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There is a bidirectional relationship between inflammatory bowel disease (IBD) and depression/anxiety. Emerging evidences
indicate that the liver may be involved in microbiota-gut-brain axis. This experiment focused on the role of melatonin in
regulating the gut microbiota and explores its mechanism on dextran sulphate sodium- (DSS-) induced neuroinflammation
and liver injury. Long-term DSS-treatment increased lipopolysaccharide (LPS), proinflammation cytokines IL-1β and TNF-α,
and gut leak in rats, breaking blood-brain barrier and overactivated astrocytes and microglia. Ultimately, the rats showed
depression-like behavior, including reduction of sucrose preference and central time in open field test and elevation of
immobility time in a forced swimming test. Oral administration with melatonin alleviated neuroinflammation and
depression-like behaviors. However, melatonin supplementation did not decrease the level of LPS but increase short-chain
fatty acid (SCFA) production to protect DSS-induced neuroinflammation. Additionally, western blotting analysis suggested
that signaling pathways farnesoid X receptor-fibroblast growth factor 15 (FXR-FGF 15) in gut and apoptosis signal-regulating
kinase 1 (ASK1) in the liver overactivated in DSS-treated rats, indicating liver metabolic disorder. Supplementation with
melatonin markedly inhibited the activation of these two signaling pathways and its downstream p38. As for the gut microbiota,
we found that immune response- and SCFA production-related microbiota, like Lactobacillus and Clostridium significantly
increased, while bile salt hydrolase activity-related microbiota, like Streptococcus and Enterococcus, significantly decreased after
melatonin supplementation. These altered microbiota were consistent with the alleviation of neuroinflammation and metabolic
disorder. Taken together, our findings suggest melatonin contributes to reshape gut microbiota and improves inflammatory
processes in the hippocampus (HPC) and metabolic disorders in the liver of DSS rats.

1. Introduction

Inflammatory bowel disease (IBD), including Crohn’s dis-
ease and ulcerative colitis, is a chronic inflammatory dis-
ease that negatively affects the life quality of patients.
When compared with healthy individuals, these diseases

are clearly associated with mental dysfunction [1, 2]. More
than 30% of IBD patients were accompanied with mental
disorders, including anxiety and depression [3]. Chronic
diseases can lead to psychological disorders along with
interpersonal relationships, family, work, and social stress
[4, 5]. At the same time, sustained stress may induce
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physical dysfunction, which in turn leads to immunosup-
pression, gut permeability, and other inflammation
changes that may eventually result in chronic diseases,
including IBD [6, 7]. In recent years, more and more
researches have focused on the relationship between men-
tal disease and intestinal inflammation. We speculate that
the mechanism may be caused by a disorder of the
microbiota-gut-brain axis. Through longitudinal follow-up
trials, they found that mental disease may be associated
with poor prognosis of IBD and that intestinal inflamma-
tory activity is also related to the development of mental
disorders [8–10]. Additionally, there is a bidirectional rela-
tionship between IBD and mental disorders [11]. These
bidirectional brain-gut pathways have been reported to
play a key role in functional gastrointestinal disorders such
as IBS and functional dyspepsia [12, 13]. Stimulation of
stress, anxiety, and depression can increase the burden
on patients with IBD [14], although there is still contro-
versy between stress and IBD [15].

Data from recent years indicate that the gut microbiome
is closely related to the function of the liver system [16, 17].
Alteration in gut microbiome has been reported in patients
with various liver disorders including fibrosis and cancer
and has been validated in animal disease models [18–21].
The liver affects the structure of the gut microbiota by
regulating the Clostridium-mediated bile acid production
[22, 23]. In turn, the gut microbiome can influence the
liver function through reabsorption in the terminal ileum
[24, 25]. Recent researches suggest that liver diseases were
associated with depression and suicide attempts [26]. Germ-
free mice underwent fecal microbiota transplantation from
major depressive disorder (MDD) patients resulting in liver
metabolic disorder and mainly focusing on three major
disturbances, including lipid, amino acid, and energy metab-
olism [27], which is consistent with our previous study [28].
Depression is often accompanied by insomnia symptoms,
and melatonin plays a key role in maintaining circadian
rhythm [29, 30]. Recent researches have revealed that mela-
tonin involved in mental control [31], weanling stress [32],
sleep deprivation [33], obesity [34], and lipid metabolism
[35]. Bile contain melatonin has been reported to improve
intestinal epithelial injury [36] and change the structure of
gut microbiota, including elevating richness and diversity of
microbiota [37], such as Akkermansia, Bacteroides, and
Faecalibacterium [33]. At present, IBD and depression have
established a preliminary link through gut microbiota
[1–3]. Also, previous studies have shown metabolic disor-
ders in the liver of MDD and depressive rats [27, 28].
Although melatonin has a certain effect in the treatment
of depression, its effect on liver damage and neuroinflam-
mation caused by depression is not yet clear.

