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Changes in precipitation patternsmight have deleterious effects on population health.Weused data from theUganda
National Panel Survey from 2009 to 2012 (n = 3,223 children contributing 5,013 assessments) to evaluate the link
between rainfall and undernutrition in children under age 5 years. We considered 3 outcomes (underweight, wasting,
and stunting) andmeasured precipitation using household-reported drought and deviations from long-term precipitation
trendsmeasured by satellite. We specifiedmultilevel logistic regression models with random effects for the community,
village, and individual. Underweight (13%), wasting (4%), and stunting (33%) were common. Reported drought was
associated with underweight (marginal risk ratio (RR) = 1.18, 95% confidence interval (CI): 1.04, 1.35) in adjusted
analyses. Positive annual deviations (greater rainfall) from long-term precipitation trends were protective against under-
weight (marginal RR per 50-mm increase = 0.94, 95%CI: 0.92, 0.97) andwasting (marginal RR per 50-mm increase =
0.93, 95% CI: 0.87, 0.98) but not stunting (marginal RR per 50-mm increase = 1.00, 95% CI: 0.98, 1.01). Precipitation
was associatedwithmeasures of acute but not chronicmalnutrition using both objective and subjectivemeasures of ex-
posure. Sudden reductions in rainfall are likely to have acute adverse effects on child nutritional status.

child health; droughts; Uganda; undernutrition

Abbreviations: CHIRPS, ClimateHazardsGroup InfraRedPrecipitationwith Stations; CI, confidence interval; RR, risk ratio.

Child undernutrition poses a threat to planetary health and
productivity and is responsible for an estimated 3.1 million child
deaths each year (1, 2). Acute undernutrition is associated with
greater susceptibility to infectious diseases in early life and de-
layed development (3), and chronic undernutrition can lead to
cognitive deficits and low school achievement (4, 5).

Evidence suggests that insufficient or erratic precipitation
can increase the risk of child undernutrition (6–13). Studies
have reported associations between low levels of precipitation
and stunting (6, 10), underweight (8, 10), and anemia (8). Unfor-
tunately, none of these studies have evaluated potential nonlin-
earities in the relationship between precipitation and nutritional
status. This is important because there might be a threshold of
rainfall at which undernutrition is affected, information that is
vital for projections of health impacts under potential climate
change scenarios.

East Africa is particularly vulnerable to changes in rainfall
regimes (14, 15). Uganda demonstrates a high potential for
reduced rainfall and a shorter growing season. The country has

experienced annual reduction in rainfall at a rate of 3.5% per
decade since 1960 (15, 16). The burden of undernutrition inUgan-
da is high; in 2011, the prevalence of stunting among children
under 5 years of age was 33%, of underweight 14%, and of wast-
ing 5% (17). A recent study in nearby Ethiopia found no impact
of rainfall shocks on acute undernutrition, contrasting with previ-
ous findings in East Africa (7). There is no empirical evidence on
how changes in rainfall affect child undernutrition inUganda.

The present analyses use nationally representative survey
and satellite data to examine the impacts of rainfall deviations
on the nutritional status of Ugandan children under the age of 5
years. This study extends previous literature by evaluating non-
linear relationships between rainfall deviations and undernutri-
tion. In addition, we utilize both household-reported drought
and absolute deviations from historical trends of precipitation
measured via interpolation of satellite and ground station data
as exposures. This is important because previous studies have
used only rainfall estimated via satellite without addressing
respondents’ perceptions of drought. Using a self-reported

1953 Am J Epidemiol. 2019;188(11):1953–1960



measure, we can model the relationship between perceived
drought and objective measures of rainfall deviations and cap-
ture drought at a finer resolution than what is measured via sat-
ellite. Furthermore, we aim to substantiate the link between
precipitation and nutritional outcomes using multiple measures
of exposure. This is important because there is conflicting evi-
dence as to the relationship between weather patterns and acute
undernutrition (7, 18); combining subjective and objective
measures enhances our elucidation of this relationship.

