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This tutorial on the display of data in the “Focus on Data”
series deals with principles for the effective and trans-

parent display of data.
Scientific advancements happen when theory and data

interact. Scientists confirm research theories empirically by
checking them against information from empirical studies.
The design of empirical studies must reflect all current
theory, and empirical experiments must be planned care-
fully and efficiently. Experimental data must be analyzed
with appropriate methods that reflect the way the exper-
iment was carried out. Data from experiments confirm or
refute research hypotheses but must also suggest modifi-
cations to existing theory if existing theory does not fit
the experimental data. Thus, experiments must not be too
narrow. The continual interaction of theory and data sharp-
ens our understanding. The optimal display of data is vital to
an accurate understanding of the results of an experiment,
as the improper display of data can lead to erroneous inter-
pretation and conclusions.

In this tutorial of the series, the following principles
are important for the effective and transparent display of
data:

• If possible, show all observations. For datasets that
are not too large, show individual observations
instead of summaries.

• Investigate causes and implications of outliers in
order to treat outliers appropriately.

• Choose appropriate data summaries, and understand
the difference between the standard deviation of the
measurements and the standard error of summary
statistics.

• Investigate the distribution of your measurements.
Many statistical techniques assume a normal (Gaus-
sian) distribution, so normality must be checked.

• If the distribution is not normal, investigate whether
there are transformations of the measurements that
make them normal, or nearly normal, to enable para-
metric statistics to be used, which may be more
revealing than non-parametric statistics used when
data (or its transformation) are not normal.

• Display and summarize the relationship between two
continuous measurement variables through scatter-
plots and correlation coefficients. Be aware of the
limitations of the correlation coefficient.

• Stratify scatterplots for relevant categorical covari-
ates.

THE DATA

We use the results of an animal study on multiple sclerosis
(MS) that investigates optic neuritis and retinal ganglion cell
functional and structural loss in mice with myelin oligoden-
drocyte glycoprotein (MOG)-induced experimental autoim-
mune encephalomyelitis (EAE) (see Supplementary Data
sets). The purpose of the study is to test the effective-
ness of a neuroprotective compound. We compare the eyes
of three groups of mice: 15 controls (healthy animals), 15
untreated EAE mice (afflicted but untreated animals), and
six treated EAE mice (afflicted animals treated with what is
hoped will be a beneficial compound). The main outcome
measurements include daily clinical EAE scores on motor–
sensory impairment and parameters of functional and struc-
tural changes in the visual system. We study changes in
the pattern electroretinogram (PERG) recordings, amplitude
and implicit time of the P1 peak reflecting retinal ganglion
cell (RGC) function, RGC layer imaged by optical coherence
tomography (OCT), RGC density by immunohistochemi-
cal analysis of whole mount retina, and the grade of cell
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infiltration and demyelination of the optic nerve. The
hypotheses to be tested center around whether the
compound lessens clinical severity as expressed by EAE
scores, improves PERG, and reduces structural neural loss
in the retina.

Each of the 36 mice contributes two eyes. For this first
tutorial paper, we look at the OCT thickness of the RGC
complex (retinal nerve fiber layer, RGC layer, and inner plex-
iform layer) of the 72 eyes, ignoring the fact that measure-
ment made from each eye of the same mouse are related. We
will address in a later tutorial how intra-class (eye) correla-
tion can be incorporated into the analysis to account for
measurements made in each eye of an animal or subject.
Also note that four OCT thickness measurements are miss-
ing from the EAE group.

SHOW ALL OBSERVATIONS

For small and moderately sized studies such as the one
we have here, our recommendation is to show all individ-
ual observations. One can add summary statistics to the
graph of individual observations, such as the median, and
draw a box around the first and third quartiles. The plots
in Figure 1 draw attention to the shape of the distribu-
tion of the observations and to possible outlying observa-
tions that must be scrutinized. Figure 1A, produced by the R
statistical software (The R Project for Statistical Computing;
see Supplementary Material), visualizes the distribution for
each group. Figure 1B, produced by GraphPad Prism (San
Diego, CA, USA), adds random jitter to the data in order
to prevent overplotting observations with the same value.
For large studies, with hundreds of data points, the distri-
bution of data can still be depicted using violin plots with
superimposed median and first and third quartiles. Box and
whisker plots also provide a graphical summary of quartiles
and extremes, but they are not as informative as showing all
of the data points, which should be done whenever feasible.
Discussion on how to check for normality of the distribution
and when to classify an observation as an outlier is given
below.

