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Abstract

Genome-wide association studies (GWAS) have identified hundreds of primarily non-coding 

disease-susceptibility variants that further need functional interpretation to prioritize and 

discriminate the disease-relevant variants. We present a comprehensive genome-wide non-coding 

variants prioritization scheme followed by validation using Pyrosequencing and TaqMan assays in 

asthma. We implemented a composite Functional Annotation Score (cFAS) to investigate over 

32,000 variants consisting of 1,525 GWAS-lead asthma-susceptibility variants and their LD 

proxies (r2≥0.80). Functional annotation pipeline in cFAS revealed 274 variants with significant 

score at 1% false discovery rate. This study implicates a novel locus 4p16 (SLC26A1) with eQTL 

variant (rs11936407) and known loci in 17q12–21 and 5q22 which encode ORM1-lie protein 3 

(ORMDL3, rs406527 and rs12936231) and Thymic stromal lymphopoietin (TSLP, rs3806932 and 

rs10073816) epithelial gene, respectively. Follow-up validation analysis through pyrosequencing 

of CpG sites in and nearby rs4065275 and rs11936407 showed genotype dependent 

hypomethylation on asthma cases compared with healthy controls. Prioritized variants are 

enriched for asthma-specific histone modification associated with active chromatin (H3K4me1 and 

H3K27ac) in T cells, B cells, lung, and immune related interferon gamma signaling pathways. Our 

findings, together with those from prior studies, suggest that SNPs can affect asthma by regulating 

enhancer activity, and our comprehensive bioinformatics and functional analysis could lead to 

biological insights into asthma pathogenesis.
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GRAPHICAL ABSTRACT
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INTRODUCTION

Asthma is a complex respiratory disease characterized by multiple clinical symptoms such 

as wheeze, breathlessness, chest tightness, and cough. It is one of the most common non-

communicable chronic disease that affects both children and adults worldwide. It affects 

over 6 million children in the U.S., leading to more than 3.5 million exacerbations, 135,000 

hospitalizations, and around 14 million missed school days each year (Zahran et al. 2011). 

Over the decade, large scale genome-wide studies have identified hundreds of genetic 

variants that potentially contribute to asthma (Buniello et al. 2019) and provided a rich 

genome-wide atlas of disease-susceptibility variants. However, the functional mechanism of 

these variants and hence, their role in asthma is not well understood. The main strength of 

genome-wide analyses is their ability to systematically explore novel variants associated 

with a disease. However, the genome-wide SNP arrays do not necessarily represent the 

causal variants that underlie the molecular mechanism of the association (Hindorff et al. 

2009). Other SNPs in high linkage disequilibrium (LD) block with the index SNPs can be 

causal for the disease (Schaub et al. 2012). The majority of genome-wide variants and their 

LD surrogates localize to non-coding intergenic and intronic regulatory regions rather than 
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to protein-coding regions. Thus, their major role is rather to regulate changes in the gene 

expression of a critical gene through multiple mechanisms involving RNA splicing, 

transcription factor binding, chromatin openness measured by DNase I hypersensitivity, 

DNA methylation, miRNA recruitment, and histone modifications (Freedman et al. 2011; 

Maurano et al. 2012). Many of these regulatory variants operate in a tissue- and cell-type-

specific manner (Dimas et al. 2009; Freedman et al. 2011; Hindorff et al. 2009; Maurano et 

al. 2012; Schaub et al. 2012). Hence, the functional characterization of the variants is critical 

for understanding the functional mechanism of these variants on asthma. Therefore, 

functional annotations and interpretation are important to translate the statistical findings 

into actionable functional mechanism and biology on the prognosis of the diseases.

Recently, several large-scale consortia such as the ENCODE, Genotype-Tissue Expression 

(GTEx), and NIH Roadmap Epigenomic have provided a rich atlas of functional annotations 

of non-coding variants (Consortium 2012; Lonsdale et al. 2013; Roadmap Epigenomics et 

al. 2015). Multiple annotations from these resources can be combined for functional 

characterization of the non-coding variants which in turn can be used for prioritization of 

non-coding variants (RegulomeDB (Boyle et al. 2012), GWAVA (Ritchie et al. 2014)). As 

the GWAS-discovered susceptibility variants for asthma spans over hundreds of loci, 

potentially mapped to several thousand SNPs consisting of both index and LD SNPs, 

primarily non-coding, functional prioritization is warranted to discriminate the most 

plausible functional variants from the benign variants. Concurrently, several tools were built 

to leverage the functional annotation resources and prioritize non-coding variants, however 

these tools are primarily utilizing the regulatory annotations. Addition to the regulatory 

annotations, eQTL annotations can be informative to characterize the variation in gene 

expression levels, and thus the incorporation of comprehensive eQTL analysis may 

strengthen prioritization of non-coding variants in asthma.

In this article, we sought to identify, prioritize and validate the functionally enriched asthma-

susceptibility GWAS variants using a heuristic algorithm that composite the functional 

annotation scores followed by pyrosequencing. To obtained a comprehensive list of disease-

susceptibility variants for prioritization, we searched and extracted asthma-associated 

variants from three public repository databases including NHGRI-EBI GWAS Catalog 

(MacArthur et al. 2017), dbGaP (Mailman et al. 2007), and GRASP (Leslie et al. 2014). We 

further performed three GWASs (CAMP-CARE, STAMPEED, and GABRIEL) in a total of 

29,371 samples from European and African ancestry. Altogether, we obtained 1,525 asthma-

associated risk-variants with significance level p-value < 1×10−5. In addition, we 

investigated the 1000 Genomes Project (Genomes Project et al. 2015) for SNPs in high LD 

(r2 ≥ 0.8) with the lead SNPs, resulting in a total of 32,161 SNPs. Using the cFAS scheme 

for functional annotation and prioritization, we identified 274 variants associated with 

asthma. We further prioritize these variants for tissue-specific eQTL, regulatory elements 

and epigenomic marks. Finally, we conducted functional validation analysis using 

pyrosequencing and demonstrated that selected SNP variants (rs4065275 and rs11936407) 

located in the known and novel locus prioritized by cFAS were hypomethylated in a 

genotype dependent manner when comparing asthma cases with healthy controls. Also, 

variants nearby the prioritized SNPs were hypomethylated in cases when compared to 

controls. Our results showed that the prioritized SNPs are highly co-localized in the DNase I 
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hypersensitive sites, the enhancer and promoter regions marked by histone methylation and 

acetylation, and in protein binding regions.

Materials and methods

Comprehensive discovery of asthma-associated risk variants

Asthma-associated variants from three different genome-wide association studies and from 

three public databases were included and investigated as described below and outlined in Fig 

1A.