METHODS

Data source

Data from the nationally representative Uganda National
Panel Survey, Living Standards Measurement Study, were
used to investigate the relationship between rainfall deviations
and child undernutrition. These data were collected in 4 waves:
2009–2010, 2010–2011, 2011–2012, and 2013–2014. We make
use of the first 3 waves, excluding the final wave due to a differ-
ent samplingmethodology.

Across 5 administrative regions, 3,123 households were
selected for the 2005 Uganda National Household Survey using
a 2-stage sampling design. First (within urban/rural and regional
strata) 322 out of 783 enumeration areaswere selected at random.
Households were then selected at random from these enumera-
tion areas. The Uganda National Panel Survey attempted to track
and survey each of these 3,123 households during its first 3
waves. A random subset of the households, representing 20% of
the sample (2 households from each enumeration area), was
selected for individual tracking (i.e., if any individual in the
household who was related to the head of household moved
away, theywere tracked and, if located in person, their household
was added to the Uganda National Panel Survey—considered as
“split-off” households). This was done to account for losses to
follow-up. Split-off households were included in our analyses.
See Web Table 1 (available at https://academic.oup.com/aje) for
information on the number of households sampled at eachwave.

At each wave, respondents from the same sample households
provided information on demographic factors, assets, expendi-
tures, employment, health status, agricultural practices, and con-
traception, among other variables. Households were geolocated.
Although the analytical sample is based on a longitudinal cohort,
new children aged into cohort eligibility, and some children either
aged out or were not successfully followed; thus, the average
number of observations per child was 1.6. Children were eligible
for the study if they were aged 6–59 months at each time of sur-
vey; they were added to the study sample as they were born into
survey households and excluded from subsequent waves as they
surpassed 59 months of age. They were excluded from analyses
if the household did not respond to the self-reported drought ques-
tion, if the household was not geolocated, or if they were missing
covariate data. Finally, children were excluded from primary
analyses if their anthropometricmeasurements were not taken.

Measures

Exposure. We considered 2 exposure measures: a self-
reported measure of drought or irregular rainfall and an indicator

of deviations from cumulative rainfall measured with satellite
and ground stations. The self-reportedmeasure represents the re-
spondent’s perception of precipitation deviations in the previous
year. Survey enumerators asked each head of household (or
other adult member, in their absence), “Did you experience
drought/irregular rains during the past 12 months?” (yes/no
response).

We also obtained cumulative rainfall for the Global Position-
ing System (GPS) location of the household. Monthly rainfall
raster data were acquired at a resolution of 0.05 decimal degrees
from Climate Hazards Group InfraRed Precipitation with Sta-
tions (CHIRPS) data; CHIRPS uses a validated algorithm to
measure atmospheric precipitation (19). We extracted a contin-
uous value for monthly rainfall in millimeters at the GPS loca-
tion of each household and summed over the prior 12 months,
and we then subtracted an average of annual precipitation from
1999 to 2008 (10 years) from this value, such that negative val-
ues reflected lower rainfall than average and positive values re-
flected higher.

Neither measure represents a gold standard; each measure
has flaws. The self-reported measure might be subject to inac-
curate recall and reporting bias, while the satellite-measured
precipitation’s resolution might not reflect rainfall levels within
pixels and might not reflect how rainfall variations were experi-
enced by individual households.