To address this issue, rats were treated with DSS to eval-
uate whether chronic colitis was linked to the development of
depression/anxiety and liver metabolic disorder. Western
blotting analyses indicate that melatonin reversed dysmeta-
bolism. By sequencing the 16S rRNA gene of rat feces, we
found that Lactobacillus and Clostridium, immune-modulat-
ing, SCFA, and bile acid production microbiota may serve as
a potential mechanism.

2. Materials and Methods

2.1. Animal Treatment. Adult male SPF SD rats (6 weeks),
each weighing 200 ± 20 g, were purchased from the Experi-
mental Animal Center of Southern Medical University
(Guangzhou, China). Rats were randomly divided into three
groups: (1) CON group—rats were fed a standard diet; (2)
DSS group—rats were treated with 1.5% DSS for induction
of colitis model as previous described [38]. For induction of
chronic DSS colitis, each rat received 4 cycles of DSS treat-
ment consisting of 7 days with 1.5% DSS in the drinking
water followed by a 10-day recovery phase with normal
drinking water. After the last DSS cycle, rats received normal
drinking water for 2 weeks. (3) The third group is the mela-
tonin group (MT) wherein DSS rats were fed with melatonin
(100mg/Kg) by gavage at 7:00 AM for 2 weeks. The dose was
chosen based on previous researches with minor modifica-
tion [37, 39]. The study was approved by the Southern Med-
ical University Experimental Animal Ethics Committee. All
experimental procedures were performed in accordance with
the relevant guidelines approved by the Experimental Animal
Ethics Committee of Southern Medical University.

2.2. Behavioral Testing

2.2.1. Sucrose Preference Test (SPT). The test was performed
on the 28th day as previously described [40]. After 24 hours
of water ban, each rat was placed in a single cage and two bot-
tles containing water and 1% sucrose solution were placed.
The ratio of the consumption of the sucrose solution to the
amount of total solution consumed in one hour represents
a parameter of the pleasure behavior.

2.2.2. Open Field Test (OFT). The test was performed as pre-
viously described [41]. Briefly, all rats were individually
tested in a device consisting of a black square substrate
(50 ∗ 50 cm) and a black wall (50 cm). Rats were placed in
the corners of the device, and after 1 minute of adaptation,
the rats were free to move for 5 minutes using a video-
computerized tracking system. The total activity time is used
as an indicator of activity, and the time spent in the cen-
tral area (36% of surface area) is used as an indicator of
depression behavior.

2.2.3. Forced Swimming Test (FST). Rats were placed in a
cylinder (30 cm × 45 cm) filled with water at a temperature
of 25°C, for a 6-minute period. The duration of immobility
in seconds was monitored during the last 4min of the
6min test. The immobility period was defined as the time
spent by the animal floating in the water without struggling
and making only movements necessary to keep its head
above the water. Immediately afterwards, the trial rats were
placed under a heating lamp to dry [42].

2.3. Sample Collection. Anesthesia was performed with
sodium pentobarbital. Serum was collected from the abdom-
inal aorta and centrifuged at 3500 rpm for 3 minutes at 4°C.
Fecal stools, the liver, the colon, and the hippocampus were
collected and frozen in liquid nitrogen and maintained at
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-80°C for detection. The colon and liver samples were col-
lected and fixed in 3.7% formalin for detection.

