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Abstract

Background: Interferon gamma (IFNγ) is a pleiotropic cytokine that plays critical 

immunomodulatory roles in intercellular communication in innate and adaptive immune 

responses. Despite recognition of IFNγ signaling effects on host defense against viral infection 

and its utility in immunotherapy and tumor progression, the roles of genetic variants of the IFNγ 
signaling pathway genes in cancer patient survival remain unknown.

Methods: We used a discovery genotyping dataset from the Prostate, Lung, Colorectal and 

Ovarian Cancer Screening Trial (n=1,185) and a replication genotyping dataset from the Harvard 

Lung Cancer Susceptibility Study (n=984) to evaluate associations between 14,553 genetic 

variants in 150 IFNγ pathway genes and survival of non-small cell lung cancer (NSCLC).

Results: The combined analysis identified two independent potentially functional single-

nucleotide polymorphisms (SNPs), ELP2 rs7242481G>A and PIAS1 rs1049493T>C, to be 

significantly associated with NSCLC survival, with a combined hazards ratio (HR) of 0.85 [95% 

CI= 0.78–0.92, P<0.0001] and 0.87 (0.81–0.93, P<0.0001), respectively. Expression quantitative 
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trait loci analyses showed that the survival-associated ELP2 rs7242481A allele was significantly 

associated with increased mRNA expression levels of ELP2 in 373 lymphoblastoid cell lines and 

369 whole blood samples. The PIAS1 rs1049493C allele was significantly associated with 

decreased mRNA expression levels of PIAS1 in 383 normal lung tissues and 369 whole blood 

samples.

Conclusions: Genetic variants of IFNγ signaling genes are potential prognostic markers for 

NSCLC survival, likely through modulating the expression of key genes involved in host immune 

response.

Impact: Once validated, these variants could be useful predictors of NSCLC survival.
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Introduction

Lung cancer is one of the most common malignancies both in the US and world-wide, with 

228,150 new cases of lung cancer and approximately 142,670 deaths from this disease in the 

US in 2019 [1]. Non-small cell lung cancer, mostly adenocarcinoma and squamous cell 

carcinoma, are the most common histological subtypes, accounting for around 85% of all 

lung cancer patients [2]. Despite devoted efforts in the treatment over the past decades, lung 

cancer remains the cause for the highest cancer-related mortality worldwide, with an 

underwhelming 5-year survival rate of 18.6% between 2008 and 2014 in the US [3]. 

Conventional treatments for NSCLC include surgery, chemotherapy, and radiotherapy for its 

early stages, but the responses to these treatments are heterogeneous [4], likely due to 

genetic variation among the patients, such as single-nucleotide polymorphisms (SNPs), the 

most common genetic variants that could affect both short-term response and long-term 

prognosis of cancer patients; thus, identifying the role of these genetic factors for NSCLC 

survival may lead to a better understanding of the variability in treatment outcomes [5].

Recently, utilization of the immune system to halt cancer development and tumor 

progression has been widely recognized [6,7] and immunotherapy is now considered the 

“fourth-pillar” alongside the three conventional treatments [8]. Theoretically, 

immunotherapy either assists the ability of the immune system to target cancer cells directly 

or stimulate the immune system in a more general matter [9]. In NSCLC treatment, 

programmed death-ligand 1 (PD-L1) inhibitors, such as pembrolizumab, are often applied to 

patients with a high PD-L1 expression in tumors, in combination with chemotherapy to 

improve therapeutic results [10]. Despite recent advances, not all patients respond to 

immunotherapy [11]. Therefore, it is important to identify survival-related biomarkers for 

immunotherapy.

To date, genome‐wide association studies (GWASs) investigating millions of SNPs at the 

same time have identified few SNPs that are associated with cancer survival, because a 

hypothesis-free GWAS focuses on the most-significant SNPs or genes with a significant P 
value after the stringent multiple testing correction. In reported GWASs on cancer survival, 
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most identified SNPs lack functional annotations, which limits clinical application of these 

results [12,13]. As a promising hypothesis-driven method in the post-GWAS era, a 

biological pathway-based approach has been applied to reanalyze published GWAS datasets 

and to evaluate the cumulative effect of SNPs across multiple genes in the same biological 

pathway [14]. Since much fewer SNPs in candidate genes of a particular biological pathway 

of interest will be included in the analysis, it avoids unnecessary multiple tests for SNPs that 

may have no apparent biological significance, which improves the overall study power to 

identify statistically significant and biologically important associations [14].