Outcome. We determined child nutritional status using the
World Health Organization 2006 Child Growth Standards (20),
which include 3 nutritional indicators: underweight, wasting,
and stunting. These dichotomous measures are combined with
information on a child’s age in addition to anthropometric mea-
surements (weight and height/length), taken in the present study
by enumerators for all children aged 6–59 months during the
Uganda National Panel Survey. During each household survey,
2 trained enumerators with measuring boards and solar-
charging digital scales (UNICEF Electronic Scale or Uniscale,
manufactured by Seca, Birmingham, United Kingdom) re-
corded child anthropometry. Length was measured for children
aged 6–23 months, while height was measured for children 24
months or older. Using these anthropometric data, we com-
puted a weight-for-age z score (used to assess underweight),
defined as the difference between the child’s weight-for-age z
score and the mean for all children of the same sex and age of a
World Health Organization standard group normalized by the
standard deviation, a weight-for-height z score (assessing wast-
ing), and a height-for-age z score (assessing stunting). For each
outcome, if a child’s measure was more than 2 standard devia-
tions below the average measure for the World Health Organi-
zation standard group, they were considered to have the adverse
nutritional outcome. We separately specified models with
continuous nutritional indicators as outcomes (weight-for-age,
weight-for-height, and height-for-age z scores) andmodels with
dichotomous outcomes (underweight, wasting, and stunting).

Covariates. The directed acyclic graph representing as-
sumptions that guided covariate selection can be found in Web
Figure 1. In models using household-reported drought/irregular
rains as the primary exposure of interest, we included child and
household-level sociodemographic characteristics selected due
to their theoretical association with both household-reported
drought and undernutrition. Child characteristics included sex
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and age in months. Household characteristics included a binary
indicator of urban versus rural residence and the numbers of
female and male adults and of children under age 5 years in the
household. Household socioeconomic status was defined using
an asset index modeled off the asset index used by Demo-
graphic and Health Surveys (21). The asset index included
questions regarding materials for flooring and roof, ownership
of consumer products, and type of drinking source and toilet
facilities, among others.We assigned households a wealth score
based on a principal component analysis of these assets, which
was then used to assign households to wealth quintiles. We
included fixed effects (i.e., indicator variables) for the month of
survey collection to account for season.

Models that used the deviations from rainfall measured with
satellite as an exposure included only the fixed effect term for
month of survey collection, because deviations from long-term
trends should be independent of the other potential confounding
variables. Because deviations are relative to a location’s long-
term precipitation history, we have removed variation repre-
senting sociodemographic factors that might be associated with
historically dryer or wetter places and might affect child nutri-
tional status.

Statistical analysis

We evaluated the relationship between rainfall deviations
in millimeters and household-reported drought/irregular rains
graphically using locally weighted scatterplot smoothing. In
addition, we estimated the pairwise correlation between continu-
ous satellite-derived rainfall deviations and self-reported drought.

Subsequently, we specified mixed-effect ordinary-least-
squares regression models for each continuous outcome
(weight-for-age, weight-for-height, and height-for-age z scores)
and mixed-effect logistic regression models for each dichoto-
mous outcome (underweight, wasting, and stunting) using self-
reported and CHIRPS rainfall exposures separately. Models
included 3 random effects simultaneously: community (n =
316), household (n = 1,809), and individual child (n = 3,223).
These were included as random intercepts; random slopes were
also considered but were not included in the final models due to
results from likelihood ratio tests comparing models with and
without random slopes suggesting that random intercepts were
sufficient. We first estimated models with fixed effects for
calendar month only to control for confounding by season.
Additional covariates were then added for those models that
evaluated the household-reported exposure; these additional
covariates were not included in the models with precipitation
measured via satellite. All effect estimates were computed as
marginal risk ratios using Stata’s margins command, which
estimates effects by first computing predicted potential out-
comes for each observation in the sample under each possi-
ble level of the exposure, using both the fixed and random
effects estimated in the regression equation. The potential
outcomes under drought were then averaged across all indivi-
duals in the sample and divided by the average of the potential
outcomes under no drought condition to estimate the marginal
effect of drought on the ratio scale.

To assess whether continuous rainfall variability influenced
undernutrition in a nonlinear fashion, we used restricted cubic
splines and tested for deviations from nonlinearities using

Stata’s testparm command, which compares models that have
spline termswith those having only a linear predictor. The num-
ber of knots was determined using Akaike’s information
criterion.