2.4. 16S rRNA Gene Sequence Analysis. Total bacterial geno-
mic DNA samples were extracted using the Fast DNA SPIN
extraction kits (MP Biomedicals, Santa Ana, CA, USA). The
quantity and quality of extracted DNAs were measured using
a NanoDrop ND-1000 spectrophotometer (Thermo Fisher
Scientific, Waltham, MA, USA) and agarose gel electropho-
resis, respectively. PCR amplification of the bacterial 16S
rRNA genes (V4–V5 region) was performed using the for-
ward primer 515F (5′-GTGCCAGCMGCCGCGGTAA-3′)
and the reverse primer 907R (5′-CCGTCAATTCMELATO
NINTTRAGTTT-3′).

2.5. Sequence Analysis. The Quantitative Insights Into Micro-
bial Ecology (QIIME, v1.8.0) pipeline was employed to
process the sequencing data, as previously described [43].
Briefly, raw sequencing reads with exact matches to the
barcodes were assigned to respective samples and identified
as valid sequences. The low-quality sequences were filtered
through the following criteria [44, 45]: sequences that had a
length of <150 bp, sequences that had average Phred scores
of <20, sequences that contained ambiguous bases, and
sequences that contained mononucleotide repeats of >8 bp.
Paired-end reads were assembled using FLASH [46]. After
chimera detection, the remaining high-quality sequences
were clustered into operational taxonomic units (OTUs) at
97% sequence identity by UCLUST [47]. A representative
sequence was selected from each OTU using default parame-
ters. OTU taxonomic classification was conducted by BLAST
searching the representative sequence set against the Green-
genes database [48] using the best hit [49]. An OTU table
was further generated to record the abundance of each
OTU in each sample and the taxonomy of these OTUs.
OTUs containing less than 0.001% of total sequences across
all samples were discarded. To minimize the difference of
sequencing depth across samples, an averaged, rounded
rarefied OTU table was generated by averaging 100 evenly
resampled OTU subsets under the 90% of the minimum
sequencing depth for further analysis.

2.6. Bioinformatics and Statistical Analysis. Sequence data
analyses were mainly performed using QIIME and R pack-
ages (v3.2.0). OTU-level alpha diversity indices, such as
Chao1 richness estimator, ACE metric (Abundance-based
Coverage Estimator), Shannon diversity index, and Simpson
index, were calculated using the OTU table in QIIME. OTU-
level ranked abundance curves were generated to compare
the richness and evenness of OTUs among samples. Beta
diversity analysis was performed to investigate the structural
variation of microbial communities across samples using
UniFrac distance metrics [50, 51] and visualized via principal
coordinate analysis (PCoA), nonmetric multidimensional
scaling (NMDS), and unweighted pair-group method with
arithmetic mean (UPGMA) hierarchical clustering [52]. Dif-
ferences in the UniFrac distances for pairwise comparisons
among groups were determined using Student’s t-test and
the Monte Carlo permutation test with 1000 permutations

and visualized through the box-and-whisker plots. Principal
component analysis (PCA) was also conducted based on
the genus-level compositional profiles [52]. The significance
of differentiation of microbiota structure among groups was
assessed by PERMANOVA (permutational multivariate
analysis of variance) and ANOSIM (analysis of similarities)
[53] using R package “vegan.” The taxonomy compositions
and abundances were visualized using MEGAN [54] and
GraPhlAn [55]. Venn diagram was generated to visualize
the shared and unique OTUs among samples or groups using
R package “VennDiagram,” based on the occurrence of
OTUs across samples/groups regardless of their relative
abundance [56]. Taxa abundances at the phylum, class,
order, family, genus, and species levels were statistically
compared among samples or groups by Metastats [57] and
visualized as violin plots. LEfSe (linear discriminant analysis
effect size) was performed to detect differentially abundant
taxa across groups using the default parameters [58]. PLS-
DA (partial least squares discriminant analysis) was also
introduced as a supervised model to reveal the microbiota
variation among groups, using the “plsda” function in R
package “mixOmics” [59]. Random forest analysis was
applied to discriminating the samples from different groups
using the R package “randomForest” with 1,000 trees and
all default settings [60, 61]. The generalization error was
estimated using 10-fold cross-validation. The expected
“baseline” error was also included, which was obtained by a
classifier that simply predicts the most common category
label. Co-occurrence analysis was performed by calculating
Spearman’s rank correlations between predominant taxa.
Correlations with ∣RHO ∣ >0:6 and p < 0:01 were visualized
as co-occurrence network using Cytoscape [62]. Microbial
functions were predicted by PICRUSt (phylogenetic investi-
gation of communities by reconstruction of unobserved
states), based on high-quality sequences [63].

