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1. Introduction

MicroRNAs are a class of small non-coding RNAs (22–23 nucleotides), which regulate gene 

expression at the post-transcriptional level and play key roles in tumorigenesis and other 

diseases.[1,2] MiRNAs are dysregulated in almost all solid and hematological malignancies, 

and specific miRNA expression signatures allow the characterization of different tumors and 

stages. Thus, miRNAs can also be utilized in cancer patient therapy and diagnosis/prognosis. 

MiRNAs that are upregulated in cancer cells and contribute to carcinogenesis by inhibiting 

tumor suppressor genes, are considered oncogenic miRNAs (oncomiRs), while 

downregulated miRNAs, that normally prevent cancer development by inhibiting the 

expression of proto-oncogenes, are known as tumor suppressor miRNAs. For example, 

miR-21,[3] overexpressed in various tumor types, downregulates many tumor suppressor 

genes regulating cell proliferation, cell death, metastasis and chemoresistance. On the other 

hand, the miR-34 family is dysregulated in different cancer types including several epithelial 

tumors, melanomas, neuroblastomas, leukemias and sarcomas and inhibits expression of 

genes with oncogenic activity, such as MYC and BCL2.[4] Silencing oncomiRs with 

miRNA inhibitors or replacing tumor suppressor miRNAs with synthetic miRNA mimics 

has been demonstrated as a valuable experimental strategy for the treatment of cancer.[5]

In cancer, both antagonists and mimics have been developed as miRNA-based therapeutic 

approaches to achieve tumor relapse. MiRNA antagonists, also known as antimiRs, are 

single-stranded oligonucleotides which hybridize to the miRNA complementary sequences 

and interrupt the miRNA activity and/or processing with the resultant increased expression 

of target tumor suppressor genes. On the other hand, miRNA mimics, have an opposite role 
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by over-expressing the miRNA and thus down-regulating the expression of target genes, 

such as oncogenes. For example, miRNAs can be restored by miRNA mimics, which act like 

endogenous miRNAs. MRX34, which was in clinical trials for liver cancer, is a miR-34 

mimic.[6]

Here, we summarize current insights into the use of miRNA-based therapeutics, and the 

design of chemically modified miRNA-based drugs. We also review numerous in vivo 

delivery strategies and show examples of the clinical development of miRNA-targeting 

therapeutics. By focusing on their role in cancer we show how these therapies can be used 

and the challenges associated with their clinical application.

2. Challenges

RNA oligonucleotides have features that complicate drug design and efficacy. Challenging 

characteristics include: (i) degradation by nucleases upon addition into biological systems 

[7] [8] (ii) poor cell membrane penetration [9] (iii) entrappment in the endosome [10] (iv) 

poor binding affinity for complementary sequences [11] (v) poor delivery to desired target 

tissues [10] (vi) off-target and unwanted toxicities and (vii) activation of innate immune 

responses.[12]

Since miRNA delivery is a potentially novel therapeutic modality, these challenges are being 

addressed in many different ways. For example, we show cases where the fast degradation of 

the naked miRNAs by nucleases can be overcome with chemical modifications to the 

oligonucleotides, while their hydrophilic characteristics, negative charge and high molecular 

weight which can block nucleic acids from penetrating the cell membrane. can be overcome 

with different delivery systems (Table 1).[13]

2.1. Unmodified miRNAs are quickly degraded and cleared in the blood circulation

A challenge in miRNA therapeutics is to retain the stability and consistency of miRNAs in 

circulation. Naked miRNAs with an unmodified 2′ OH in the ribose moiety are degraded 

within seconds by nucleases such as serum RNase A-type nucleases in the blood [14]. In 

addition, naked miRNAs are cleared quickly by renal excretion, leading to a short half-life in 

systemic circulation. The solution for this problem is chemically engineered miRNA 

modifications on the phosphodiester backbone and the 2’ of the ribose that protect the 

miRNA from degradation and promote the long-lasting potentency of the miRNA [14,15] 

(Figure 1). Different chemical modifications have been developed such as: phosphodiester 

linkages, ribose backbone, 2’-O-(2-Methoxyethyl), 2’-O-Methyl, 2’- locked nucleic acid, 

and 2’- Fluoro (Figure 1). These modifications not only improve oligonucleotide stability 

but also increase binding affinity to the target and help loading into the miRNA-induced 

silencing complex, both of which improve miRNA performance.

