Table 2.
Model | μ | σ | Pr | Re | F1 | MAE | MAPE | Training data | Training size | Ref. |
---|---|---|---|---|---|---|---|---|---|---|
EQTransformer | 0.00 | 0.03 | 0.99 | 0.99 | 0.99 | 0.01 | 0.00 | Global | 1.2M | This study |
PhaseNet | −0.02 | 0.08 | 0.96 | 0.96 | 0.96 | 0.07 | 0.01 | North California | 780K | 8 |
GPD | 0.03 | 0.10 | 0.81 | 0.80 | 0.81 | 0.08 | 0.01 | South California | 4.5M | 10 |
PickNet | 0.00 | 0.09 | 0.81 | 0.49 | 0.61 | 0.07 | 0.02 | Japan | 740K | 2 |
PpkNet | −0.01 | 0.15 | 0.90 | 0.90 | 0.90 | 0.10 | 1.90 | Japan | 30K | 5 |
Yews | 0.07 | 0.13 | 0.54 | 0.72 | 0.61 | 0.09 | 0.02 | Taiwan | 1.4M | 4 |
Kurtosis | −0.03 | 0.09 | 0.94 | 0.79 | 0.86 | 0.08 | 0.01 | — | — | 17 |
FilterPicker | −0.01 | 0.08 | 0.95 | 0.82 | 0.88 | 0.14 | 0.02 | — | — | 18 |
AIC | −0.04 | 0.09 | 0.92 | 0.83 | 0.87 | 0.09 | 0.01 | — | — | 19 |
μ and σ are mean and standard deviation of errors (ground truth—prediction) in seconds respectively. Pr, Re, and F1 are precision, recall, and F1-score respectively. MAEand MAPE are mean absolute error and mean absolute percent error respectively. Note Yews and PpkNet models used here are trained based on different datasets mentioned in the related work section.
Bold values represent the best performance.