We recommend against visualizing data with only a bar
chart that shows group averages with their standard devi-
ation. The bar chart in Figure 2A does not visualize the
raw data and does not show their distribution and whether
outliers are present. A bar chart with added standard errors
(shown in Fig. 2B) should also be avoided. The standard
error of a sample average (calculated as the standard devia-
tion of individual observations divided by the square root of
the sample size) reflects the reliability of the sample mean
as an estimate of the mean of the population from which the
random sample is selected. It does not show the variability
of the data.

There are a number of publications1–4 that provide useful
guidelines for the visualization of biomedical data, and addi-
tional references5–11 provide general guidance on how to
design useful and informative graphs. Tufte7–10 views excel-
lence in graphics as the well-designed truthful presentation
of interesting data. Excellence in graphics involves commu-
nicating complex ideas with clarity, precision, and efficiency.
Graphs must be effective, and they must be truthful to the
data. Good graphs give viewers the greatest number of
ideas in the shortest time, with the least complexity, and
in the smallest space. Cleveland5,6 and Tufte7–10 have much
to say about the principles of good graph construction,
and their books contain much useful practical advice: Make

FIGURE 1. OCT of the inner retinal layer thickness displayed by
categorical groups. The raw data for OCT thickness represent the
thickness of the RGC complex in microns. (A) Produced with soft-
ware program R. Individual data points with the same value are
stacked laterally to accurately depict a distribution, and a box plot
with median and first and third quartiles is superimposed. Note that
in the EAE group there are more points at the upper and lower
portions of the distribution than expected for a Gaussian distribu-
tion (“heavy” tails). (B) Produced with GraphPad Prism software
with the same data as in A. Random noise was added to the scatter-
plot data (“jittering”) to prevent overplotting observations with the
same value. In the “standard” scatterplot from Prism, the width of
the distribution of points is proportionate to the number of points
at that y value. In this example, a violin plot was superimposed,
in contrast to the box plot in A. Violin plots are sometimes used
to display the smoothed shape of the frequency distribution of the
data. Median values and quartiles are indicated with horizontal lines
in both plots.
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FIGURE 2. Suboptimal data presentation: bar chart of OCT thickness
of the RGC complex group in microns. Averages with ±1 SD added
(top plot) and ±1 SE (bottom plot) are shown for the same data
as in Figure 1. The distribution and number of data points are not
shown.

data stand out and avoid complexity. Show the data, but
avoid unneeded “chart junk” such as unnecessary ornamen-
tal hatching and three-dimensional perspectives. Use visu-
ally prominent graphical elements to show the data. Do not
overdo the number of tick marks, and have tick marks point
to the outside of the chart. Avoid too many data labels in
the interior of the graph, so that they do not interfere with
the data shown. Add reference grids if you want to draw
attention to certain values.

Choose appropriate scales, as visual perception is
affected by proportions and scale. For ease of comparison,
use the same scale in comparing data from different groups
or panels. Be aware of the effect of “zero”; the way the zero is
located on a graph may change your perception of the data.
Incorrect and non-uniform scales and unclear labeling can
create impressions that are not truthful to the data. Cutting
off the bottom part of bars and graphs in a comparative
chart can create a wrong impression. Color used well can
enhance and clarify the presentation; color used poorly can
obscure and confuse. Intensity and choice of color matter.
Avoid using red and green in the same graph, as 5% of
males have inherited red–green color blindness. Adopt a
“colorblind-safe” color scheme, using colors designed to be
distinguishable even by individuals with a variety of color
vision deficiencies.

In today’s computer age, virtually all statistical soft-
ware packages include many different options for graphi-
cal displays. Although computers have changed the way we
present the graphics, they have not affected the goals of
the analysis. Modern computer software makes it easy to
produce graphics, but not all displays that a user creates
with software tools are necessarily good, and extra consid-
erations are needed to optimize the display of one’s data for
presentations and publications.

TREATMENT OF OUTLIERS

Observations outside the 99.7% prediction interval are
certainly unusual, as one would expect such observations
to come up rarely; only 0.3% of all observations should be
outside such an interval. Under normality, an approximate
99.7% prediction interval is given by x̄ ± 3s, where x̄ and
s are the mean and the standard deviation of the sample,
respectively, and the constant 3 is the appropriate factor
from the standard normal distribution. All observations in
each group in Figure 1 are inside the 99.7% prediction inter-
val.

