

The absorbance was read at 620 nm spectrophotometer.

The results of this factor were presented as mg g-1 dry

weight.

Estimation of proline amount

The amount of free proline was measured according to

method by Bates et al. (1973) in the plant. To begin, 0.2 g

of leaves samples were crushed by a mortar and pestle,

then homogenized by centrifugation at 18,000 g at 15 min.

This was followed by adding 2 ml to the test tube con-

taining 2 ml glacial acetic acid and freshly prepared acid

ninhydrin solution (1.25 g ninhydrin dissolved in 20 ml

6 m orthophosphoric acid and 30 ml glacial acetic acid).

Then test tubes were placed at 100 �C for 1 h and cooled at

25 �C. In the next steps, 4 ml of toluene were added to the

contents of the test tube and vortexed at 20 s. The above

test tubes were kept vertically at 10 min until phase sepa-

ration. The absorbance was read at 520 nm. The content of

proline presented as lg g-1fresh weight.

Determination of chlorophyll and carotenoids

Lichtenthaler (1987) method was used to measure chloro-

phyll and carotenoids. For this purpose, 0.2 g of fresh

leaves of pepper was crushed using 15 ml of acetone 80%

and filtered. The absorbance was read at 470, 663, 646 nm.

Chlorophyll concentration was determined by the equation

below:

Chlorophyll a lg/mlð Þ ¼ 12:21 A663ð Þ � 2:81 A646ð Þ
Chlorophyll b lg/mlð Þ ¼ 20:13 A646ð Þ � 5:03 A663ð Þ

Chlorophyll total lg/mlð Þ ¼ Chlorophyll aþ Chlorophyll b

Carotenoid lg/mlð Þ ¼ 11:75 A663 � 2:350A646ð Þ

Determination of anthocyanins

According to Wagner (1979) method, 0.1 g fresh leaf from

the tip of the shoots and root ends was ground and cen-

trifuged in 10 ml acidic methanol (99:1 methylic alcohol:

HCl). Then, the resulting solution was kept overnight in

the dark and read by the spectrophotometer at 550 nm.
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Determination hydrogen peroxide

The extraction and estimation H2O2 was evaluated by

Velikova et al. (2000). For this purpose, 0.2 g of pepper

seedlings leaves was crushed in a mortar with 3 ml of 0.1%

(w/v) trichloroacetic acid (TCA) and then centrifuged at

12000 9 g for 15 min. 0.5 ml of phosphate buffer (pH

7.0) was added to 0.5 ml of supernatant and 1 ml of 1 M

KI was mixed. The absorbance was read at 390 nm. The

absorption rate was also expressed as lmol g-1 FW.

Determination of AsA content

AsA content of pepper leaves was estimated by a modified

procedure following a method by Luwe et al. (1993). Ini-

tially, pepper leaf samples (0.5 g) were crushed in liquid

nitrogen by mortar and pestle. They were homogenized in

ice-cold trichloroacetic acid (TCA, 1% w/v). Then, the

solution was centrifuged at 12,000 rpm for 20 min at a

temperature of 4 �C. This was followed by adding 50 lL
potassium phosphate buffer mixture (0.95 ml, 100 mm, pH

7.0) and ascorbate oxidase (1 ll of 1 ll-1 unit) to the

supernatant. Eventually, the absorbance was read at

265 nm.

Enzyme extraction method

To begin, 0.5 g of Pepper leaves were added to 5 ml of

100 mM phosphate buffer (pH 7.8) containing 5% w/v

PVP and 1 ml EDTA in a mortar kept on ice bath to be

homogeneous. Then, it was centrifuged at 10,000 g for

30 min at 4 �C and assayed the activity of antioxidant

enzymes (Zhang et al. 2009).

Determination of catalase (CAT) enzyme activity

Catalase activity was assessed by Dhindsa et al. (1981)

method. For this purpose, 3 ml of reaction mixture con-

tained 0.1 ml of herbal extract, 15 mM phosphate buffer

(pH 7.0) and 15 mM H2O2. The reaction was initiated by

adding herbal extract. The absorbance changes of the

solution were read at 240 nm every 40 s. One unit of

catalase enzyme activity was expressed as the amount of

enzyme essential to reduce the absorption unit of 0.1 with

an optical density of 240 nm min-1.