GWAS public repository databases.—We searched three different GWAS repositories 

for asthma studies - NHGRI-EBI catalog published GWAS (MacArthur et al. 2017), the 

NHLBI GRASP catalog (Leslie et al. 2014), and Phenotype-Genotype Integrator (PheGenI 

(Ramos et al. 2014)) from dbGap. Using the GWAS catalog reported cutoff (p-values < 

1×10−5), a total of 1,472 SNPs were extracted (accessed date: 7/20/2019).

CAMP-CARE genome-wide study.—Genotype and phenotype data from the Children 

Asthma Management Program (CAMP) and Childhood Asthma Research and Education 

(CARE) networks were accessed from dbGaP under accession number phs000166.v2.p1 

with proper approval (Mailman et al. 2007). The dataset consists of genotype data for 429 

parent-offspring trios of European ancestry (334 CAMP and 95 CARE) and 52 trios of 

African American ancestry (42 CAMP and 10 CARE). All the participants were genotyped 

on Affymatrix 6.0 chip, and the SNPs were filtered using the quality control (QC) criteria 

(missingness ≥ 15% and the Hardy-Weinberg Disequilibrium p < 1×10−5). Upon QC 

completion, the family-based transmission disequilibrium test (TDT) for affected offspring 

trio design was run using PLINK 1.90 (Purcell et al. 2007). Quantile-Quantile (QQ) plots 

were produced and checked for each ancestry. From the final association result, we obtained 

56 SNPs.

STAMPEED genome-wide study.—With proper authorization under dbGaP accession 

phs000355.v1.p1, we accessed STAMPEED datasets, which comprised summary results of 

the case-control GWAS for African American (AA) and European American (EA) ancestry.

(Mailman et al. 2007) Participants in STAMPEED were one of the three studies (Chicago 

Asthma Genetic (CAG) study, the NHLBI Collaborative Studies on the Genetics of Asthma 

(CSGA), and the Severe Asthma Research Center (SARP), which jointly enrolled 541 case 

and 451 control subjects from African American ancestry and 843 case and 580 control 

subjects from European ancestry (Mailman et al. 2007). All subjects were genotyped on 

Illumina 1Mv1 Chip. SNPs were filtered following standard QC criteria – (i) call rate < 

95%, (ii) Hardy-Weinberg equilibrium p-value >1×10−5. Following the QC filter, a case-

control GWAS for AA and EA data was carried out using the logistic regression model 

adjusting for age, sex, and population structure (the first two principal components for EA, 

and local ancestry estimates for AA study) using PLINK 1.90 (Purcell et al. 2007). In total, 

4 SNPs from AA ancestry and 3 SNPs from EA were selected.

GABRIEL genome-wide study.—The GABRIEL asthma GWAS dataset consisted of 23 

different studies with a total of 10,365 cases and 16,110 control samples from European 
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ancestry (Moffatt et al. 2010). Genotyping was carried out using Illumina Human610 quad 

array except in the GABRIEL phase I study. The GABRIEL Phase I subjects were 

genotyped on Illumina Hap300K array, and the untyped SNPs were imputed to be included 

in the meta-analysis. SNPs were filtered and removed for further analysis using the 

following QC criteria: (i) genotype missing rate ≥ 3% in cases and controls, (ii) minor allele 

frequency < 5% in controls, and (iii) Hardy-Weinberg P-value < 1×10−4. Genome wide 

association study was carried out on study-by-study basis using logistic regression model. 

The first two principal components for European population structure were included as 

covariates in the association analysis (Moffatt et al. 2010). A total of 124 SNPs were 

included.

SNPs in linkage disequilibrium.—In total, we obtained 1,525 asthma-associated 

variants from the three asthma GWAS and publicly deposited sources (Fig 1B, 

Supplementary Table S1). We further expanded the asthma-susceptibility list with LD 

variants from the 1000 Genome Project Phase III retrieved using LDlink tool(Machiela and 

Chanock 2015). Since the risk SNPs in the public databases stem from GWASs with 

different ethnic backgrounds, we obtained all LD SNPs (r2 ≥ 0.80) of five major continental 

populations from The 1000 Genomes Project Phase III (Genomes Project et al. 2015). This 

LD expansion process resulted in ‘asthma-LD set’ of 32,162 SNPs (consisting of both 

GWAS-lead variants and their high LD surrogates).

Functional annotations, correlation, and concordance analysis

To prioritize the asthma-associated variants for their potential functional relevance in disease 

pathogenies, we developed the composite functional annotation score (cFAS) based on the 

three functional annotation databases: (i) Genotype-Tissue Expression (GTEx) project v7 

(Lonsdale et al. 2013), (ii) RegulomeDB (Boyle et al. 2012), and (iii) Genome-wide 

Annotations of Variants (GWAVA) (Ritchie et al. 2014). The selection of these resources was 

based on public availability and complementary information provided by each and their 

uniqueness in functional information for scoring scheme. Also, these bases provide a rich 

annotations of the non-coding variants with the most comprehensive coverage of regulatory 

variants. GTEx is uniquely suited for comprehensive evaluation of eQTL variants. 

RegulomeDB uses some combinatorial approach to categorize SNPs into discrete levels of 

Category 1 to Category 7 with Category 1, 2, 3 are further subdivide into sub-categories. 

According to RegulomeDB scoring mechanism, SNPs stronger evidence of potentially 

functional will be assigned to a lower category. SNPs in Category 1 and 2 are considered to 

be functionally enriched (Boyle et al. 2012). GWAVA employs a random forest approach to 

assign a unique functional predictive score for all markers from the 1000 Genomes Project. 

The GWAVA TSS score ranges from 0 to 1 with score ≥ 0.5 suggested to be potentially 

functional (Ritchie et al. 2014). Detail description of the annotation databases is provided in 

the Supplementary Text.

Correlation: The Spearman rank correlation coefficient was used to investigate the 

similarity among the tools and is defined as:
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r =
∑i xi − x yi − y

∑i xi − x 2∑i yi − y 2,

where xi and yi are the rankings of i-th variant from the two methods; x and y are the 

respective average rankings of xi and yi. The correlation coefficient (r) ranges from −1 to 1; 

with r closer to 1 or −1 indicating a monotonically increasing or decreasing relationship and 

r closer to 0 signifying weak or no relationship.

Concordance rate: The concordance rate measures the proportion of top ranked and 

shared variants among the eQTL, GWAVA TSS score, and RegulomeDB category. Variants 

were ranked from most to least significant and compared using overlap analysis for different 

numbers of ranked variants (n =100, 200, 300, 500, 750, and 1000). If m is the number of 

overlapped variants within the top t percentile (t = 1, 2, 3… 100) in eQTL, GWAVA TSS 

score, and RegulomeDB, and N is the total number of variants analyzed, then the 

concordance rate (ζ) is defined as:

ζ = 100m
tN

Composite functional annotation and variant prioritization

The asthma-LD set was annotated using the composite functional annotation score (cFAS), a 

heuristic approach of integrating the GTEx, RegulomeDB, and GWAVA TSS annotations. 