2.2. Limited penetration of miRNAs in vivo and in vitro

Hundreds of miRNAs have been found to be involved in disease development and 

progression, especially in cancer. Although major developments have been made to improve 

the delivery of miRNAs, the leading challenge of miRNA therapeutics is successful delivery 

to the target tissue with efficient penetration of payload to a specific site [18]. In cancer, the 
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leaky structure of tumor blood vessels causes poor blood perfusion, which reduces the 

delivery efficacy of naked miRNAs. To overcome this limitation different delivery vehicles 

have been developed (Table 1): (1) Nanocarrier (Liposomes) based methods capitalizing on 

leaky tumor vessels (the EPR effect) [21] (2) Polymers used as a nanoparticles for the EPR 

effect [20] (3) conjugation-based methods where a sugar, peptide or lipid is covalently 

conjugated to 3’-end of the passenger strand, or peptides, aptamers, antibody-conjugation 

for tissue specificity [22,23] (4) Exosomes [19] and (5)Viral vectors [20]. Viral vectors have 

been used for in-vivo delivery. The spectrum of viral vectors is very broad including both 

delivery vehicles developed for transient short-term and permanent long-term expression. 

The most applied viral vectors are based on adenoviruses. A substantial number of clinical 

trials have been conducted or are currently in progress applying viral vectors [24]. In some 

cases nanoparticles are used to deliver vectors expressing miRNAs. The plasmid vector 

expressing the miRNA were bound to a cationic polymer by electroststic interactions and 

then loaded on NPs [25].

Lipid based nanoparticles are a general group that includes other liposomes, solid nano 

particles (SLNS), and nanostructured lipid carriers (NLCS) [26]. Both Liposomes and 

Polymers are subtypes of NPs which are very useful for overcoming delivery challenges, due 

to their biocompatibility and biodegradability.

In addition, single/double-stranded oligonucleotides such as miRNA are negatively charged 

which results in low tissue permeability. The current delivery solution is to construct 

nanoparticles with size and properties that are changeable due to different 

microenvironments, conditions or time series (Table 1). Nanoparticles consist of components 

leading to controlled release and efficient diffusion of the therapeutic cargoes in diseased 

tissues. The delivery of miRNA with nanocarriers for downregulated miRNA or inhibition of 

overexpressed miRNA has shown a good response in overcoming diseased conditions in 

some clinical trials [27]. The nanocarriers increase the stability of the miRNA and the 

transfection efficiency into the cells many fold as compared with naked miRNA.

2.3. Endosome escape is challenging

Whether miRNAs are delivered by cationic lipids, nanoparticles or cell-type-specific 

delivery vehicles, the intracellular trafficking of miRNA often begins in the early endosome 

compartment. Afterwards, the early endosomes merge with late endosomes and transfer their 

contents. Late endosomal vesicles have an acidic environment (pH 5–6). The endosomal 

content then moves to the lysosomes, which are further acidified (pH ~4.5) and have various 

nucleases that stimulate the degradation of oligonucleotides/miRNA mimics. To bypass 

lysosomal degradation, miRNA mimics have to escape from the endosome into the 

cytoplasm, where they can engage with the RNAi machinery. Endosomal escape is a major 

challenge for efficient miRNA delivery. There are different strategies to promote endosomal 

release: (1) pH-sensitive lipoplexes [10] (2) pH-sensitive polyplexes [28] (3) Photosensitive 

molecules [29] (4) Cationic nanoparticles.[30]
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2.4. Extrahepatic delivery faces several challenges