2.7. Short-Chain Fatty Acid Analysis. Fecal samples were col-
lected using an Agilent 7890A/5975C gas chromatograph
(Agilent Technologies, Inc., Palo Alto) to determine short-
chain fatty acids (SCFA; acetic acid and propionic acid)
according to a previous study [64].

2.8. Western Blot. Total proteins from liver and colon
samples were extracted using protein extraction reagents
(Thermo Fisher Scientific, Waltham, MA, USA), and 30μg
proteins were separated by a reducing SDS-PAGE electro-
phoresis. Then, the proteins were transferred onto a PVDF
membrane (Millipore, Billerica, MA, USA) and blocked with
5% nonfat milk in Tris-Tween-buffered saline buffer for 1.5
hours. Then, the membranes were incubated with primary
antibodies and then incubated with horseradish peroxidase-
conjugated secondary antibodies. The gray values of the
bands were calculated using ImageJ software and were
normalized to actin. 1 : 500 for rabbit anti-FXR (Abcam,
Cambridge, MA), 1 : 1000 for mouse anti-FGF15 (Santa Cruz
Biotechnology, USA), ASK1 (28201-1-AP, 1 : 750, Protein-
tech), p-ASK1 (#3764, 1 : 1000, CST), p38 (#9212, 1 : 1000,
CST), p-p38 (9211 s, 1 : 1000, CST), and β-actin (66009-1-
Ig, 1 : 5000, Proteintech).
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2.9. Quantitative Image Analysis. Immunofluorescence was
performed as previously described [65], with the following
modification: primary antibody—rabbit anti-GFAP (1 : 2000;
Ab5076/Ab10062, Abcam, UK) 8h at 4°C. To detect primary
antibodies, a suitable secondary antibody conjugated to
FITC-conjugated donkey anti-mouse IgG (1 : 400, A21202,
Life technologies, USA) was used. The sample was covered
with a mounting medium (S2100, Solarbio, China) and
observed with an epifluorescence microscope (DM1000, Leica,
German).

2.10. Pathological Changes of the Colon and Liver. The colon
and liver were collected following animal sacrifice. Subsec-
tions were partially embedded in 3.7% formalin solution
(Sigma, USA). Paraffin-embedded colon sections (4-5μm)
were stained with hematoxylin and eosin (H&E) for morpho-
logical examination, then observed with an Olympus BH22
microscope (Japan).

2.11. Proinflammatory Cytokines and Markers of Intestinal
and Blood-Brain Barrier Analysis. Inflammatory cytokines
such as IL-1β and zonulin in the hippocampus; zonulin, IL-
1β, and TNF-α in the colon; and LPS in the plasma were
tested using an ELISA kit (Cusabio, Houston, TX, USA;
https://www.cusabio.com/).

2.12. Statistical Analysis. Statistical analyses were approached
using SPSS version 22 (SPSS, Inc., Chicago, IL, USA) and
GraphPad Prism 5. The results such as α-diversity, behavior
data, IL-1β, TNF-α, LPS, zonulin, histology score, activated
cells in the hippocampus, and protein were presented as the
mean ± SEM. Data sets were assessed by one-way analysis
of variance (ANOVA) followed by Bonferroni’s post hoc test.

3. Results

3.1. Melatonin Reduces DSS-Induced Depression/Anxiety-
Like Behavior. Since previous studies have reported that
patients with inflammatory bowel disease are often accompa-
nied with mental health issues [66], we evaluate the behavior
tests after rats were treated with DSS. In this study, chronic
colitis rats were used to verify whether DSS-induced IBD
promotes the development of depression/anxiety behavior
(Figure 1(a)). In a sucrose preference test, sucrose preference
of DSS rats (DSS) was decreased significantly compared with
control group (CON) rats (Figure 1(b)). In an open field test,
the central area time of DSS rats was significantly reduced
compared with control rats (Figure 1(c)). In a forced swim-
ming test, immobile durations of DSS rats were significantly
increased compared with control rats (Figure 1(d)). Addi-
tionally, the motion tracks of CON rat and DSS rat in the
open field test are shown in Figures 1(e) and 1(f). By contrast,
supplementation with melatonin reversed these changes
(Figures 1(b), 1(c), 1(d), and 1(g)).