Briefly, we first transformed the eQTL, RegulomeDB, and GWAVA TSS annotation scores 

into comparable ranking system that portray into a similar rating as represented by the 

respective scores. To this end, we defined three priority scores, PSeQTL, PSRDB, and PSTSS; 

each ranging from 1 to 10 as described below.

PSeQTL =
10,  if −logP ≥ 20
i,  if 2i < − logP ≤ 2(i + 1) for i = 2, 3, 4, …9
1,  if −logP ≤ 4

,

PSTSS = 10, t ≥ 0.9
10t + 1, 0 ≤ t < 0.9,

PSRDB =

10, r = 1a, 1b, 1c
9, r = 1d, 1e, 1f
8, r = 2
7, r = 3
6, r = 4
4, r = 5
2, r = 6
1, r = 7
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The cFAS was computed as the sum of the three priority scores as defined below:

cFAS = ∑jPSj, j ϵ eQTL, RBD, TSS

The asthma-LD set is prioritized using the cFAS and variants were ranked from highest to 

lowest ranking. For an empirical evaluation of cFAS, we constructed a positive set, 

consisting of disease-susceptibility variants from GWAS catalog with the significant p-value 

<1×10−5 (accessed July 20,2019), and a negative set, consisted of common variants from the 

1000 Genome Project excluding variants in the positive set and/or in high LD (r2 ≥ 0.8) with 

the positive set. We compared the distribution of cFAS among the positive set and negative 

set to compute the empirical FDR. For a given annotation score θ (regardless of the method), 

let nθ
0 = # of SNPs with scores equal or extreme to θ in the negative set (# of false positives) 

and nθ
1 = # of SNPs with scores equal or extreme to θ in the positive set (# of true positives), 

then the empirical FDR (FDRθ) is computed as: FDRθ =
nθ
0

nθ
1 + nθ

0  . The cFAS cutoff 

corresponding to FDR ≤ 0.01 was used for selection of the prioritize asthma variants.

Functional characterization of the prioritized SNPs

We explored different functional annotation resources including ENCODE and Roadmap 

Epigenome on chromatin states and protein binding annotations, histone modification, gene 

expression, sequence conservation, regulatory and protein binding affinities for further 

characterization of variants prioritized using cFAS. We used HaploReg v4.1 tool to extract 

the eQTL, regulatory, and epigenomic annotation results (Ward and Kellis 2016).

Tissue-specific eQTLs associated to prioritized SNPs.—We extracted tissue-

specific gene-expression results from 14 different eQTL studies including the GTEx project. 

The list of databases interrogated from the tool was detailed in the work of Ward and Kellis 

(Ward and Kellis 2016). We extracted all available association results with p-value < 0.05 

from the HaploReg (See Supplementary Text).

Enrichment analysis.—To understand the functional role of the asthma-prioritized 

variants, we further investigated whether the prioritized variants are enriched for cell type 

specific histone peaks such as H3K4me1/H3K4me3 and H3K27ac/H3K9ac marks and 

DNase I-hypersensitive sites. For the background variants, we downloaded variants form the 

GWAS catalog and randomly selected 3000 variants. Next, we extracted the cell-type 

specific annotations on four histone peaks (H3K4me1, H3K4me3, H3K27ac, and H3K9ac), 

DNase-I mark, and binding proteins for the prioritized and background variants. The 

enrichment of the asthma-prioritized variants relative to the background variants were 

evaluated using the binomial test as described below. Let n0 and m0 be the overlap of an 

annotation with the background and the prioritized variants on respectively and let n and m 

be the total number of variants in the background and in the prioritized set, respectively. To 

assess the statistical significance, the p-value is computed as:
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P X ≥ m0 , X  Binom m, p =
n0
n .

To correct for the multiple testing, we computed the FDR using the Benjamini-Hochberg 

method (Benjamini and Hochberg 1995).

The enrichment analysis of histone peaks and DNase-I mark were performed on individual 

cell-types which consisted of 127 reference epigemones from the Roadmap Epigenome and 

ENCODE projects extracted using HaploReg v4.1 (see Supplementary Text).

Pathway analyses.—To further explore biological pathways and functional clustering of 

the variants identified by cFAS, we applied ConsensusPathDB (Herwig et al. 2016). The 

candidate variants were further mined by Literature Lab™ from Acumenta Biotech for 

functional clustering analysis (http://acumenta.com/). Literature Lab is an interface between 

experimentally derived gene lists and scientific literature in a curated vocabulary of 24,000 

biological and biochemical terms. It employs statistical and clustering analysis on over 15.73 

million PubMed abstracts (since 01/01/90 until present) to identify pathways and diseases. 

The analysis engine compares statistically the submitted gene set to 1,000 randomly 

generated gene sets to identify terms that are associated with the gene set more than by 

chance alone.

Bisulfite Pyrosequencing to validate cFAS based functional variants.—DNA 

samples from 60 children (30 asthmatics and 30 controls) from the Cincinnati metro-area 

were selected for analysis. Cohort description, inclusion and exclusion criteria were 

described elsewhere (Baye et al. 2011; Butsch Kovacic et al. 2012). Demographic 

information about the samples specific to this study is found in Supplementary Table S2. 

Genomic DNA was bisulfite treated and purified using the EZ DNA methylation-Gold Kit 

(Zymo Research, Irvine, CA, USA) according to the manufacturer’s specifications. Targeted 

regions were amplify using the Pyromark PCR Kit (Qiagen, Valencia, CA, USA) following 

manufacturer’s protocol. Pyrosequencing was carried out using Pyro Gold reagents with a 

PyroMark vacuum prep workstation and a PyroMark Q96 MD instrument (Qiagen, Valencia, 

CA, USA) following the manufacturer’s instructions. Generated pyrograms were 

automatically analyzed by the Pyro Q-CpG methylation analysis software (Qiagen, Valencia, 

CA, USA). The Human Methylated & Non-methylated DNA Set (Zymo Research, Irvine, 

CA, USA) was used to validate all assays. Pyrosequencing assay design primers and 

analysis sequence can be found in Supplementary Table S3. SNP genotyping was carried out 

using TaqMan genotyping assays (Life Technologies, NY, USA) for SNPs rs4065275 and 

rs11936407. Fisher’s exact test was used to compare the difference in DNA methylation 

between asthmatics and healthy controls. A P-value of less than 0.05 was considered 

significant.
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Results

Discovery of asthma-associated risk variants

GWAS-associated asthma-risk variants were obtained from three public databases –(GWAS 

catalog (MacArthur et al. 2017), GRASP catalog (Leslie et al. 2014), and dbGap (Mailman 

et al. 2007), accessed on July 20, 2019), and three genome-wide association analyses 

(CAMP-CARE, STAMPEED, and GABRIEL) (see Q-Q plot in Supplementary Fig S1A–

S1E). Using the GWAS catalog reported cutoff p-value (p < 1×10−5), we obtained a total 

1,472 SNPs from public repositories and 187 SNPs from the three GWAS (Fig 1A), which 

combined resulted in 1,525 unique set of asthma-associated variants (Supplementary Table 

S1). These variants were found to be distributed across the genome with chromosomes 1, 6 

and 17 highly represented (Fig 1B, Fig S1F).The functional annotation of each SNP with 

RefSeq gene information was conducted using ANNOVAR (Wang et al. 2010). Of the 1,525 

SNPs, we found 50 SNPs (3.2 %) in the exonic region in consistent to previous report 

(Maurano et al. 2012). Further analysis showed that about 665 (44%) and 658 (43%) SNPs 

are intronic and intergenic, respectively.