As a sensitivity analysis, we generated inverse-probability
weights for the probability of not being measured at baseline to
account for potential bias due to missingness in the outcome
variable. Models used to generate weights included all covari-
ates and both satellite-derived and self-reported exposure mea-
sures. We truncated the weights, replacing all values above the
99th percentile with the value of the 99th percentile weight
(22). We then repeated primary analyses with weights. All
analyses were carried out in R-Cran, version 3.4 (R Foundation
for Statistical Computing, Vienna, Austria) (23), and Stata, ver-
sion 14.2 (StataCorp LP, College Station, Texas) (24).

RESULTS

Participant characteristics

A total of 4,138 individual children in 2,115 households
between the ages of 6 months and 5 years at the time of survey
were living in sample households; 5,013 observations of 3,223
unique children were included in the final sample (Figure 1).
These children resided in in 1,809 households. Baseline char-
acteristics of children included in the sample at each wave can
be found in Table 1, which reflects data for each child the first
time they were observed. Characteristics of all observations at
each wave can be found inWeb Table 2. Approximately 16%–

18% of the sample resided in urban areas. Households had an
average range of 1.9–2.1 children under 5 (standard deviations,
0.8–0.9). In the first wave of data collection, over half of house-
holds (51%) reported drought/irregular rains; in 2010–2011
and 2011–2012, the proportion reporting drought dropped to
36% and 25%, respectively. At baseline, 13%–16% of children
were considered underweight, 5%–6% were afflicted with wast-
ing, and 32%–34%with stunting. Average annual rainfall ranged
from 483.5 mm to 2,246.6 mm (mean = 1,284.6) across the 3
waves. Mean deviation from long-term annual precipitation
across the 3waveswas+37.6 mm (standard deviation, 115.5).

Rainfall and undernutrition

A graphical depiction of the relationship between self-
reported drought/irregular rains and annual rainfall deviations
using locally weighted scatterplot smoothing demonstrated a
threshold of approximately 100-mm lower-than-average
trends of annual rainfall during the year immediately prior to
the survey, after which the proportion of respondents reporting
drought/irregular rains decreased in almost a linear fashion
(Figure 2). Households reporting drought/irregular rains were
more likely to be located within a pixel with negative precipi-
tation deviations: The median rainfall deviation among those
endorsing self-reported drought/irregular rains was+6.3 mm
(interquartile range,−76.0 to+102.3), and among those not en-
dorsing self-reported drought/irregular rains, the median rainfall
deviation was+47.9 (interquartile range,−33.0 to+134.7).

In models controlling for all covariates, children living in
households that reported drought demonstrated 1.18 times the
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risk of underweight (95% confidence interval (CI): 1.04, 1.35)
and 1.27 times the risk of wasting (95% CI: 0.98, 1.68) com-
pared with those living in households that did not report
drought (Table 2). We did not find evidence for an association
between reported drought and stunting in adjusted models
(marginal risk ratio (RR) = 1.02, 95% CI: 0.94, 1.11). We
observed similar relationships in mixed effect linear regression
models with z scores as outcomes (Web Table 3).

Increased deviations, meaning higher than average rainfall in
the 12 months prior to survey, had a protective association with
underweight (marginal RR per 50-mm increase in rainfall =
0.94, 95% CI: 0.92, 0.97) and wasting (marginal RR per-50
mm increase in rainfall = 0.93, 95% CI: 0.87, 0.98) (Table 3).
This equates to a 17.6% predicted marginal probability of
underweight for children under the lowest rainfall deviation
(less precipitation than long-term averages; −232.7 mm/year),
compared with an 8.3% predicted probability for children under
the highest rainfall deviation (more precipitation than long-term
averages;+404.6 mm/year). Predicted probabilities for wasting
were 6.3% under the low-precipitation scenario and 2.3% in the
high-precipitation scenario. Rainfall deviations were not associ-
atedwith stunting (marginal RR per 50-mm increase in rainfall =
1.00, 95% CI: 0.98, 1.01). Mixed-effect linear models with z
scores as outcomes demonstrated a similar pattern (WebTable 4).

