Table 3.
Model | μ | σ | Pr | Re | F1 | MAE | MAPE | Training data | Training size | Ref. |
---|---|---|---|---|---|---|---|---|---|---|
EQTransformer | 0.00 | 0.11 | 0.99 | 0.96 | 0.98 | 0.01 | 0.00 | Global | 1.2M | This Study |
PhaseNet | −0.02 | 0.11 | 0.96 | 0.93 | 0.94 | 0.09 | 0.01 | North California | 780K | 8 |
GPD | 0.03 | 0.14 | 0.81 | 0.83 | 0.82 | 0.10 | 0.01 | South California | 4.5M | 10 |
PickNet | 0.08 | 0.17 | 0.75 | 0.75 | 0.75 | 0.10 | 0.03 | Japan | 740K | 2 |
PpkNet | 0.02 | 0.15 | 1.00 | 0.91 | 0.95 | 0.10 | 1.85 | Japan | 30K | 5 |
Yews | −0.02 | 0.13 | 0.83 | 0.55 | 0.66 | 0.11 | 0.01 | Taiwan | 1.4M | 4 |
Kurtosis | −0.10 | 0.13 | 0.89 | 0.39 | 0.55 | 0.11 | 0.01 | — | — | 17 |
FilterPicker | −0.05 | 0.13 | 0.61 | 0.41 | 0.49 | 0.10 | 0.01 | — | — | 18 |
AIC | −0.07 | 0.15 | 0.87 | 0.51 | 0.64 | 0.12 | 0.02 | — | — | 19 |
μ and σ are mean and standard deviation of errors (ground truth—prediction) in seconds respectively. Pr, Re, and F1 are precision, recall, and F1-score respectively. MAEand MAPE are mean absolute error and mean absolute percent error respectively.
Bold values represent the best performance.