GWAS-lead and high-LD variants

We searched the 1000 Genome Project Phase III data (Genomes Project et al. 2015) using 

the LDlink tool (Machiela and Chanock 2015) for SNPs with high LD (r2 ≥ 0.8) with the 

GWAS-lead set of asthma-associated SNPs, and a total of 32,161 SNPs were identified (Fig 

1C).

Variant annotation, correlation and overlap analysis

The distributions of the different annotation scores among the 32,161 SNPs variants are 

shown in Fig 2. Approximately one third of the variants were found with eQTL signal with 

nominal p-value < 1E-5 in one or more tissues from GTEx (Fig 2A). When evaluated based 

on the default criteria of RegulomeDB or TSS, vast majority of the SNPs were identified 

with weak or no functional evidence (Fig 2B–2C). Among the 32,161 SNPs, there were 

1,102 SNPs (~ 3.4%) with RegulomeDB category 1 or 2 and similar number of SNPs 

(1,076, ~3.35%) with TSS score ≥ 0.5; only 15% of the functional variants based on the TSS 

were also categorized as the functional variants based on the RegulomeDB. To compare the 

top signals among the three annotation approaches, we used stringent criteria of p-value < 

1E-12 to be considered as strong eQTL signals. There were 4,360 SNPs (~13%) with eQTL 

p-value < 1E-12. We found 56 SNPs overlapped among these three annotation resources, 

(Fig 2D).

Next, we computed the pairwise Spearman rank correlation coefficients between the 

annotation scores to study the level of similarity. The pairwise distribution of the annotation 

scores showed high discrepancies in the ranking of variants among the three annotation 

scores (Supplementary Fig S2). There was a mild correlation between the RegulomeDB and 

TSS scores (r = 0.356), however, eQTL was weakly correlated to both RegulomeDB (r = 

0.1354) and TSS (r = 0.0775). These discrepancies are pointing towards the significance of a 

composite score that mines the complementary evidence and combines the annotations from 

these tools to rank and prioritize risk-variants.
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To gain insights into the variants shared among the eQTL, RegulomeDB and TSS scores, we 

performed an overlap analysis of the top-ranked variants in each method (n = 100, 200, 300, 

500, 750, and 1000). For the top 100 SNPs, no SNP was overlapped among the three 

annotations. Among the top 1000 SNPs from each annotation, only 12 SNPs were 

overlapped (Supplementary Fig S3). The low overlap among the various functional 

annotation resources implies the need to develop a composite score using multiple 

annotation resources.

Composite functional annotation score (cFAS) and variant prioritization

Given the low number of overlap among the three functional annotation resources, we 

integrated all of them into a single composite. The composite cFAS scheme allowed us not 

only to comprehensively mine the annotation information into one score, but also provide a 

better control of the FDR to prioritize variants with strong, unified and complementary 

functional evidence. We first mapped the annotation scores into respective priority scores: 

eQTL → PSeQTL, RegulomeDB → PSRDB, and TSS → PSTSS. Each priority score ranges 

from 1 to 10 with higher score reflecting higher degree of functional evidence. Then, cFAS 

is defined as the sum of the three priority scores, i.e., cFAS = PSeQTL + PSRDB + PSTSS, and 

ranges from 3 to 30 [See the Materials and Methods section for details]. With this approach, 

cFAS integrates the annotation evidence from GTEx, RegulomeDB, and GWAVA resources 

into a single score and prioritizes the SNPs for their functional importance.

cFAS value was assigned to 32,161 SNPs, and the variants were ranked based on this score. 

The cFAS score varied from 3 to 28 (with no SNP receiving the maximum possible value of 

30)(Supplementary Table S4).We evaluated the cFAS approach using empirical FDR by 

comparing cFASs between the association set and control set, each consisting of more than 

29,000 variants as described above (See the Materials and Methods section for details). 

Supplementary Table S5 summarized the FDR for all possible cFAS values. Results showed 

that cFAS ≥ 16 resulted in FDR < 0.05 and cFAS ≥ 22 achieved more stringent FDR < 0.01.

To select the top prioritized asthma-variants for further functional characterization, we chose 

the cutoff cFAS ≥ 22 corresponding to FDR ≤ 0.01. Using the cutoff cFAS ≥ 22, we obtained 

274 SNPs across the genome (Supplementary Table S6). The cFAS prioritized asthma 

variants were distributed across multiple genomic loci (Fig 1D). Chromosomes 6 and 17 

were the two most enriched chromosomes with 138 and 60 prioritized variants, respectively. 

Among the prioritized set, only 38 SNPs were among the GWAS-lead asthma-associated 

SNPs, and the rest were in high LD with one or more of the GWAS-lead SNPs. This clearly 

pointed out the benefit of incorporating LD in the search of functional SNPs. All 134 

prioritized SNPs in chromosome 6 were located in 6p21 locus that contained the major 

histone complexity (MHC) region. Nine of the 134 SNPs in the locus were GWAS-lead 

SNPs and rest of the SNPs were LD SNPs. Out of 60 SNPs in chromosome 17, 49 (22 

GWAS-lead) variants were located in known asthma linked region 17q12-q21 containing 

several highly replicated asthma genes such as PGAP3, ORMDL3, GSDMA, ZPBP2, and 

GSDMB. Among the highly represented loci with cFAS ≥ 22 were 2q12.1 (10 SNPs), 

5q31.1 (12 SNPs), 12q24.13 (15 SNPs), 12q13.2 (15 SNPs), and 17q23.3 (11 SNPs). Other 

genomic loci identified with at least one SNP with cFAS ≥ 22 were 1p36.13 (4 SNPs), 
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1q23.3 (2 SNPs), 1q32.1 (4 SNPs), 3q12.1 (2 SNPs), 4p16.3 (2 SNPs), 5q22.1 (2 SNPs), 

8q13.1 (2 SNPs), 8q22.22 (1 SNP), 10p12.1 (1 SNP), and 12q13.13 (4 SNPs) (Fig 1D, 

Supplementary Table S6).