3.2. Melatonin Reprograms Gut Microbiota in
DSS-Treated Rats

3.2.1. α Diversity. Previous studies have reported that depres-
sion can be alleviated via the alteration of gut microbiome

[67, 68]. Chao1 is an index to estimate the number of OTUs
in the community using the Chao1 algorithm. Chao1 is
commonly used in ecology to estimate the total number of
species. The Shannon diversity index (or Shannon-Wiener
index) is a diversity index that is commonly used to charac-
terize species diversity in a community. It is a measure of
the species diversity of an ecosystem based on information
theory. In our study, α diversity, as measured by the Chao1
and Shannon indices, was significantly reduced after treat-
ment with DSS, which means the richness and diversity of
species decreased. Interestingly, treatment with melatonin
markedly increased Chao1 and Shannon indexes, suggesting
an improvement in gut microbiota richness and diversity in
DSS-treated rats (Figures 2(a)–2(d)).

3.2.2. β Diversity. Based on the unweighted UniFrac distance
calculation, CON and DSS rats presented a distinct clustering
of microbiota community structure (Figures 2(e) and 2(f)).
Obviously, we can observe the difference in the gut microbi-
ota between different groups through the distance between
the samples. The longer the distance between CON and
DSS/MT, the greater the difference in gut microbiota; on
the contrary, the closer the distance between DSS and MT
samples, the smaller the difference in gut microbiota between
them; however, MT has a tendency to separate from DSS.
Although the microbial community structure of DSS and
melatonin rats was not completely separated, the diversity
of melatonin has a distinct trend. These results suggest that
the intestinal microbiota structure of rats is changed after
DSS and melatonin intervention.

To identify the significant changes in the gut microbiota
among the three groups, we used QIIME software to obtain
the composition and abundance distribution table of each
sample at the five classification levels (the phylum, the class,
the order, the family, and the genus), and the results of the
analysis were presented in a histogram. Here, at the phyla
level, the lower ratio of Firmicutes to Bacteroidetes (F/B) is
considered to be a key index for a healthy state of the gut
microbiome [69, 70]. In our study, the ratio of F/B was
decreased in DSS rats and increased in melatonin rats
(Figures 3(a)–3(d)). At the class level (Figure 3(e)), there
were significant increase in Bacilli and significant decrease
in Clostridia after melatonin treatment (Figures 3(f) and
3(g)), Since Bacilli to Clostridia (B/C) has been reported as
a novel index of stress effects [71]. So, we measured the ratio
of Bacilli to Clostridia. Here, the ratio of B/C was higher in
MT rats relative to DSS rats (Figure 3(h)). At the genus level
(Figure 3(i)), relative abundance of Streptococcus and Entero-
coccus is increased in DSS rats and the abolition of the effect
by treatment with melatonin (Figures 3(j) and 3(k)). On the
other hand, relative abundance of Lactobacillus and Clostrid-
ium is increased by treated with melatonin (Figures 3(l) and
3(m)). Altered microbiota usually change the production of
SCFA [34, 72]; in the present study, supplementation with
melatonin reversed the reduction of SCFA (acetic acid, pro-
pionic acid) induced by treated with DSS (Figures 3(n) and
3(o)). PICRUSt analyses predicted that rats treated with
DSS produce more LPS and supplementation with melatonin
had no effect to improve this change (Figure S1).
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Figure 1: Behavior tests after rats were treated with DSS and melatonin. (a) The development of depression induced by DSS. (b) Results of
sucrose preference test. (c) Results of open field test. (d) Results of forced swimming test. (e–g) Representative motion tracks for the CON
group, the DSS group, and the MT group. Data represent the mean ± SEM. ∗p < 0:05; ∗∗p < 0:01. CON = 7; DSS = 5; MT = 6.
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3.3. Melatonin Protects against DSS-Induced Inflammation in
the Brain and Colon. Given the evidence that depression can
be related to gut and brain inflammatory [42, 71], here, we
measured the activities of brain glia astrocytes, microglia,
and inflammatory cytokines in the hippocampus. In this
research, immunofluorescence was used to analyze astrocytes
and microglia. The morphological analysis of GFAP-positive
and Iba-1-positive cells revealed that DSS exposure caused an
increase in the number of activated astrocytes and microglia
in the hippocampus compared to CON rats; furthermore,
melatonin treatment induced large reductions in the num-
bers of activated microglia and astrocytes (Figures 4(a)–
4(e)). The effects on microglia and astrocyte activation states
were paralleled by alterations in hippocampal IL-1β and the
blood-brain barrier (BBB) permeability marker zonulin.
Melatonin abolished DSS-induced, aberrant increases of both
IL-1β and zonulin (Figures 4(f) and 4(g)). A recent study
showed that melatonin can improve intestinal morphology
[32]. In this study, the results of colon pathology of different
treatment are shown in Figures 5(a) and 5(b). CON group
rats exhibited healthy pathological characteristic, whereas
inflammatory cell infiltration of colonic mucosa, degenera-
tion of intestinal villus epithelial cells, necrosis, and shedding
were observed in the DSS rats. Melatonin supplementation
had a significant effect on intestinal repair, including decreas-
ing the inflammatory cell infiltration of colonic mucosa.
Anxiety and depression are associated with imbalanced gut
microbiome that secretes LPS endotoxin into plasma, which
is correlated with altered integrity of intestinal epithelial cells
named zonulin [73]. After rats were treated with DSS, LPS in