For liver delivery, the known trivalent N-acetylgalactosamine (GalNAc) conjugate binds 

with high specificity and affinity to the asialoglycoprotein receptor on hepatocytes, resulting 

in specific oligonucleotide delivery and gene silencing in hepatocytes. The success of the 

GalNAc platform demonstrates that functional tissue delivery of therapeutic 

oligonucleotides is the basis for any clinical exploration. Another type of conjugation used 

for improving miRNA delivery is lipids [31]. The majority of studied lipidconjugated 

miRNAs, such as cholesterol-conjugated miRNAs, accumulate in the liver (~60–80%). 

However, cholesterol-modified miRNAs also exhibit accumulation and productive silencing 

in extrahepatic tissues. Moreover, local injection of cholesterol modified siRNA leads to 

functional gene silencing in brain, vagina and skin [31].

Targeting miRNAs to extra-hepatic tissues remains an obstacle, limiting the use of miRNA-

based therapies. Lipid and polymer nanoparticles can be formulated for efficient cellular 

uptake and endosomal escape but they still preferentially accumulate in the liver, kidney and 

spleen. To overcome this challenge extra hepatic scaffold like lipids, peptides, aptamers or 

antibodies conjugated on the particles result in targeting via recognition of specific receptors 

[22,32].

2.5. Off-target effects and unwanted on-target effects

Once miRNAs are delivered into the cytoplasm and released from the endosome, one of the 

major issues related to miRNA therapy is the off-target effect of miRNAs. MiRNAs are 

produced to target various pathways by imperfect hybridization with 3′ UTRs, thus they 

might cause undesirable gene silencing of other genes. Such off-target gene silencing can 

cause potential toxicities and reduced therapeutic effects. The evidence that a single miRNA 

might target numerous mRNAs requires special attention as it implies the possibility of 

unpredictable side effects. Even if a specific miRNA is effectively targeted, one might also 

find unwanted on-target effects.[33] To overcome this obstacle, one approach is to use low 

doses of combined miRNAs that synergistically regulate the expression of the same target 

gene [34]. One example of multiple miRNAs effects in cancer is co-transfection of miR-34a 

and miR-15a/16 which led to increased cell cycle arrest in NSCLC due to the fact that 

miR-15a and miR-16 specifically downregulate CCNE1 and CCND3. Such gene regulation 

brings a complementary effect to cell-cycle regulation by miR-34 [35].

2.6. miRNAs have the potential to activate the immune system

Double-stranded RNAs can be considered pathogens by the host system and the innate 

immune system can recognize them and become activated. For example, systemic miRNA 

delivery, like other types of nucleic acid, can activate the innate immune system leading to 

toxicities and significant unwanted side effects. Systemic administration of miRNA duplexes 

can trigger secretion of inflammatory cytokines and type I interferons (IFNs) through Toll-

like receptors (TLRs). TLRs 3, 7 and 8 are activated by single or double-stranded RNAs 

(dsRNAs) to drive innate and adaptive immune responses. These TLRs sense dsRNA 

molecules in cellular endosomal and lysosomal compartments to trigger the type I interferon 

(IFN) pathway and also cytokine production.[36] Scientist are still studying the immune 
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responses related to miRNAs, but it seems clear that the chemical modifications shown in 

Figure 1 also reduce recognition by the immune system [8].

Another interest is the immune system reaction to the delivery vehicle, which is highly 

positive charged and might cause toxicity and lead to the immune system activation. When 

NPs enter the body, interactions with the immune system are inescapable. NPs size, shape, 

hydrophobicity and surface modifications are the major components that impact the 

interactions between nanoparticles and the immune system [37]. Thus, both the miRNA- and 

the delivery vehicle have to be explored. Targeting of the carrier to the specific tissues will 

allow for decreased dosing and thus likely reduce immune responses.