If there are outliers, one must find explanations for the
unusual observation.Outliers can be safely omitted if there is
clear evidence that something went wrong with a particular
measurement or particular experiment, and if it is known
what happened. In the absence of any evidence of why
an outlier has occurred, the observation cannot be swept
under the rug and omitted from the analysis. A transparent,
rigorous strategy is to report the results of two analyses—
one with and one without the questionable measurement.
This quantifies the influence of a suspect observation on
one’s conclusion. If the suspect observation has no influ-
ence on the conclusion, even better—because then there is
no issue. If there is an issue, then alternative non-parametric
statistical analysis methods based on ranks can be used,
which decreases the influence of outliers. If an observation
is hugely influential in reaching a certain finding, one needs
to be careful about the statistical methods applied and one’s
interpretation and conclusion.

CHECKING THE NORMALITY OF DISTRIBUTIONS

Normality should be checked, because many statistical meth-
ods used and discussed later in subsequent tutorials assume
normality, meaning that the data sample comes from a Gaus-
sian data population. Normality should be checked both
visually and numerically. Visually, normality can be assessed
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FIGURE 3. Normality assessed by q–q plots. Observations on the y-axis are plotted against their standardized normal scores. For normally
distributed data, the points should scatter around the reference line. Deviations from linearity are a sign of non-normality.

with a q–q plot that plots observed values (observed quan-
tiles) against their quantiles that are implied by a normal
distribution. Instead of plotting observed quantiles against
implied normal quantiles, one can also plot them directly
against their implied standardized normal scores; see
Figure 3. If the data are normally distributed, points on
a q–q plot will exhibit linearity. Furthermore, the slope of
the plotted line reflects the standard deviation, and the
value where the line intersects with the vertical line at zero
provides the mean. In summary, for normal distributions
the normal q–q plots should be linear. Deviations from the
linear pattern provide evidence that the underlying distri-
bution is not normal. A q–q plot is effective because the
human eye is quite good at recognizing linear tendencies.
For further discussion, see Chapter 2 of Box et al.12 Widely
used programs such as R and Prism provide q–q plots along
with the various tests for deciding how well a data distribu-
tion follows a normal, Gaussian distribution.

Numerically, normality can tested through one of the
numerous significance tests for normality, such as the
Anderson–Darling normality test, Shapiro–Francia normal-
ity test, Lilliefors (Kolmogorov–Smirnov) normality test,
Cramer–von Mises normality test, Pearson χ2 normality test,
Shapiro–Wilk test for normality, Jarque–Bera normality test,
and D’Agostino normality test. Some tests require a mini-
mum number of data points. A probability value is given
for how likely the distribution is normally distributed; for
example, a probability value of less than 0.05 would mean

that there is a significant chance that the distribution is not
normal. It should be mentioned that a probability value of
0.05 is commonly used as a criterion level for statistical
significance, but this is arbitrary and is, in reality, an over-
simplification. Examination of the data distribution using the
q–q plot gives one a much better idea of how well the data
distribution follows a normal distribution.

Unfortunately, for small samples the visual checks are
typically not very informative, and the normal probabil-
ity tests are not very powerful. Furthermore, because tests
quantify deviations from normality using different methods,
it is not surprising that they lead to somewhat different
results. Not every test is equally sensitive to one or the
other violations of normality. Although there is only one
normality, there are certainly many different ways of violat-
ing normality. For an evaluation of normal probability tests,
see Yap and Sim.13 Prism prefers the D’Agostino omnibus
test among the three tests (Kolmogorov–Smirnov, Shapiro–
Wilk, and D’Agostino) that it considers.14

Figure 3 illustrates normal q–q plots for the data from our
illustrative example. Normality must be checked separately
for each of the three groups, as groups have different means
and variances.Minor deviations from linearity can be noticed
in the plot for the EAE group, with points in the lower and
upper tail suggesting a distribution with “heavier” tails than
the normal. This can be visualized in the dot plot for the EAE
group shown in Figure 1, where there are more points at the
upper and lower portions of the distribution than expected
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TABLE. Results (P Values) of the Tests for Normality