the plasma and zonulin, IL-1β, and TNF-α in the colon were
elevated significantly. Consistent with the above result, mela-
tonin supplementation had markedly decreased level of
zonulin and IL-1β except LPS and TNF-α in the colon
(Figures 5(c)–5(f)).

3.4. Melatonin Inhibits the DSS-Induced Activation of FXR
and ASK1 Signaling Pathways. A previous study provides
the evidence that melatonin alleviates liver metabolic disor-
der caused by NAFLD via inhibiting ASK1 pathway activa-
tion in a β-arrestin-1-dependent manner [35]. Huang et al.
reported that decreased intestinal bile-salt hydrolase (BSH)
microbes and/or decreased FXR-FGF15 signaling may be
potential mechanisms behind the cholesterol and lipid lower-
ing [23]. Moreover, our previous research has reported that
depression may cause liver lipid metabolic disorder [28]. In
this case, we evaluated the influences of melatonin on the
FXR and ASK1 signaling pathway in rats with DSS, which
have demonstrated correlation with metabolic disorder
[23, 34, 35]. The FXR and phosphorylation of ASK1 in the
liver tissue of DSS rats were remarkably increased, suggesting
that the FXR and ASK1 signaling pathway is activated upon
DSS (Figures 6(a) and 6(b)). Relative protein levels of FXR
and FGF15 in the colon were decreased in MT rats relative
to DSS rats (Figure 6(a)). Melatonin treatment not only sup-
pressed the phospho-ASK1 level but also substantially inhib-
ited the total ASK1 level (Figure 6(b)). We next determined
the status of p38, the downstream cascade of ASK1. DSS
affected total p38 protein levels and significantly increased
the phosphorylation of p38. Conversely, melatonin inhibited
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the enhanced phosphorylation of p38 (Figure 6(b)). Addi-
tionally, the liver histological changes showed that coagula-
tive necrosis caused by DSS can be reversed by melatonin
supplementation (Figure 6(c)).

4. Discussion

Previous researches have showed that melatonin has a bene-
ficial effect on gut, brain, and liver function, such as alleviat-
ing cognition impairment by antagonizing brain insulin
resistance in aged rats fed a high-fat diet [31], enhancing neu-
ral stem cell differentiation and engraftment [74], protecting
against lipid-induced mitochondrial dysfunction [75], and
alleviating cadmium-induced liver injury [76]. These effects
were achieved by varieties of molecular pathways including
differentiation, oxidative stress, immune function, and apo-
ptosis [77–79]. In addition to playing an independent role
in the gastrointestinal disorder, the intestinal microbiota also
affected many biological functions of other organs and are
related to the pathogenesis of various organs [80–82].

Microbiome-gut-brain interactions affect mental health.
The presence of anxiety or depression is linked to the
development of gastrointestinal symptoms. In turn, the pres-
ence of gastrointestinal symptoms is also associated with the
development of mental illnesses [83]. Although previous
studies have reported that melatonin affects the gut microbi-
ota, including Lactobacillus and Bacteroides [32, 34], the rich-
ness and diversity of the mice/rat gut microbiota, and the
ratio of Firmicutes to Bacteroides [37], the effects of the gut
microbiota on the biological functions of these organs and
the pathogenesis of various diseases remain to be revealed.