Estimation of SOD enzyme activity

The SOD activity was evaluated by the Xu et al. (2008)

method with some modification. In practice, 1000 ll of

enzymatic extracts with 2.465 ml of 55 mM methionine,

100 mM of phosphate buffer (pH 7.8), 300 ml nitrob-

luetetrasolium 0.75 mM and 60 ll of 0.1 mM riboflavin

were placed in a test tube and incubated in fluorescence

light (40 lmol m-2 s-1) at 10 min. The absorbing solution

read to 560 nm by a UV/visible spectrometer. One unit of

SOD enzyme is determined as the amount of enzyme that

inhibits 50% of photoreduction NBT.

Estimation of POD enzyme activity

POD activity was measured by the Zhou and Leul (1998)

method. The reaction mixture contained 50 ml of enzyme

extract, 0.4% H2O2, potassium phosphate buffer to pH 6.1

and 1% guaiacol. The absorbance was read at 470 nm. The

activity of the enzyme was expressed as min-1 g-1fresh at

25 ± 2 �C.

Statistical analysis

In this experiment, all data were analyzed by SPSS soft-

ware 18.1 and Duncan’s multiple range tests. The differ-

ence was considered P\ 0.05. The analyses were carried

out to determine significant differences between the means

at a significance level of P\ 0.05. Pearson’s correlation

between different concentrations of AsA and various levels

of drought stress were calculated by SPSS software.

Results

Plant height

Drought stress and ascorbic acid treatments have affected

plant height of pepper significantly (Table 2). A significant

increase in plant height of pepper plant was observed when

exposed to drought stress (Figs. 1, 2a).

Fruit yield

Both drought stress and ascorbic acid treatments have

affected on fruits yield of pepper significantly (Table 2). The

Ascorbic acid treatment showed that a significantly increased

fruit yield of pepper during to drought stress (Fig. 2c).

Fruit yield component

The growth parameters of pepper plants were determined

based on weight and number of fruit that showed signifi-

cant variations due to AsA and drought levels. The pepper

plants subjected to drought stress showed significant

decrease of all morphological properties such as plant

height, number of fruits and yield (Table 2). However,

ascorbic acid significantly increased all the above param-

eters as compared with control plants and/or drought-

stressed plants (Table 2).
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Leaf chlorophyll and carotenoids content

Chlorophyll a, b, total and carotenoids content of pepper

leaves were significantly affected by drought stress andAsA.

The obtained data (Table 3) demonstrated that drought stress

significantly decreased the content of chlorophyll a, b, total

chlorophyll and carotenoids. The ascorbic acid treatment

significantly increased the leaf chlorophyll and carotenoids

content of pepper plants exposed to severe drought

(Table 3). The content of Chlorophyll a, b, total and car-

otenoid decreased by increasing of drought intensity and

increased with raising AsA (Fig. 2d–g).

Anthocyanin content

The content of anthocyanin of plant leaves increased dur-

ing drought stress. The foliar spray of ascorbic acid

resulted in lesser anthocyanin (Table 3). Anthocyanin

content significantly increased by increasing drought

intensity and decreased with increasing AsA (Fig. 2h).

H2O2 content

The data of this study showed that drought stress effec-

tively increased the leaf H2O2 contents as compared with

control plants. Exogenous application of ascorbic acid

decreased the H2O2 content in plants exposed to medium

and severe drought stressed conditions (Table 4) and H2O2

content were raised with increasing of drought intensity

and decreased with enhancing foliar spray AsA (Fig. 2j).

MDA

This study showed that drought stress effectively increased

the leaf MDA contents as compared with control plants.

Exogenous application of ascorbic acid decreased the

MDA content in plants exposed to medium and severe

drought stressed conditions (Table 4) and MDA content

were raised with increasing of drought intensity and

decreased with enhancing foliar spray of AsA (Fig. 2i).

Changes in soluble carbohydrates contents

Drought significantly changed the concentration of soluble

carbohydrates in pepper seedling. Soluble carbohydrates

contents were increased by drought stress and ascorbic acid

application further increased the soluble carbohydrates

contents of plants exposed to medium and severe drought

conditions (Table 4). In this experiment, with increase in

both treatments, the carbohydrate solution was increased

(Fig. 2k).

Proline

The results indicated that proline content was affected by

drought and AsA foliar application (Table 4). The content

of proline in free leaves increased with increasing drought

stress in pepper, and its content increased significantly after

application of ascorbic acid in leaves (Fig. 2b).