Probability Value

Normality Test Control Group EAE Group EAE + Treatment Group

Anderson–Darling 0.4851 0.0954 0.7102
Shapiro–Francia 0.5694 0.1937 0.8207
Lilliefors 0.5787 0.1327 0.7313
Cramer–vonMises 0.4975 0.0998 0.7208
Pearson 0.3920 0.3062 0.5724
Shapiro–Wilk 0.5220 0.0944 0.6643
Jarque–Bera 0.6766 0.3582 0.6946
D’Agostino (omnibus) 0.6911 0.0176 Sample too small

For the EAE group, some of the normality tests have probability values that are borderline significant or significant (e.g., D’Agostino
test), indicating that the distribution may not be normal.

for a Gaussian distribution. The probability values of the
normal probability tests in the Table show that the deviations
from normality are only borderline significant.

One needs to keep in mind that no natural distribution is
actually normal. As George Box12 pointed out: “All models
are wrong, but some are useful.” If the sample size is big
enough, one will always fail a normality test. This is the
reason why we encourage researchers to actually look at
plots rather than just relying on a probability value. Graphs
can tell whether the deviation from normality is substan-
tial enough to cause worry and whether transformations can
make a distribution closer to normal.

TRANSFORMING A NON-NORMAL DISTRIBUTION TO

A NORMAL DISTRIBUTION

Certain aspects of non-normality can be overcome with
transformations of the response variable. Box and Cox15

discussed why and when transformations such as the loga-
rithm, the square root, and the reciprocal can transform a
non-normal variable into a normal one. Changes in measure-
ments are often interpreted in terms of percentage changes,
which makes a logarithmic transformation useful. A logarith-
mic transformation is indicated when the standard deviation
is proportional to the average; a square root transformation
is indicated when the variance is proportional to the average.
Reciprocal transformations are useful if one studies the time
from the onset of a disease (or of a treatment) to a certain
failure event such as death or blindness. Distributions for
time to death tend to be skewed to the right. Therefore, the
distribution of the reciprocal of the time to death, which
expresses the rate of dying, can often be a better approxi-
mation of a normal distribution. For details, see Box et al.12

The analyst should explore transformations of the data
and check whether histograms and normal-probability plots
of the transformed data look (more) normal than those of the
original data. For non-normal distributions that can be trans-
formed to a normal distribution, a parametric statistical anal-
ysis can then be applied to the appropriately transformed
measurements. However, if no reasonable transformation to
normality can be found, non-parametric procedures, which
do not assume normality, should be used. Why not just use
non-parametric tests in all datasets so one doesn’t have to
worry about normality? Non-parametric procedures order or
rank data and test difference in the rank order. They are not
as sensitive (less powerful) for detecting differences in distri-
butions, if they really exist, compared to parametric tests,
providing the data are distributed normally. Conversely,

wrongly applying a parametric test to non-normal data
can produce false-positive significance. Parametric and non-
parametric statistical procedures are discussed in a follow-up
tutorial.

SUMMARIZING THE RELATIONSHIP BETWEEN TWO

CONTINUOUS MEASUREMENT VARIABLES THROUGH

SCATTERPLOTS AND CORRELATION COEFFICIENTS

Figure 4 shows the scatterplots of OCT thickness against
PERG amplitude and of PERG amplitude against thickness.
The two plots use the same two variables but differ with
respect to the variable that is being plotted on the y-axis.

Scatterplots reveal the relationship between two vari-
ables. In this example, each variable has a healthy amount
of variability (wide range). Projecting each variable onto
its axis, one notices quite some spread among the y and
x values. This is advantageous, as a larger range variabil-
ity among the x and y measurements is more likely to
reveal a significant pair-wise relationship when one exists.
Conversely, significant correlations are less likely to be
discovered when there is little spread in the x and y values.

In this example, the relationship is approximately linear.
One sees no curvature or an even more complicated func-
tional relationship.

Drawing fitted least-squares lines through the data clouds
of each of the two graphs, we notice quite some variability of
data points around the fitted lines. The (linear) relationship
is far from perfect.

The correlation coefficient is a measure of the linear asso-
ciation among two variables. For the (Pearson) correlation
coefficient,

r = 1

n− 1

∑n

i=1

[
xi − x̄

sx

] [
yi − ȳ

sy

]
,

with means x̄ and ȳ, and standard deviations sx and sy. It
does not matter which variable is drawn on the y-axis. The
correlation coefficient between x and y is the same as the
correlation coefficient between y and x. The correlation coef-
ficient is standardized to always be between –1 and +1. The
correlation between OCT thickness and PERG amplitude is
0.542.