When we modeled the rainfall deviation exposure nonli-
nearly with restricted cubic splines and compared models with
and without splines, we found evidence for a nonlinear associa-
tion with wasting but not underweight or stunting (Figure 3).
This nonlinear relationship represented a steep decline in the
predicted marginal probability of wasting at the lowest levels of
12-month rainfall deviations, as well as a flattening of the rela-
tionship at approximately−100 mm.

The inclusion of inverse-probability weights to account for
potential bias due to missingness in the outcome variable did
not notably affect primary results (Web Tables 5 and 6).

DISCUSSION

The goal of this analysis was to assess the relationship
between rainfall and undernutrition among children in Uganda
using 2 different measures of exposure. Exposures measured
via household report and via satellite demonstrated similar re-
sults: Both household-reported drought and remotely sensed
estimates of lower levels of rainfall over the 12 months prior
to the survey were positively associated with underweight and
wasting but not stunting. Projections of climate change state
that precipitation in Uganda might decline by as much as 7%
by 2030 (16). This decline could have severe implications.

Our findings contrast with those from a recent study using
similar measures, which concluded that deviations from precip-
itation averages were not associated with wasting in Ethiopia
(18). One hypothesized reason for these different findings is
that Ethiopia is a more arid country than Uganda; households
in the Ethiopian sample might have developed more adaptive
strategies than those in the present study. Importantly, nutrient-,
fat-, and protein-dense livestock represents a larger portion of
the livelihood strategy of Ethiopian farmers, which allows for
herd mobility strategies, including transhumance, that are not
available to rain-fed agriculturalists. Another possibility is that

Children Aged 6–59 Months
With Full Covariate and Exposure

Data (n = 2,365)

Final Sample for Wave 1
(n = 1,929)

Exposure or Covariate Data
Missing (n = 21)

Not geolocated (n = 18)
Missing covariates (n = 2)
Missing self-reported
 drought (n = 1)

Outcome Missing (n = 436)

A)

Children Aged 6–59 Months in
Surveyed Households (n = 2,385)

Children Aged 6–59 Months in
Surveyed Households (n = 2,399)

New children (n = 903)
Children observed in wave 1
 (n = 1,496)

Children Aged 6–59 Months
With Full Covariate and Exposure

Data (n = 2,280)

Final Sample for Wave 2
(n = 1,566)

Exposure or Covariate Data
Missing (n = 119)

Not geolocated (n = 61)
Missing covariates (n = 43)
Missing self-reported
 drought (n = 15)

Outcome Missing (n = 714)

B)

Children Aged 6–59 Months in
Surveyed Households (n = 2,487)

New children (n = 850)
Children observed in wave 1 or
 wave 2 (n = 1,637)

Children Aged 6–59 Months
With Full Covariate and Exposure

Data (n = 2,421)

Final Sample for Wave 3
(n = 1,518)

Exposure or Covariate Data
Missing (n = 66)

Not geolocated (n = 59)
Missing covariates (n = 3)
Missing self-reported
 drought (n = 4)

Outcome Missing (n = 903)

C)

Figure 1. Flow diagram of study subjects between 6 and 59 months
of age included in the Uganda National Panel Survey, Uganda,
2009–2012. A) Wave 1, B) wave 2, and C) wave 3 (total n = 5,013
observations of 3,223 unique children aged 6–59 months; mean num-
ber of observations per child = 1.6). The primary reason cited for miss-
ing outcome at each wave was that the child was not present at the time
of survey (28.0%, 50.0%, and 63.9%atwaves 1, 2, and 3 respectively).

Am J Epidemiol. 2019;188(11):1953–1960

1956 Epstein et al.



the 13-year period the authors used to calculate a long-termmean
of precipitation was already characterized by drought; therefore,
children living in dry areas and already at risk of wasting might
not have been further affected by reductions in precipitation.