Table 2 Means comparison of

ascorbic acid and drought stress

effects on morphological

parameters of pepper plants

Treatments Plant height (cm) Fruit number Fruit weight (g) Total yield (kg/plant)

Ascorbic acid

Control 28.312b 3.33b 1.39b 6.65c

0.5 mM 29.202b 4.33b 1.76a 8.56b

1 mM 34.088a 5.88a 1.80a 12.14a

Drought stress

Control 35.40a 6.88a 3.20a 7.31a

60% 31.127b 4.55b 1.23b 1.88b

30% 25.07b 2.11c 0.70c 1.25c

The same letters in each column indicate no significant difference at the 5% probability level in the Duncan

test

Fig. 1 The effect of three concentrations of ascorbic acid treatments

(0, 0.5 and 1 mM) on plant height of pepper
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Ascorbic acid

Drought stress significantly increased AsA content in sweet

pepper plants when compared with control plants

(Table 4). Accordingly, the amount of AsA increased by

higher levels of drought stress. The exogenous application

of AsA increased the AsA content in the stressed and non-

stressed sweet pepper plants (Table 4). The interaction

between drought stress and ascorbic acid showed that

ascorbic acid content in sweet pepper plants increases in

response to higher levels of drought stress and ascorbic

acid.

Antioxidant enzyme activities

Drought stress and AsA influenced activities of antioxidant

enzymes of pepper plant leaf. The results showed that

bFig. 2 Interaction effects of drought stress and ascorbic acid

treatment on a height, b proline, c yield, d chlorophyll a, e chlorophyll
b, f total chlorophyll, g carotenoids, h anthocyanin in pepper leaves

under drought stress, i MDA, j H2O2, k total soluble carbohydrates

and l SOD, m CAT, n POD in pepper leaves under drought stress
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exogenous application of ascorbic acid and drought stress

stimulated antioxidant enzymes activities in pepper leaves

(Table 4). The activities of antioxidant enzymes were

significantly increased with enhancing of drought stress

intensity and ASA (Fig. 2l–n).

Correlation coefficient

Analyzing the coefficients of correlation between different

traits involved in pepper production provides informative

data about the relative effect of factors on each other.

Correlation coefficients between the plant traits could

determine whether selection for one trait may affect the

other ones. Altogether, positive and negative correlations

were found among different traits (Table 5). Meanwhile,

correlation coefficient analysis was performed between

morphological factors including plant height, fruit number,

fruit weight, total yield which resulted in relatively high

correlation. On the other hand, a significant positive cor-

relation was obtained between proline, chlorophyll a,

anthocyanin, carotenoids and also, there was significant

negative correlation with H2O2.

Meantime, we found positive main correlations between

chlorophyll a, with chlorophyll b, carotenoids and as well

as significant negative correlation with H2O2.

In addition, chlorophyll b with total chlorophyll, car-

otenoids had a significant positive correlation and with

hydrogen peroxide, anthocyanin, total soluble carbohy-

drates, CAT, POD, SOD, had a significant negative cor-

relation. Also, total chlorophyll with carotenoids had

significant positive correlation and this factor had signifi-

cant negative correlation with hydrogen peroxide, antho-

cyanin, MDA, total soluble carbohydrates, CAT, POD,

SOD and ultimately among enzymes, CAT enzyme with

POD and SOD enzyme with total soluble carbohydrates

and POD enzyme with SOD, total soluble carbohydrates

significant positive correlations.

Discussion

Drought is one of the most important environmental

stresses that inhibit the growth of the product and cause

crop yield limitations of the product (Liu et al. 2016). Due

Table 3 Mean comparison of ascorbic acid and drought stress effects on photosynthetic pigments of pepper plants

Treatments Chlorophyll a (lg/ml) Chlorophyll b (lg/ml) Total chlorophyll (lg/ml) Carotenoids (lg/ml) Anthocyanin (mol g-1 FW)

Ascorbic acid

Control 4.39c 2.60b 5.69b 2.88c 0.39a

0.5 mM 5.31b 5.25a 6.63ab 3.20b 0.27b

1 mM 8.48a 5.85a 7.37a 3.98a 0.20c

Drought stress

Control 10.48a 7.78a 8.66a 5.93a 0.25c

60% 5.01b 3.55b 6.36b 2.40b 0.3ab

30% 2.69c 2.37c 4.69c 1.73c 0.31a

The same letters in each column indicate no significant difference at the 5% probability level in the Duncan test