Comparison of cFAS with existing genome-wide functional annotation tools

To investigate the performance of cFAS and other three individual annotation approaches on 

the GWAS-based variants, we compared the false discovery rate (FDR) among the 

annotation scores computed using a GWAS catalog-based association set and a random 

control set [see the Materials and method section for details]. The FDR is defined as the 

ratio FP/(TP +FP), TP = True Positive, FP = False Positive. TP and FP are defined as the 

number of variants selected under a given criteria in the association set and in the control set, 

respectively. The FDR was found to be less than 0.05 for eQTL cutoff of p-value < 1E-12, 

but the FDRs were 0.14 for RegulomeDB ≤ 2 and 0.198 for TSS ≥ 0.5, which were several-

fold larger than nominally used significance level of FDR ≤ 0.05 (Fig S4A – S4C). The FDR 

for cFAS ≥ 22 was 0.01 (Fig S4D). We further compared the performance of cFAS with 

other tools using the receiver operating curve (ROC) (Fig 3). Using the association and 

control sets, the area under curve (AUC) value for cFAS was 0.8289 which was higher than 

that for TSS (AUC = 0.7747) and RegulomeDB (AUC = 0.7146). We further investigated the 

performance of the combined priority scores of TSS and RDB without the eQTL priority 

score. The AUC for the composite score based on TSS priority score (PRTSS) and RDB 

priority score (PRRDB) was 0.7934. This showed that incorporating eQTL for functional 

annotation improved the performance of composite score.

Tissue-specific eQTLs associated to prioritized variants

We further interrogated the 274 prioritized variants with tissue-specific eQTL databases. 

Several immune- and lung-related tissues were enriched in eQTLs (Supplementary Fig S5). 

Whole blood was the top represented tissue with 248 eQTL associated to gene expression 

level of 82 genes. Whole blood is one of the most extensively studied tissue types in asthma 

since many derivatives of this tissue such as T cells, B cells, eosinophils, neutrophils, and 

monocytes are known to play important roles in this disease (Fahy 2009). Other tissues with 

high frequency of eQTL include lung, thyroid, adipose, muscles, and skin (Supplementary 

Fig S5). The list of candidate loci along with the eQTLs are provided in Supplementary 

Table S7. Several HLA-class genes from the major histocompatibility complex (MHC) 

region were highly represented in the tissue specific eQTL database. For instance, there were 

108 eQTLs mapped to HLA-DQA2 gene across 45 different tissues (Supplementary Table 

S8). Notably, several studies have linked the HLA-DQ region with asthma (Lasky-Su et al. 

2012; Movahedi et al. 2008). Besides the HLA-class genes, the top 5 represented genes 

based on the number of significant eQTLs were in the 17q12–21 locus (ORMDL3, GSDMB, 

GSDMA, MED24, ZPBP2), with 46 eQTLs identified for GSDMA (Supplementary Table 

S8). The 17q12–21 regions are previously known to be associated with asthma, and our 

results further highlight the particular significance of these regions (Vicente et al. 2017). A 

recent study of the region 17q21 using chromatin conformation (4C-seq) assays has 

identified the variant rs12936231 as a functional variants leading to increased expression of 

ORDLM3 in the asthmatics (Schmiedel et al. 2016). Note that the intronic variant 

rs12936231 is the top cFAS variant with score 28. Other highly replicated asthma loci that 
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were identified in our study include loci in 1q32 (CHI3L1), 2q12.1 (IL18R1), 5q22 (TSLP–

WDR36), and 5p31 (IL5–RAD50). Our results also identified several novel loci such as 

4p16 region (DGQK–SLC26A1–IUDA) and 12q13 (RAB5B–SOUX–ERBB3) with 

potential functional association with asthma.

Epigenetic and regulatory annotation in asthma-associated variants

Histone modifications (H3K9me1, H3K9me3, H3K27ac, H3K9ac) and DNase I 

hypersensitivity marks extracted from the Roadmap Epigenomic projects on 127 cell types 

were investigated (Supplementary Table S9). In particular, 270 and 243 SNPs were co-

localized at the H3K4me1 and H3K4me3 histone modification marks, respectively. 

Similarly, 215 SNPs were located in the DNase I hypersensitive sites. Additionally, 166 

SNPs were predicted to be located on the protein binding sites, and 233 SNPs were 

predicted to affect at least one sequence motif. There were 31 SNPs in the conserved region 

across mammals based on either GERP (Davydov et al. 2010) or Siphy score (Garber et al. 

2009). These results suggest that the vast majority of the non-coding regulatory variants may 

not be conserved but they reside in the enhancer regions and the open chromatin regions 

marked by DNase 1 hypersensitive sites (Coetzee et al. 2010; Freedman et al. 2011). Next, 

we conducted an enrichment analysis of the variants for protein binding regions, histone 

modification marks, and DNase I mark.

Enrichment of the prioritized variants in protein biniding sites

About 100 proteins with binding affinity mapped to the prioritized variants were identified. 

Compared with the enrichment of these proteins with a random set of ~ 3,000 disease-

associated SNPs from GWAS Catalog, 62 of these proteins were found be significantly 

enriched at adjusted p-value (adj. p) ≤ 0.05. POL2–4H8 (target gene POLR2A; adj. p < 

1.73E-99), POLII complex (RNA Polymerase II; adj. p = 5.98E-76), and RFX5 (adj. p = 

2.53E-39) were the top most enriched proteins (Supplementary Table S10). Nuclear factor-

kappaB (NF-KB; adj. p = 6.29E-16), Jun Proto-Oncogene(cJUN; adj. p = 8E-5), , and 

members of signal transduction-activated transcription factors (STAT1, adj. p = 0.0016; 

STAT2, adj. p = 0.0003; STAT3, adj. p = 3.38E-7) have been reported to involve in asthmatic 

inflammation (Barnes and Adcock 1998). The CCCTC-binding factor (CTCF, adj. p = 

3.76E-18) was previously revealed to interact with the IZKF3-ORMDLA3 region leading to 

increased expression of ORMDL3 in asthmatics (Schmiedel et al. 2016). Other TFs with 

enriched binding affinities such as ERG1 (adj. p = 7.29E-10), ELF1 (adj. p = 1.75E-18), 

EBF1 (adj. p = 0.0009), and GATA family were also reported to be involved in the 

differentiation of the T and B cells and in the regulation of expression of genes that are 

important in inflammation (Chan et al. 2009; Garrett-Sinha 2013; Gashler and Sukhatme 

1995; Griffin et al. 2013; Karwot et al. 2008; Prasad et al. 2015; Russell and Garrett-Sinha 

2010; Silverman et al. 2001). We identified 99 protein-coding genes with cis- eQTL variants 

in the binding regions of the enriched proteins (Supplementary Fig S6). Our analysis linked 

protein-coding genes with multiple proteins bound to cFAS-prioritized cis-eQTL variants. 