The lack of association between rainfall and stunting in the
present study could be explained by differences in the underly-
ing constructs captured by underweight and wasting compared
with stunting. Wasting is a measure of acute undernutrition,
caused by episodic reductions in caloric intake or infections
such as diarrheal diseases—factors that might be more strongly
influenced by reduced rainfall. Underweight, in addition, is a
composite measure of acute and chronic malnutrition. Stunting,
in contrast, measures only chronic malnutrition, which might
be influenced by recurrent infections or poor diets and is less
responsive to acute environmental episodes. The relationship
between rainfall, underweight, and wasting is consistent with
previous findings (7, 8, 25). However, some previous research
has found an association between reduced rainfall and stunting
(6, 8, 25, 26); a recent systematic review found associations in
12 of 15 articles assessing the relationship between weather
events and stunting (27).More work should evaluate this poten-
tial relationship, including assessments of rainfall prior to the
child’s birth and during pregnancy, because amother’s nutrition
before conception and before delivery can affect a child’s likeli-
hood of undernutrition (28).

Finally, we observed a nonlinear relationship between rain-
fall deviations and acute undernutrition. This is suggestive of a
threshold level of precipitation at which children are at higher
risk for undernutrition. There remain challenges in operational-
izing a definition of “drought,”with a lack of consensus among

Table 1. Baseline Characteristics of Childrena Aged 6–59Months Added to the Analytical Sample at EachWave From the Uganda National
Panel Survey (n = 3,223), Uganda, 2009–2012

Characteristic
2009–2010 (n = 1,929) 2010–2011 (n = 663) 2011–2012 (n = 631)

No. % Mean (SD) No. % Mean (SD) No. % Mean (SD)

Demographic

Number of children aged<5 years 1.9 (0.8) 2.1 (0.9) 2.0 (0.9)

Number of male adults in household 1.2 (0.9) 1.3 (1.0) 1.3 (1.1)

Number of female adults in household 1.4 (0.9) 1.6 (1.0) 1.7 (1.1)

Environmental

Urban 360 18.7 107 16.1 111 17.6

Household self-reported drought/irregular rains in
previous 12months

975 50.5 236 35.6 158 25.0

Cumulative precipitation in previous 12months, mm 1,236.2 (222.7) 1,375.0 (218.6) 1,252.7 (246.0)

Deviation from 10-year annual precipitation, mm −12.7 (101.2) 123.3 (90.9) 13.2 (105.5)

Among children aged 6–59months

Age, months 31.8 (15.3) 26.0 (15.6) 22.3 (14.0)

Male sex 983 50.1 359 54.1 303 48.0

Weight-for-age z score −0.8 (1.3) −0.8 (1.4) −0.7 (1.3)

Underweight 290 15.0 85 12.8 99 15.7

Weight-for-height z score −0.0 (1.3) 0.0 (1.6) 0.0 (1.5)

Wasting 98 5.1 40 6.0 36 5.7

Height-for-age z score −1.4 (1.7) −1.4 (1.6) −1.4 (1.7)

Stunting 620 32.1 223 33.6 199 31.5

Abbreviation: SD, standard deviation.
a Children were included the first time they were observed. In the first wave, this included all children aged 6–59 months. In subsequent waves,

this included only children whowere born into or moved to survey households.
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Figure 2. Locally weighted scatterplot-smoothed representation of
the relationship between self-reported drought and annual rainfall
deviation prior to survey date, Uganda National Panel Survey, Ugan-
da, 2009–2012. They gray dots represent individual observations.
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experts (29). Previous studies have identified drought-stricken
areas using food production indices (9), z scores of vegetation
indices to measure deviations from the historical norms of agri-
cultural capacity (30), and records of areas receiving emergency
food aid (31). Instead of imposing a definition of drought, this
analysis took advantage of continuous precipitation data to
compare annual precipitation with long-term trends, thereby
modeling the threshold of the impact of precipitation on under-
nutrition. It should also be noted that we did not find evidence
for an increase in undernutrition at higher levels of precipitation
relative to long-term trends. This is in contrast with previous
findings that have linked higher levels of precipitation and
flooding with stunting (10), underweight (32), and wasting
(33). Consistent with the tropical savannah climate covering
most of the country (Köppen classification Aw), the lack of
association between positive deviations and undernutrition
could be because rainfall did not reach a level at which major
flooding occurred and agricultural yields were affected (34).