Here, we specifically investigated the role of the inflam-
matory activity to the development of psychological disorder
depression and the effect of melatonin to the liver metabolic
disorder in DSS treatment rats. We first determined that DSS
exposure induces significant changes in behaviors. These
findings indicate that DSS treatment result in unbalanced
physiological processes; however, it is still uncovered but
one possibility is LPS. Overrepresented gram-negative taxa
were observed in depression/anxiety (DEP/ANX) patients
[73]; meanwhile, phylogenetic investigation of communities
by reconstruction of unobserved states (PICRUSt) and
plasma analyses showed that LPS biosynthesis genes and

LPS were overrepresented in the gut microbiome and
plasma of DEP/ANX subjects [73], respectively. Interest-
ingly, PICRUSt analyses indicate that LPS biosynthesis
and LPS biosynthesis proteins markedly increased in DSS
rats, which result in LPS significantly increased plasma. In
addition, astrocytes and microglia in the hippocampus were
activated induced by LPS invasion [84, 85]. Subsequently,
inflammation-related cytokines, such as TNF-α and IL-1β,
were increased in the hippocampus as well as the nuclear
factor kappa-B (NF-κB) pathway [31, 84, 85]. How LPS
invaded the brain? The possibility is the collapse of the blood
brain barrier (BBB). The increased expression of the gut and
BBB permeability marker zonulin was observed in rats
treated with DSS. Previous research suggested that elevated
plasma zonulin strongly reflects increased gut and BBB per-
meability [73, 86, 87]. BBB permeability is regulated by both
gut and neuroinflammation and is often used as an indicator
of neuroinflammation [88–90]. In this study, supplementa-
tion with melatonin markedly improved gut leak, but there
is no positive effect in the reduction of LPS, TNF-α, and
IL-1β. As we all know, the ratio of Firmicutes to Bacteroi-
detes is considered to be a key index for the state of gut
microbiota [69, 70]. Although supplementation with melato-
nin had a slight effect on the relative abundance of Firmicutes
and Bacteroidetes, the ratio of F/B decreased significantly,
which means the melatonin improved the structure of gut
microbiota, since Lactobacillus rhamnosus, Lactobacillus
acidophilus, and Lactobacillus reuteri, which belonged to
Bacilli, have been considered to have anti-inflammatory
function [91–93], whereas higher Clostridia abundance is
usually associated with gut inflammation [94–96]. Lactoba-
cillus reuteri has a beneficial emotional effect, while Lactoba-
cillus can provide an increased protective mechanism against
the adverse effects of Clostridia, or may occupy a niche orig-
inally occupied by Clostridia or Actinobacteria [71]. Notably,
when we analyzed the relative abundance of Bacilli and
Clostridia, we found that supplementation with melatonin
significantly increased Bacilli and decreased Clostridia,
respectively. Oral administration of melatonin in high-fat
diet- (HFD-) fed mice markedly decreased the abundance
of Lactobacillus [34], whereas oral administration of melato-
nin in healthy mice increased the abundance of Lactobacillus
[32]. There are five genera (reduction of Streptococcus and
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Enterococcus and enrichment of Lactobacillus and Clostrid-
ium) that markedly changed after DSS rat were treated with
melatonin. Interestingly, the observed behavior, gut leak,