Table 4 Means comparison of ascorbic acid and drought stress effects on biochemistry and physiological parameters of pepper plants

Treatments Proline

(lg g-1

FW)

H2O2

(lmolg-1 FW)

MDA

(lmol g-1 FW)

Total soluble

carbohydrates

(mg g-1 DW)

ASA

(lmol g-1 FW)

SOD

(Ug-1 FW)

POD

(Ug-1 FW)

CAT

(Ug-1 FW)

Ascorbic acid

Control 17.46c 0.52a 0.58a 0.65c 19.76c 0.65c 15.89b 2.96c

0.5 mM 18.43b 0.50ab 0.57ab 1.26b 43.15b 1.24b 16.51b 4.12b

1 mM 17.79b 0.42b 0.49c 1.65a 73.37a 1.56a 17.81a 6a

Drought stress

Control 13.77c 0.23c 0.44c 0.89c 37.55c 0.87c 15.44c 3.38b

60% 20.21b 0.27a 0.51b 1.27b 54.32a 1.22b 16.79a 3.80b

30% 22.78a 0.55b 0.69a 1.39c 44.41b 1.36a 17.88a 5.89a

The same letters in each column indicate no significant difference at the 5% probability level in the Duncan test
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to the osmotic effect of drought, it can be said that drought

causes different responses in the cell such as inhibition of

growth and synthesis of some non-toxic compounds, which

are used to increase osmotic potential and metabolic pro-

cesses, and ultimately increases the activity of some

antioxidant enzymes (Turkan et al. 2005). Considering that

the role of AsA in drought stress conditions in pepper

plants is not known, therefore, it was decided in this

research to investigate the physiological, biochemical and

metabolic effects of ascorbic acid on pepper seedlings

under drought stress conditions (Tables 2, 3 and 4).

Table 5 Correlation coefficients (r) among pepper seedlings traits

Plant height

(cm)

Fruit

number

Fruit weight

(g)

Total yield

(kg)

Proline

(lg g-1 FW)

Chla (lg/
ml)

Chlb (lg/
ml)

Chlt (lg/
ml)

Plant height 1

Fruit number 0.729** 1

Fruit weight 0.747** 0.816** 1

Total yield 0.681** 0.856** 0.954** 1

Proline 0.609** 0.647** 0.750** 0.759** 1

Chla 0.792** 0.854** 0.899** 0.888** 0.716** 1

Chlb 0.148 0.28 0.496** 0.496** 0.158 0.382* 1

Chlt 0.204 0.315 0.416* 0.408* 0.147 0.359 0.899** 1

Carotenoid 0.760** 0.783** 0.934** 0.919** 0.703** 0.903** 0.545** 0.480*

Anthocyanin 0.450 0.277 0.239 0.185 0.489** 0.331 - 0.568** - 0.566**

MDA - 0.167 - 0.126 - 0.344 - 0.284 - 0.291 - 0.288 - 0.140 - 0.499**

CAT - 0.139 - 0.178 - 0.269 - 0.253 - 0.008 - 0.119 - 0.427* - 0.431*

POD - 0.229 - 0.264 - 0.375 - 0.337 - 0.107 - 0.200 - 0.515** - 0.630**

SOD 0.051 0.009 - 0.258 - 0.265 - 0.132 - 0.025 - 0.623** - 0.626**

Total soluble 0.059 0.025 - 0.269 - 0.267 - 0.151 - 0.010 - 0.589** - 0.573**

Carbohydrates

H2O2 - 0.759** - 0.690** - 0.834** - 0.719** - 0.819** - 0.487** - 0.448* - 0.902**

Carotenoid

(lg/ml)

Anthocyanin

(mol g-1 FW)

MAD

(lmol g-1 FW)

CAT

(lg-1 FW)

POD

(lg-1 FW)

SOD

(lg-1 FW)

Total soluble

carbohydrates

(mg g-1 DW)

H2O2

(lmol g-1 FW)

Plant height

Fruit number

Fruit weight

Total yield

Proline

Chla

Chlb

Chlt

Carotenoid 1

Anthocyanin 0.218 1

MDA - 0.052 - 0.52 1

CAT - 0.115 0.499** - 0.269 1

POD - 0.353 0.340 0.194 0.504** 1

SOD - 0.245 0.387* 0.097 0.350 0.683** 1

Total soluble - 0.234 0.339 0.116 0.357 0.688** 0.988** 1

Carbohydrates

H2O2 - 0.238 0.480* 0.111 0.300 0.226 0.227 0.227 1

**High significant (1% level of probability)
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AsA is a water-soluble molecule and is well known as

an antioxidant that helps to detoxify active oxygen in cell

(Liu et al. 2014). Ascorbic acid spray reduces the effects of

drought stress in plants such as closure of the stomata,

absorbing nutrients, total chlorophyll, protein synthesis,

transfusion, the process of photosynthesis and growth of

plant (Hafez and Gharib 2016).