Genes from 6p21 (HLA-DQA1, HLA-DQA2, HLA-DRB1, HLA-DQB1) and 17q12–21 

(GSDMA, GSDMB, ORMDL3, ZPBP2) were among the most enriched regions for cis-

eQTL variants and protein binding sites. Additionally, multiple genes located in 4p16.3 
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(DGKQ, SLC26A1, and IUDA) and 12q13.2 (RAB5B, RPS26, SOUX) were also among the 

highly represented genes with proteins bounds to the prioritized eQTL variants.

Enrichment of the prioritized variants in cell-type specific epigenetic marks

To further investigate the enrichment of the prioritized variants on the cell-type specific 

regulatory regions, we tested the enrichment of the cFAS variants on five different regulatory 

regions including four histone modification marks (H3K4me1, HeK4me3, H3K27ac, and 

H3K9ac) and DNase I hypersensitive sites on the 127 reference epigenomes from the 

Roadmap and ENCODE projects using two different background variants. First, the 

enrichment of cFAS variants were compared against the background set consisting of ~3,000 

disease-implicated variants randomly selected from GWAS catalog. Fig 4A summarizes the 

results of the enrichment analysis on the 127 reference epigenomes. The results showed the 

cFAS variants were significantly enriched on the selected regulatory regions across different 

cell types with adjusted p-value < 0.05. A strong enrichment signal of H3K4me1 mark was 

observed in immune related cell types such as T cells, lung, B cells, epithellial, digestive 

tissues and muscles, but brain, fetal, and other embryonic and cultured cells exhibited lesser 

extend of enrichments. The enrichment of H3K4me3 marked regions were extensively 

observed across all cell types than H3K4me1 marked regions. These results highlight 

potential enhancer regulated mechanisms on immune-related cells and tissues in asthma 

symptom (Heintzman et al. 2009). Second, we constructed a background set of variants with 

high cFAS score. For this purpose, we selected the GWAS catalog variants with cFAS ≥ 16, 

which in our empirical evaluation, represented cFAS score with significant FDR < 0.05. 

When compared with functionally similar set of variants, we can identify specific cell types 

that the prioritized variants are likely to regulate the functional mechanism through 

regulatory activities leading to asthma. Results showed T cells, B cells and lung were 

selectively enriched for the enhancers, promoters and DNase marks, with 31 distinct 

epigenomes were significantly enriched for at least one of the five chromatic marks tested at 

multiple testing adjusted p-value < 0.05 (Fig 4B). GM12878 lymphoblastiod is found to be 

enriched for all four histone marks and DNAse mark. Lung is significantly enriched for 

H3K4me1 (adj. p = 5.55E-9) and H3K27ac (adj. p = 0.01) marks. Multiple derivatives of T-

cells and B-cells were also enriched for the enhancer and promoter marks (Fig 4B).

Hypomethylation based on genotype is specific to asthma patients and not healthy 
controls

To validate the prioritized cFAS variants found the 4p16 locus and the known 17q12–21 

locus, we use DNA from a cohort of 30 asthma patients and 30 healthy controls for 

pyrosequencing to assess methylation of two variants in the respective regions. 

Hypomethylation based on genotype was detected in both variants in asthma cases when 

compared to controls (rs4065274 GG p-value= 0.041, AG p-value= 4.43 × 10−5; rs11936407 

CC p-value= 0.041). Fig 5A shows the percent methylation of asthma cases versus healthy 

controls based on the different genotypes for rs4065275. On average the GG genotype in 

rs4065275 SNP was 48.6 and 58.7% methylated in asthma cases and healthy controls, 

respectively. Also, the AG genotype in this SNP variant had an average methylation of 22.1 

and 29.1% in asthma cases and healthy controls, respectively. Also, an additional variant 

located upstream from rs4065275 was hypomethylated in asthma cases when compared to 
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healthy controls (CpG site 1 P-value= 4.94 × 10−3, Supplementary Fig S7A). For the 

prioritized cFAS variant located in the novel locus 4p16 (rs11936407), Fig 5B shows a 

comparison of the percent methylation in asthma cases versus healthy controls based on the 

CC genotype. Average methylation for the CC genotype in asthma cases was 93.1% 

compared with 94.7% in healthy controls. Two additional variants upstream of this locus 

also showed hypomethylation in asthma cases when compared to healthy controls (CpG site 

1 p-value= 0.002, CpG Site 2 p-value= 1.11 × 10−4, Supplementary Fig S7B). Interestingly, 

allele frequencies for both cFAS variants were similar for asthma cases and healthy controls 

leading us to believe that changes in methylation potentially play an important role in 

altering gene expression when comparing asthma cases with healthy controls.

Shared etiology of asthma associated variants with other diseases/traits

To determine the shared genetic etiology of asthma with other diseases/traits, we obtained 

association results from the GWAS catalog using an expanded set of asthma variants 

comprising the prioritized set and their LD-surrogate lead variants. The expanded set 

consisted of 399 SNPs, the combination of the 274 prioritized SNPs and the high LD 

tagging variants from the 1,525 GWAS-lead variants. Following Wang et al. (Wang et al. 

2015), autoimmune diseases constituted the largest pleiotropic class with 16 different 

phenotypes sharing the asthma variants. Ulcerative colitis shared the most variants with 

asthma with seven variants. Other diseases with 3 or more overlapping SNPs included type 2 

diabetes, allergy, and systemic sclerosis. In total, we found 57 SNPs overlapped with one or 

more of the 49 different disease/traits ontology classes (Fig 6).

Discussion

In this study, we presented a systematic and comprehensive approach to analyze and 

prioritize genome-wide variants associated with asthma by developing a novel composite 

scoring scheme called Composite Functional Annotation Score (cFAS). Several methods 

have been recently developed to utilize various functional annotation resources in predicting 

the functional role of genome-wide variant (Li et al. 2017; Li et al. 2016). However, such 

approaches fail to incorporate the rich complementary information contained in the various 

annotation resources (Lu et al. 2017). Therefore, testing one annotation at a time might be 

suboptimal, and it would be ideal to incorporate multiple annotations together in order to 

identify disease-associated variants. The advantage of cFAS is that it combines the eQTL 

annotation from a large eQTL database of GTEx consortium with the regulatory annotations 

from RegulomeDB and GWAVA into a single composite score. Thus, cFAS prioritize 

variants with stronger functional evidence that might have been missed by other methods. 

We annotated 32,161 asthma-associated variants (both genome-wide lead and their LD 

surrogate variants) and identified a prioritized set of 274 variants by using the cFAS score. 

Only 38 SNPs of the prioritized set are genome-wide lead SNPs, and the rest are in high LD 

with genome-wide lead SNPs. Although GWAS-lead SNPs are the primary source of 

association signals, our findings echoed prior observations that lead SNPs or SNPs in high 

LD (r2 ≥ 0.8) could be equally functional (Schaub et al. 2012). As the LD surrogates may 

control the regulatory mechanism independent to the lead variants, our results further 

highlighted the importance of incorporating LD in the search of functional variants (Schaub 
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et al. 2012). Literature-driven functional cluster analysis of the genes mapped to the 

prioritized variants yielded asthma, and asthma and respiratory-related disease clusters (Fig 

7). We performed gene set overrepresentation analysis using ConsensusPathDB and found 

antigen processing and presentation, T cell co-stimulation, regulation of immune system 

process, defense response and innate immune response were among the most differentially 

enriched functional category (Supplementary Fig S8). This functional analysis further 

validates the relevance of our approach to prioritize variants associated with asthma.