Also, it does not matter if one linearly transforms a vari-
able (multiplying by a constant and/or adding a constant).
A correlation between thickness and amplitude does not
depend on the units of measurement. The correlation coef-
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FIGURE 4. Scatterplots of OCT thickness and PERG amplitude, with
fitted least-squares lines added. Axes are reversed in the second plot.
PERG amplitudes are given in microvolts and were calculated from
the P1 peak to the N2 trough from the evoked potentials. The OCT
thickness of the inner retinal layer is given in microns.

ficient does not change if thickness is measured in microns
or inches.

The sign of the correlation coefficient expresses the direc-
tion of the linear relationship. A positive value indicates a
direct relationship—positive (negative) deviations from the
mean in one variable tend to occur together with positive
(negative) deviations from the mean of the other. A nega-
tive value indicates an inverse relationship—positive (nega-
tive) deviations from the mean in one variable tend to occur
together with negative (positive) deviations from the mean
of the other.

The absolute magnitude of the correlation coefficient
expresses the strength of the relationship. The association is
perfect when the correlation coefficient is –1 or +1, as then

all points lie on a straight line with a negative (positive)
slope. For a correlation coefficient of 0, there is no linear
association among the variables.

Keep in mind that the correlation measures only the
linear part of the association. If the association is nonlin-
ear, the correlation coefficient will not faithfully reflect how
well the x and y values correlate. For an extreme example,
when all points are on a circle of given radius the correlation
is 0, even though there is a strong but nonlinear relationship
between the two variables.

Theory may tell you that one of the two variables is influ-
enced by the other. In such a case, you know the response
is given by one of the variables, and this variable should
be plotted on the y-axis. The best-fitting (least squares)
regression line that goes through the data on that scatter-
plot is informative, as its slope (by|x) expresses the magni-
tude of the effect on the response (y) when changing the
explanatory variable (x) by one unit. The slope of the least-
squares regression line is related to the correlation coeffi-
cient through by|x = (sy/sx)r and r = (sx/sy)by|x, and the
R2 in this simplest of all regression models is the square of
the correlation coefficient. The R2 expresses the proportion
of the response variability that is explained by the model’s
explanatory variable; an R2 of 0.75 conveys that 75% of
the response variability (y) is explained by the x variable.
Switching variables, the slope of the regression of x on y is
given by bx|y = (sx/sy)r = (sx/sy)2by|x.

For the example in Figure 4B, the amount of electri-
cal response from the retina elicited by a pattern stimulus
is influenced by how many retinal neurons in the inner
retina are present, which, in this case, is measured by the
OCT inner layer thickness. So, it would make more sense to
regress the PERG amplitude on the y-axis against the retinal
thickness on the x-axis.

Correlation coefficients are sensitive to some (but not all)
outliers. The assessment of outliers becomes much more
difficult if there are two (or more) variables involved. Take
an outlier right at the center of the data cloud. Shifting the
value of the response variable up and down while leaving
the other variable at its center has very little impact on the
slope of the fitted line or on the correlation. However, a data
pair far from the center of the data cloud can have a very
large pull on the fitted line and on the correlation coefficient.
In other words, beware of apparently large correlations that
are heavily biased by a data point or a small cluster of points
that are far from the median. Keep in mind that the corre-
lation coefficient is a single summary measure, and there is
no substitute for plotting the data.

Remember that a correlation does not necessarily imply
causality. Variables may be highly correlated, but not
causally related; for example, the yearly number of storks
and the yearly number of babies are often highly positively
correlated. But, this isn’t because of causality; it is due to
a third variable, “economic development,” which adversely
impacts the environment and nudges people to have fewer
babies. Beware of “lurking variables” before jumping to
quick conclusions on causality! Causality is only revealed
by well-designed experiments.

For details on correlation and regression, see Abraham
and Ledolter.16

Finally, most software packages can produce all possible
pairwise scatterplots; software packages refer to such graphs
as matrix plots. The scatterplot of demyelination against
infiltration of immune cells into the optic nerve is shown
in Figure 5 as the entry in row 4 and column 5. The scat-
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FIGURE 5. Pairwise scatterplots to display the relationships among different measurements, such as thickness of the RGC complex (OCT
thickness), PERG amplitude, implicit time of the P1 peak, and grade of demyelination and magnitude of cell infiltration in optic nerves. Each
row of figures has the labeled box as the y-axis (e.g., first row y-axis is OCT thickness; second row y-axis is PERG amplitude).