Drought stress can be assessed by its impacts on fruit

morphological properties, plant height, fruit yield, leaf

chlorophyll and carotenoids content and increase of MDA,

H2O2, soluble carbohydrates, proline, anthocyanin and

antioxidant enzymes. In this study, it is found that AsA

treatment could increase growth parameters and yield of

pepper seedlings under drought stress (Table 2). The

results of the recent study have been consistent with pre-

vious studies on olive trees as foliar spraying with ascorbic

acid had favourable effects on growth characters and yield

(El-Sayed et al. 2014).

Ascorbic acid in the pepper seedlings during the meta-

bolic process in the plant is able to control the free radicals

produced, which can increase plant resistance to stress and

protect the side effects of the active oxygen (El-Sayed et al.

2014). Ragab (2002) also reported that ascorbic acid may

be substituted for synthetic auxin. However, due to the

effect of auxin, the role of ascorbic acid in plants can be

explained. Cell membrane stability is an indicator of cel-

lular damage caused by various biological stresses (Sa-

neoka et al. 2004). Usually, MDA content reflects cell

damage (Li et al. 2018) in plants. In the present study,

drought stress significantly increased MDA content due to

increased lipid peroxidation and cell membrane damage.

However, AsA was able to significantly reduce these

negative symptoms. By reducing the MDA concentration,

AsA protects membranes from drought stress (Table 4).

These results showed that AsA plays a role in maintaining

cell membrane stability, and this is consistent with the

findings for Hibiscus esculentus L. and Oryza sativa L.

under drought (Amin et al. 2009; Guo et al. 2005).

The reduction of chlorophyll is common in drought

stress conditions (Chen et al. 2016; Javadi et al. 2017),

since there are several reports of the reduction of chloro-

phyll and carotene in environmental stresses (Aghaie et al.

2018; Koffler et al. 2014; Nxele et al. 2017). Reductions in

chlorophyll content may be due to damage caused by

tension in the biosynthesis of plant pigments or increased

destruction pigmentation (Nematpour et al. 2020). Reduc-

ing photosynthetic pigments may result in increased syn-

thesis of compatibility solutions, such as proline, because

both of them are produced from similar precursors (Le Dily

et al. 1993). One of the important antioxidant pigments in

carotenoids is that they play a special protective role in

stress conditions (Egert and Tevini 2002). Since carotenoid

reduction is often associated with the destruction of

chlorophyll pigments, it can be suggested that pho-

todegradation and loss of photodegradation may be due to

the destruction of carotene (Javadi et al. 2017). Our results

are also consistent with the theory that shows the rela-

tionship between the photosynthetic pigment concentra-

tion: Chla, and total chla, as well as carotenoids in drought

stress conditions. The concentration of photosynthetic

pigments is strongly reduced under drought stress, although

the use of appropriate concentrations of ascorbic acid

decreases drought stress (Table 3).

Our result is consistent with the previous reports on

wheat, cauliflower and basil where the plants sprayed with

ascorbic acid showed significant increase in photosynthetic

pigments content compared with control (Athar et al. 2008;

Latif et al. 2016; Khalil et al. 2010).

Many drought-tolerant plant species contain antho-

cyanins which are believed to act as osmoregulators under

drought stress (Chalker-Scott 1999), therefore, plant tissues

that usually contain anthocyanins are resistant to drought

stress (Sherwin and Farrant 1998). For example, in a study,

drought resistance of purple cultivar is better than that of

green cultivar (Bahler et al.1991). Anthocyanins increase

the drought resistance in plants through potential water

stability. In this case, anthocyanins are assumed to interfere

with the osmotic regulation of the plants (Choinski and

Johnson 1993; Chalker-Scott 2002). In present study, the

results showed that drought subjected pepper seedlings,

contained higher anthocyanins. On the other hand, when

ascorbate was applied, anthocyanins content was reduced

(Table 4). The results of this study are consistent with the

findings of Halimeh et al. (2013) in Dracocephalum mol-

davica under drought stress.