and proinflammatory changes after melatonin supplementa-
tion could be regulated partially by SCFAs. Indeed, recent
research has demonstrated that SCFA plays a key role in
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Figure 4: Melatonin-induced attenuation of hippocampal neuroinflammation in DSS rats. (a–c) Micrographs depict labeling of GFAP
(green) and Iba-1 (red) in rat hippocampal slices. Nuclear staining was performed with DAPI (blue). (d) The number of cells expressing
GFAP, a marker of astrocyte activation. (e) The number of cells expressing Iba1, a marker of microglia activation. (f) Hippocampal IL-1β
levels of rats measured with ELISA. (g) Hippocampal zonulin levels of rats measured with ELISA. Data represent the mean ± SEM.
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modulating microglia maturation, morphology, and function
[97]. Surprisingly, transplant with SCFA-producer Clostrid-
ium tyrobutyricum or B. thetaiotaomicron or supplementa-
tion with SCFAs could restore BBB integrity [98]. In the
present study, Lactobacillus and Clostridium changed signif-
icantly when supplementation with melatonin and both of
them belong to SCFA-producing genera. These data suggest
that gut microbiota is a complex community and parts of
probiotics are hardly demonstrating the signature of depres-
sion. However, a common signature of these relative studies
was enhancement of gut inflammation in depression patients
or rodent animals [99, 100] and lower permeability in antide-
pressant controls [73, 101, 102]. This suggests that metabo-
lites derived from the gut microbiota may continuously
affect the physiological state of the BBB. However, it is
unclear whether other SCFAs or microbiota metabolites,
even microbial species, may affect the permeability of BBB.
This finding is also significant in other physiological pro-
cesses, indicating that metabolites that do not normally
enter the brain may cross the BBB depending on the state
of the microbiome.

Research on depression usually focuses on the central
and peripheral nervous system, not the liver. Our previous
research showed that depression induced by chronic unpre-
dictable mild stress in rats changed liver metabolism [28].
Also, germ-free mice that underwent fecal microbiota trans-
plantation from major depressive disorder patients showed
metabolic disorder [27]. Based on the previous study, we
focused on the relationship of melatonin supplementation
and FXR-FGF 15 and ASK1 signaling pathways, which are
correlated to liver metabolism [23, 35]. In this section, we
found that melatonin inhibited the overactivation of FXR-
FGF 15, ASK1 signaling pathways, and its downstream
cascade-p38 in a DSS-induced depression rat model. A previ-
ous study has demonstrated that melatonin safeguards
against fatty liver by antagonizing TNF receptor-associated
factor- (TRAF-) mediated ASK1 deubiquitination and stabi-
lization in a β-arrestin-1-dependent manner [35]. Huang
et al. reported that theabrownin from Pu-erh tea attenuates
hypercholesterolemia via modulation of gut microbiota
and bile acid metabolism [23]. Interestingly, in the present
research, supplementation with melatonin suppressing
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Figure 5: Melatonin altered intestinal morphology and promoted the gut leak in DSS rats. (a) Melatonin influenced intestinal morphology.
(b) The histology score of DSS and MT rats. (c) Melatonin had no significant effect to prevent LPS production in the plasma. (d–f) Effects of
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microbes (Streptococcus and Enterococcus) is relevant to
BSH activity [23]. Additionally, administration with mela-
tonin inhibited the overactivation of the FXR-FGF 15 sig-
naling pathway. Inhibited activation of FXR in intestinal
results in decreased production of FGF15/FGF19 along
with subsequent reduced FGF15/FGF19-FGFR4 signaling
coupled with reduced cholesterol levels in the liver and
plasma [23]. Melatonin significantly inhibits the expression
levels of ASK1 and p-ASK1 and its downstream p38 and
p-p38 pathways. As a mitogen-activated protein kinase
(MAPKKK), ASK1 initiates and maintains p38 activation
to induce apoptosis. Since ASK1 is overactivated in DSS-
induced liver metabolic disorders, ASK1 can be an ideal drug
target for treating liver metabolism disorders [103–105].
According to our findings, melatonin inhibits the activation
of the ASK1 pathway and its downstream p38 may be a
promising strategy to alleviate liver metabolism disorders. In

combined previous studies, we propose that long-term admin-
istration of DSS or HFDmay induce depression andmetabolic
disorder [23, 34, 35, 106]. The use of melatonin in DSS- or
HFD-induced depression may not only alleviate the behavior
but also improve disordered metabolism. This speculation
needs further research to confirm.

In conclusion, our results suggest that (1) treatment with
DSS induced depression-like behavior and neuroinflamma-
tion in rats via alteration of gut microbiota, (2) supple-
mentation with melatonin reversed depression-like behavior
and neuroinflammation via increased SCFA producer and
enhanced the integrity of BBB, and (3) administration with
melatonin decreased the activation of FXR-FGF15 and ASK1
signaling pathways and contributed to improved metabolic
disorder. These results support the therapeutic value of
melatonin in DSS-induced depression and/or liver metabolic
disorder in the clinic.
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