FIGURE 6. Scatterplots of OCT thickness against PERG amplitude
for each eye, stratified for the three treatment groups. A linear
regression was performed for each of the three groups. PERG ampli-
tudes are given in microvolts and were calculated from the P1 peak
to the N2 trough from the evoked potentials. The OCT thickness
of the inner retinal layer is given in microns. Note that we used
a color scheme that would accommodate a reader with red–green
color blindness.

terplot of demyelination on PERG amplitude is shown in
row 4 and column 2. This is a convenient tool for showing
all possible data correlations in one figure, and correlation
values can be provided in each box, if desired.

STRATIFYING SCATTERPLOTS FOR CATEGORICAL

COVARIATES

The relationship between PERG amplitude and OCT thick-
ness may depend on treatment group, which is a categori-
cal variable (in this example, with Control, EAE, and EAE +
Treatment groups). Bivariate scatterplots are easily stratified,
resulting in three different scatterplots. These can be put on
a single graph, distinguishing them by three different colors
(Fig. 6); least-squares lines (and correlation coefficients) can
be added, as well. For the two EAE groups, the fitted regres-
sion lines are roughly parallel; for the control group, there
is not much of a relationship.

Acknowledgments

Supported by a VA merit grant (C2978-R), by the Center for the
Prevention and Treatment of Visual Loss, Iowa City VA Health
Care Center (RR&D C9251-C; RX003002), and by an endowment
from the Pomerantz Family Chair in Ophthalmology (RK).

Disclosure: J. Ledolter, None; O.W. Gramlich, None;
R.H. Kardon, None

References

1. Allen M, Poggiali D, Whitaker K, et al. Raincloud plots: a
multi-platform tool for robust data visualization. Welcome
Open Res. 2019;4:63.

2. P’ng C, Green J, Chong LC, et al. BPG: seamless, automated
and interactive visualization of scientific data. BMC Bioin-
form. 2019;20:42.



Display of Data IOVS | June 2020 | Vol. 61 | No. 6 | Article 25 | 8

3. Weissgerber TL, Milic NM, Winham SJ, Garovic VD. Beyond
bar and line graphs: time for a new data presentation
paradigm. PLoS Biol. 2015;13:e1002128.

4. Weissgerber TL, Winham SJ, Heinzen EP, et al. Reveal, don’t
conceal, transforming data visualization to improve trans-
parency. Circulation. 2019;140:1506–1518.

5. Cleveland WS. Visualizing Data. Summit, NJ: Hobart Press;
1993.

6. Cleveland WS. Elements of Graphing Data. Summit, NJ:
Hobart Press; 1994.

7. Tufte ER. Visual Display of Quantitative Information.
Cheshire, CT: Graphics Press; 1986.

8. Tufte ER. Envisioning Information. Cheshire, CT: Graphics
Press; 1990.

9. Tufte ER. Visual Explanations. Cheshire, CT: Graphics
Press; 1997.

10. Tufte ER. Beautiful Evidence. Cheshire, CT: Graphics Press;
2006.

11. Gillan DJ, Wickens CD, Hollands JG, Carswell CM. Guide-
lines for presenting quantitative data in HFES publications.
Hum Factors. 1998;40:28–41.

12. Box GEP, Hunter S, Hunter WG. Statistics for Experimenters:
Design, Innovation, and Discovery. 2nd ed. New York: John
Wiley & Sons; 2005.

13. Yap BW, Sim CH. Comparisons of various types of normality
tests. J Stat Comput Simul. 2011;81:2141–2155.

14. GraphPad. Choosing a normality test. Available at:
https://www.graphpad.com/guides/prism/8/statistics/
stat_choosing_a_normality_test.htm. Accessed June 1,
2020.

15. Box GEP, Cox DR. An analysis of transformations. J R Stat
Soc Series B Stat Methodol. 1964;26:211–243.

16. Abraham B, Ledolter J. Introduction to Regression Modeling.
Boston, MA: Cengage Learning; 2006.

https://www.graphpad.com/guides/prism/8/statistics/stat10choosing10a10normality10test.htm