This study has several limitations. First, we were unable
to evaluate mechanisms through which undernutrition was
affected by rainfall. Second, there might be residual con-
founding in models using the household-reported exposure.
However, satellite exposure data corroborated results from
household reports. Third, there might be inadequacies with the
quality of anthropometric measurements due to human error.
However, enumerators undertook extensive training and were
given measuring boards and solar-charging scales (35). In

addition, we expect this mismeasurement to have occurred ran-
domly with respect to exposure, and therefore on average it
would bias our findings towards the null (36). Fourth, caution
must be taken when interpreting the results from models with
the household-reported exposure, because “drought/irregular
rains” could be interpreted as excessive rain rather than
drought. However, plotting the relationship between the
household-report and deviations revealed a negative trend,
without an increase in the relationship at extremely high levels
of positive deviations, implying that households most likely
referred to drought in their responses. Finally, we acknowledge
the potential for misclassification of both exposures. The self-
reported measure might be prone to recall or reporting bias. In
addition, the CHIRPS data might have inaccuracies in regions
with low ground station coverage. However, we do not expect
the misclassification of these 2 variables to be correlated, and
results were consistent across models using each exposure.

Climate change projections point unequivocally towards
shifting rainfall patterns across East Africa. Our findings sug-
gest that these changes augur negative impacts for child growth
and well-being. Impacts could differ among ecoregions charac-
terized by diverse climate change patterns, requiring interven-
tions tailored to regional and local contexts. Despite uncertainties
inherent in climate change projections, this study implies that
sudden reductions in rainfall might have increasingly adverse
effects on the acute nutrition of children under the age of 5
years.

Table 2. Multilevel Logistic Regression Analysis Between Household-Reported Exposure and Nutritional Indicators (n = 5,013Observations of
3,223 Individuals)a, UgandaNational Panel Survey, Uganda, 2009–2012

Underweight Wasting Stunting

Crude Adjustedb Crude Adjusted Crude Adjusted

Exposure Marginal
RR 95%CI Marginal

RR 95%CI Marginal
RR 95%CI Marginal

RR 95%CI Marginal
RR 95%CI Marginal

RR 95%CI

Self-reported drought/
irregular rains

1.26 1.11,
1.44

1.18 1.04,
1.35

1.49 1.08,
1.86

1.27 0.98,
1.68

1.05 0.97,
1.14

1.02 0.94,
1.11

Abbreviations: CI, confidence interval; RR, risk ratio.
a Random effects were included for community (n = 316), household (n = 1,809), and individual (n = 3,223). Models included fixed effects for

month of outcomemeasurement.
b Model adjustments included child sex and age in months, number of children under age 5 years in the household, number of male adults in the

household, number of female adults in the household, urban location, and quintile of socioeconomic status.

Table 3. Multilevel Logistic Regression Analysis Between Deviations in Precipitation and Nutritional Indicators (n = 5,013Observations of 3,223
Individuals)a, Uganda National Panel Survey, Uganda, 2009–2012

Exposure
Underweight Wasting Stunting

Marginal RR 95%CI Marginal RR 95%CI Marginal RR 95%CI

Rainfall deviation, per 50-mm increase 0.94 0.92, 0.97 0.93 0.87, 0.98 1.00 0.98, 1.01

Abbreviations: CI, confidence interval; RR, risk ratio.
a Random effects were included for community (n = 316), household (n = 1,809), and individual (n = 3,223). Models include fixed effects for

month of outcomemeasurement.
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Figure 3. Predicted probabilities of underweight (A), wasting (B),
and stunting (C) with deviations modeled as restricted cubic splines,
Uganda National Panel Survey, Uganda, 2009–2012.
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