Low molecular organic compounds, such as soluble

carbohydrates, proline and other amino acids, can regulate

the osmotic potential of the cell to improve water absorp-

tion under drought stress (Esmaeilpour et al. 2016) and

protect enzymes, biological membranes and photosynthetic

apparatus against oxidative damage (Anjum et al. 2012).

Recent study showed that pepper seedlings responded to

drought exposure with accumulation of proline and soluble

carbohydrates (Table 4) and this achievement agrees with

previous reports on rice (Guo et al. 2005). In the present

study, soluble carbohydrates and proline in plants under

both treatments were higher than controls (Table 4). Dur-

ing oxidative stress, the accumulation of proline content

with ascorbic acid treatment was increased and enhanced

resistance against losing leaf water and plant growth rate

under stress conditions occurred (Tasgin et al. 2003; Yaz-

danpana et al. 2011).

Active oxygen species such as H2O2, superoxide and

singlet oxygen are produced due to water shortages in

plants and have harmful effects on cell membrane stability

and permeability (Ashraf et al. 2011). There are many
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reports that ascorbic acid is a free radical scavenger (Gill

and Tuteja 2010). Due to lack of water, reactive oxygen

species (ROS) are formed, resulting in damage to plants.

The main source of ROS is the chloroplast of the plant

cells, which causes the change in electron transfer redox

and ultimately leads to the formation of oxygen species

(Aghaie et al. 2018). Similar results as the elevation of

H2O2 in pepper leaves under drought stress in comparison

to control were recorded and application of AsA treatments

reduced H2O2 in pepper leaves in drought-stressed plants

(Table 4).

One of the general strategies for neutralizing the toxin in

the plant is the use of several enzymatic and non-enzymatic

methods that protect plants from damage caused by ROS

(Sairam and Saxena 2000), including the superoxide dis-

mutase enzyme (SOD) that converts superoxide to H2O2,

catalase and peroxidase enzymes which also reduces H2O2

to H2O and O2 (Kadkhodaie et al. 2013; Anjum et al.

2012). Therefore, detoxification of the enzyme in the plant

is related almost to the activity of the SOD enzyme and

then to the stimulation of other antioxidant enzymes

(Alscher et al. 2002). In this study, the magnitude of the

activity of the SOD enzyme in chilli peptides has been

increased gradually, with the previous reports of increased

activity of this enzyme in drought stress conditions in

tomato (Tahi et al. 2008, Aghaie et al. 2018) and wheat

(Csiszar 2005).

CAT enzyme is a key enzyme in the glutathione-

ascorbate cycle, which plays an important role in elimi-

nating H2O2, which is caused by the SOD enzyme in

various cell sections. The results indicate that the activity

of the enzyme CAT also had similar changes in the activity

of the SOD enzyme in pepper seedlings (Table 4).

According to available evidence, these enzymes substan-

tially detoxify H2O2 (Table 4). Ren et al. (2016) suggested

that when plants are affected by drought stress, the catalase

enzyme is responsible for the decomposition of H2O2.

When seedlings of pepper treated with AsA and drought,

increased activity of SOD, CAT and POD enzymes, it was

showed that AsA increased the activity of these three

enzymes under drought stress (Table 4). In this study, it

can be concluded that with increasing of AsA, the activity

of SOD, CAT and POD enzymes and H2O2 levels in pepper

leaves increased and decreased, respectively. Therefore,

the use of foreign ascorbic acid can keep plants resistant to

drought by eliminating active oxygen species (Table 4).

According to studies conducted in the past show use of

AsA increases the activity of enzymatic and non-enzymatic

antioxidants to counteract the harmful effects of various

environmental stresses (Hafez and Gharib 2016; Bai et al.

2013).

Conclusions

Statistical analysis of this study showed that drought stress

increased ROS levels and had negative effects on plant

growth factors, however, when drought stress was applied

with AsA, plant growth was improved and ROS levels

decreased. Drought stress increased the activity of SOD,

CAT, POD enzymes and soluble carotenoids and carbo-

hydrates in pepper seedlings, but the effect of both AsA

treatments and drought increased the activity of antioxidant

enzymes compared to drought stress alone. Therefore, by

increasing the activity of antioxidant enzymes, it can

stimulate tolerance to drought stress in pepper.
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