3. Conclusions

Further understanding of the biological and functional mechanisms, and chemical and 

bioengineering of miRNAs will continue to improve this new therapeutic modality. What is 

obvious, however, is that the more we understand the roles of miRNAs in diseases, the more 

likely it is that these basic studies will translate into novel clinical applications. Once these 

potential obstacles discussed here are resolved, miRNA therapeutics should show continuing 

promise as therapeutic molecules for various diseases.

4. Expert opinion

An increasing number of research studies point to the future use of miRNAs as biomarkers 

or drugs for pathogenic conditions, especially cancer. The first FDA approved small RNA 

drugs (RNAi-based) have recently entered clinical medicine. Since then there has been a 

growing number of studies for miRNAs in preclinical and clinical research applications[38]. 

For example, mimics to miR-16 are in clinical trial for mesothelioma, a form of lung cancer. 

Another example involves mimics to miR-29b to minimize fibrous scar formation, while 

another clinical trial utilizes an antimiR to miR-155, which plays a key role in 

differentiation, function, and proliferation of blood and lymphoid cells in lymphoma [39]. In 

another example, antimiRs to miR-10b have been proposed to treat glioblastoma, one of the 

most aggressive forms of brain cancer [40].

To date, there has been various studies and major improvements in understanding the 

mechanisms and efficiency of miRNA therapeutics, but particular obstacles to maximium 

efficiency are still unsolved. These challenges include: targeted delivery, specificity, 

stability, immune activation and toxicity in vivo and in vitro.

We believe that miRNA therapeutics will have a major part in cancer therapy in the future. 

Specifically, personalized cancer medicine can be accomplished by constructing the unique 

miRNA mimic or antagonist for patients disease based on the patient’s miRNA expression 

profiles. We expect that new strategies and developments will overcome the remaining 

biological challenges for miRNA delivery and expedite the great therapeutic potential of 

miRNAs in the cancer field.
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Figure 1. Modification of nucleic acids.
O-MOE is O-(2-Methoxyethyl); OMe is O-Methyl; LNA is locked nucleic acid; F is Fluoro
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Table 1.

Delivery vehicles for oligonucleotides.

Delivery 
vehicle

Specificity Advantages Disadvantages

Liposomes Form lipoplexes by electrostatically interaction of a 
mixture of cationic lipids with polyanionic nucleic 
acids.

Biocompatible
Biodegradable
Reduction of toxicity[16]

Limited storage conditions
Short half life
Low stability[16]

Polymers Use of cationic (PEI) or neutral (PLGA) polymers. 
Highly efficient encapsulation and a net cationic 
charge promise tolerable interactions with anionic 
miRNAs. Neutral polymer needs to be coated with 
cationic reagent for efficient delivery.

Natural polymers: Biocompatible
Biodegradable
Less toxic
Synthetic polymers:
Biocompatible[17]

Natural polymers:
Structurally more complex
Extraction process is 
complicated.
Synthetic polymers:
Toxic
Non-degradable[17]

Conjugates Conjugation of lipids or receptor-binding molecules 
(e.g. aptamers) directly to the nucleic acid.

Selective targeting
Intracellular delivery
High stability
Less toxic[18]

Aggregation
Endosomal entrapment[18]

Exosomes Exosomes used to deliver RNA or pharmaceutically 
active substances. Exosomes are small and naturally 
existing in humans, they are able to fuse with the cell 
membrane and avoid the endosome.

Naturally present in body fluids
Immunocompatible
Low toxicity
Able to cross the blood brain 
barrier[19]

Rapid clearance from blood
Low drug loading
Largely uncharacterized 
complexity[19]

Viral Lentiviruses, adenoviruses and adeno-associated 
viruses (AAVs) can be used to deliver miRNAs into 
the cells by efficiently expressing miRNA genes.

High transfection efficiency
Low toxicity[20]

Low packaging capacity
High production cost
Antigenicity[20]
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