The cFAS approach not only replicated the previously known candidate genes, but also 

unravel novel genes. This investigation identified two eQTL variants, rs3806932 and 

rs10073816 for TSLP-WDR36 region, both of which have not previously been revealed to 

be associated with asthma but are in high LD with a GWAS-lead variant rs1438673. The 5’ 

UTR variant rs3806932 is a potential enhancer, and the electrophoresis mobility shift assays 

(EMSAs) have paraded its ability to bind to nuclear proteins (Chen et al. 2015). Harda et al. 

have determined that another 5’-URT variant rs3806933 in the putative promoter region of 

long-form TSLP creates a binding site for the transcription factor activating protein AP-1 

(Harada et al. 2009). Epigenetic annotation obtained from HaploReg have demonstrated that 

rs3806932 is co-located in the enhancer regions marked with H3K4me1 in multiple 

epigenomes including lung, primary T regulatory and helper cells, CD8+ memory and CD8+ 

naïve cells from peripheral bloods, epithelial cells, and smooth muscle cells. These lines of 

evidence point towards the potential enhancer role of rs3806932 in the transcription of 

TSLP. The 3’-UTR variant rs10073816 is associated to TSLP in skin, brains and other 

tissues, but the functional role on the transcription of TSLP genes is not known yet. Given 

that rs3806932 and rs10073816 mark the 5’UTR–3’URT ends of the TSLP transcript, 

further functional experimentations may reveals their role in regulating the transcription of 

TSLP in asthma. TSLP is an epithelial-cell-derived cytokine important in initiating allergic 

inflammation (Torgerson et al. 2011). Genome-wide investigation has led to an important 

clinical application for the susceptibility role of TSLP with the development of a novel 

therapeutic agent, a human anti-TSLP monoclonal immunoglobulin G2-lambda antibody 

(AMG 157 or tezepelumab), which binds human TSLP and prevents receptor interaction. In 

clinical studies, tezepelumab reduces allergen-induced bronchoconstriction and airway 

inflammation (ClinicalTrials.gov number, NCT01405963) (Gauvreau et al. 2014).

We also identified novel candidate regions such as the 4p16 locus. The lead SNP rs3796622 

at this locus is associated with asthma (S1 Table), but it is not a cFAS-prioritized SNP. 

However, we identified two cFAS-prioritized SNPs (rs11936407, and rs3806756) in high LD 

with rs3796622. Using eQTL analysis in lung and whole blood, we found that all the LD 

SNPs showed significant eQTL (p-value < 1 ×10−8). Supplementary Fig S9 illustrates the 

eQTL results for the gene DGKQ, SLC26A1, and IDUA on lung from GTEx (Lonsdale et 

al. 2013). The SNPs in the DGKQ, SLC26A1, and IDUA genes were associated with lung 

and whole blood and were also co-located in the enhancers, promoters, and DNase marks in 

multiple epigenomes and predicted to exhibit protein binding affinities and altering motif 

effects.

The prioritized variants exhibited tissue-specific enrichment of enhancers marked with 

H3K4me1 peaks in T and B cell types, thymus, lung, and digestive tissues. Previous studies 
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have also demonstrated that histone modification marks such as H3K4me1 and H3K27ac 

harbor disease-associated variants in cell-type specific manner (Gerasimova et al. 2013; 

Jiang et al. 2015). The epigenetic modification marks such as H3K4me1, H3K4me3, 

H3K27ac, and H3K9ac are highly informative about the TF binding affinities (Hnisz et al. 

2013; Liu et al. 2015; Trynka et al. 2013). Hence, the interrogation of cis-regulatory regions 

such as those marked with histone modification peaks and overlapped to disease risk 

variants may lead to identifying the TF binding sites for disease-associated gene 

transcription and pinpointing the causal variants and disease pathogenesis. The experimental 

analysis of the 17q12–12 locus by Schmiedel et al using chromatic conformation assays 

(4C-seq) supports this interrogation (Schmiedel et al. 2016). The latter investigation has 

manifested that the intronic variant rs4065275 of ORMDL3 potentially introduces CTCF-

binding site while the other asthma risk SNP rs12936231 in the intronic region of ZPBP2 

disrupts the CTCF-binding site in CD4+ T cells in the region enriched for H3K27ac and 

H3K4me1 marks. Such combination of CTCF binding sites is associated to increased 

interaction between enhancers of the transcription factor IKZF3 (several kb upstream of 

ORMDL3) and ORMDL3 promoters, causing increased expression of ORMDL3 among the 

carrier of risk alleles from two markers primarily in the immune-related cells (Schmiedel et 

al. 2016; Stein et al. 2018). ORMDL3 is known to regulate endoplasmic reticulum-mediated 

calcium signaling and encode for ORM1-lie protein 3 and gasdermin-like protein. It results 

in the unfolded protein response (UPR), which is thought to trigger an inflammatory 

response in addition to being involved in immune cell migration, pro-inflammatory cytokine 

production, and allergen-induced asthma pathologies (Cantero-Recasens et al. 2010). Further 

validation of the rs4065275 variant using TaqMan assays and pyrosequencing showed that 

genotype based hypomethylation is prevalent in our cohort of asthma cases when compared 

to healthy controls, and that this is an indicative of possible changes in gene expression that 

should be further studied in the future.

Our finding and other showed that a large number of asthma loci overlap with loci 

associated with other autoimmune diseases such as allergy, atopic dermatitis, body mass 

index, inflammatory bowel diseases, as well as Type I diabetes (Cotsapas et al. 2011). A 

recent study has reported that nearly half of loci discovered in GWAS influence risk to at 

least two diseases, indicating the shared genetic architecture of immune-mediated 

inflammatory and autoimmune diseases (Barnes 2011; Cotsapas et al. 2011). The observed 

clustering of multiple risk factors could be due to an overlap in the causal pathways and 

could suggest a shared role of the candidate variants including autoimmune and 

inflammatory diseases with asthma (Demenais et al. 2018; Pickrell et al. 2016; Shi et al. 

2016). Grouping variants by shared etiology should give insight into the specific biological 

processes underlying comorbidity and disease risk. This finding provides further evidence 

for the growing understanding of the importance of pleiotropy in multifactorial diseases.

In critically evaluating our cFAS method, it is important to note that our approach and hence 

interpretations have some limitations. First, our sequential computational scheme of 

assigning priority scores (PSeQTL, PSRDB, and PSTSS) is based on a heuristic principle and 

requires further validation using independent datasets. In addition, weighing functional 

annotation scores based on validated functional data could further improve the scoring 

scheme and functional classification of the GWAS-variants. However, in the absence of truly 
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validated functional data, we believe that it is not realistic to assign a weight to each source 

of functional annotation data. As we generate denser and more reliable validated functional 

resources including in the non-coding region, further testing and validation of cFAS 

algorithm using independent dataset is needed. Second, we did not weight any variants for 

being replicated in the GWAS as we have limited information on the biological relevance of 

GWAS replications. We believe that at the moment there is no strong biological evidence to 

weight variants based on GWAS finding and adding such weight may results in lower score 

for variants that might otherwise be rightfully ranked among top list and biologically 

relevant. But, in future, when more replications followed by functional studies on diverse 

tissue/cell types become available, we may be able to revise the scoring mechanism with 

some prior weight based on the evidence. Third, we leverage three widely available 

annotation resources to compute cFAS. Our choice of these functional databases was 

primarily driven by public availability, coverage and recent update at the time of developing 

this tool. As more and more datasets are becoming freely available, it is important to revisit 

and leverage additional functional genomic information and incorporate in cFAS scoring 

scheme. Last, we have used broad definition of asthma in order to be comprehensive and 

maximize the reported associations.

Functional annotations are independent of the phenotype, so the cFAS scoring and ranking 

of variants would not be affected. However, biological mechanisms of asthma may vary 

across the different asthma subtypes which may have effect on the functional investigation 

of the prioritized variants and interpretation of the results thereafter. Nevertheless, the 

strength of this study lies in the context-specific regulatory activity and linkage 

disequilibrium annotations of complementary functional evidence (cell-type specific 

functional and regulatory annotations for histone modifications, enhancer enrichment 

analysis, expression quantitative trait loci, eQTL) in to one score to prioritize the candidate 

variants from asthma genome-wide studies. Existing tools attempt to prioritize variants 

based on only regulatory annotation data and lack comprehensive eQTL resources. Our 

understanding of the biological mechanism of genome-wide variants has been substantially 

improved by characterizing the epigenomic annotations and tissue-specific eQTLs. Finally, 

prioritized variants were validated using TaqMan assays and pyrosequencing.

In summary, to better understand the functional role of identified loci from the gene-wide 

studies, we first conducted LD expansion at lead loci to increase genetic resolution, and then 

we intersect each variant with three functional annotation resources (ENCODE, GTEx, and 

NIH Roadmap Epigenomics) and develop a composite scoring method prioritize the most 

plausible asthma risk variants. cFAS identified both novel and previously known asthma 

loci. Prioritized variants were further validated using pyrosequencing and TaqMan assays to 

replicate their function. To our knowledge, this article is the first to report large-scale 

genome-wide study followed by in silico variant prioritization and validation in asthma.
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Refer to Web version on PubMed Central for supplementary material.
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Fig 1. Workflow of asthma associated variants discovery and prioritization scheme.
A) Flow chart shows the different sources of asthma-associated SNPs and selection process 

discovering asthma-associated variants. AA = African American, EA = European American. 

B) Manhattan plots for GWAS-lead asthma variants. Asthma associated SNPs with 

significance cutoff p-value < 1E-5 from multiple GWAS studies and public catalogs were 

used. C) Variant prioritization step. Schematic approach of variant annotation and assigning 

composite functional annotation score (cFAS). D) Manhattan plot of the composite cFAS. 

Horizontal dashed line shows the cutoff score cFAS = 22 used for the variant prioritization
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Fig 2. Distribution of functional annotation scores.
A) Histogram of eQTL p-value from the GTEx project. B) Bar plot of the RegulomeDB 

scores. C) Histogram of the GWAVA TSS score. D) Venn diagram showing the overlap of 

variants with eQTL p-value < 1E-12, RegulomeDB score ≤ 2, and TSS ≥ 0.5.
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Fig 3. Comparison of several functional prioritization tools performance.
Receiver Operating Curves (ROC) for eQTL, TSS, RDB, TSS+RDB, and cFAS based on the 

GWAS association and random control sets. The area under the curve (AUC) is shown in the 

legend next to the name of each approach. eQTL = Expression quantitative trait loci, TSS = 

Transcription start site score from GWAVA tool, RDB = RegulomeDB, TSS+RDB = 

Combination of TSS and RDB prioritization scores, cFAS = Composite functional 

annotation score.
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Fig 4. Functional annotation enrichment analysis.
A) Circular plot shows the enrichment of the prioritized variants on 127 reference 

epigenomes from the Roadmap and ENCODE project against a random set of GWAS 

variants. The outermost circle represents the tissue/cell line types on different colors. 

Moving inwards, the circles represent the enrichment results for the H3K4me1, H3K4me3, 

H3K27ac, H3K9ac, and DNase I hypersensitive marks. Solid bars indicate enrichment of the 

prioritized variants on the corresponding reference epigenome is significant at FDR < 0.05. 

Height of the bar represents the –log10(p) of the p-value from the enrichment analysis. B) 

Cell type specific enrichment of the histone marks and DNase I hypersensitive marks against 

a prioritized set of GWAS variants with cFAS ≥ 16 as the background set. The size of circle 

is proportional to the adjusted p-value. Q-value = adjusted p-value using Benjamini-

Hochberg procedure.
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Fig 5. Methylation of select cFAS variants rs4065275 and rs11936407.
Plots show genotype specific hypomethylation at the selected sites among asthma patients 

compared to healthy controls. A) Scatter plots show the differences in percent methylation 

between asthma cases and healthy controls for the AG (top panel) and GG (bottom panel) 

genotypes at SNP rs4065275., respectively. B) Scatter plot shows the differences in percent 

methylation between asthma cases and healthy controls for the CC genotype at SNP 

rs11936407. * p-value < 0.50, *** p-value < 0.001.
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Fig 6. Shared etiology analysis.
Circular plot shows mapping of asthma risk variants and diseases sharing the asthma risk-

variants. The upper half of the plot shows the list of diseases and the bottom half shows the 

overlapped SNPs. The bars in the plot show the number of SNPs overlapped between the 

disease and asthma. Diseases are classified into 8 different groups following Wang et al. 

except the CD, UC, and IBD are grouped into digestive group (Wang et al. 2015). The y-axis 

of the lower part of plot shows the –log(p) of the significance p-value of the association 

between the disease and the SNPs. If the –log(p) > 25, a larger circular dot is used with the 

radius proportion to the ratio – log(p)/25. The connector lines from the diseases to SNPs 

show the disease-SNP map with color code reflecting the disease group.
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Fig 7. Functional ontology based clustering of prioritized variants.
Plot shows the functional clustering analysis of asthma variants based on prioritized variants 

and using the Literature Lab™ from Acumenta Biotech (http://acumenta.com/).
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