Interferons (IFNs) are a group of pleiotropic cytokines that play immunomodulatory roles 

during intercellular communication in innate and adaptive immune responses [15]. IFNs are 

divided into three types, of which the type II interferon (i.e., IFNγ) in humans, is the most 

extensively studied [15]. IFNγ is a signaling protein released by Cytotoxic T cells and type I 

T helper cells in response to inflammatory or immune stimuli [16]. IFNγ primarily 

modulates the activation of IFN response factor 1 through the JAK-STAT pathway, leading 

to the activation of a group of secondary responsive genes that up-regulate pathogen 

recognition, antigen presentation, and inhibit cellular proliferation [17,18]. Despite IFNγ 
signaling being crucial for activating the immune system, it remains to be determined 

whether IFNγ has a role in assisting tumor immune evasion, especially in the context of 

clinical trials [19]. Furthermore, the roles of genetic variants of candidate IFNγ signaling 

genes and their biological functions in tumor growth or suppression remain unknown.

In the present study, therefore, we hypothesize that genetic variants in genes related to the 

IFNγ signaling pathway, a critical cascade in the activation of both innate and adaptive 

immune responses, are associated with the survival of NSCLC patients. We used the existing 

genotyping data from two previously published GWASs to test this hypothesis.

Materials & Methods

Study populations

We utilized a GWAS dataset of the Prostate, Lung, Colorectal and Ovarian (PLCO) Cancer 

Screening Trial as the discovery; PLCO is a multi-center dataset of randomized controlled 

study conducted between 1993 and 2011 [20]. In addition to data on genotyping and 

survival, the PLCO dataset of 1,185 NSCLC patients also included blood samples and 

personal information about smoking status, histologic diagnosis, tumor stage, treatment 

method and family history collected at enrollment [21]. Blood DNA samples of the 

participants were genotyped with Illumina HumanHap240Sv1.0 and HumanHap550v3.0 

(dbGaP accession: phs000093.v2.p2 and phs000336.v1.p1) [22, 23]. Each institutional 

review board of the participating institutions had approved the PLCO trial with a written 

informed consent from each of the participants permitting use of the collected data.

For replication, we used genotyping data extracted from another GWAS dataset of 984 

histologically-confirmed Caucasian NSCLC patients from the Harvard Lung Cancer 

Susceptibility (HLCS) Study which began in 1991 [24], where whole blood samples and 

personal information were collected after diagnosis, and DNA extracted from the blood 

samples were genotyped using the Illumina Humanhap610‐Quad array. The genotyped data 
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was utilized for imputation with the MACH3 software based on sequencing data from the 

1000 Genomes Project [24].

The use of these two GWAS datasets were approved by the Internal Review Board of Duke 

University School of Medicine (#Pro00054575) and the dbGaP database administration for 

the PLCO dataset (#6404 with dbGaP accession: phs000093.v2.p2 and phs000336.v1.p1).

Gene and SNP selection

The genes involved in the IFNγ signaling pathway were selected using the Molecular 

Signatures Database (http://software.broadinstitute.org/gsea/msigdb/index.jsp) with the 

keyword “interferon AND gamma”. With the removal of 133 duplicated genes, two 

pseudogenes, one withdrawn gene and one gene located on X chromosome, 150 genes 

remained as candidates for further analysis (Supplementary Table 2). Imputation with 

IMPUTE2 and the 1000 Genomes Project data (phase 3) was performed for SNPs within 

±500kb flanking regions of these candidate genes. SNPs within the genes and their ±2kb 

flanking regions were then extracted according to the following criteria: an imputation info 

score ≥0.8 (Supplementary Figure 1), a genotyping rate ≥95%, a minor allelic frequency 

(MAF) ≥5%, and a Hardy–Weinberg equilibrium (HWE) ≥1×10−5, which resulted in 14,553 

(1053 genotyped and 13,500 imputed) SNPs for further analyses.

Statistical analyses

The endpoints for analysis included overall survival (OS) and disease-specific survival 

(DSS). In the single-locus analysis, we used multivariate Cox proportional hazards 

regression analysis to analyze the association between each of these SNPs and NSCLC 

survival in an additive model using the PLCO dataset, with adjustment for various clinical 

variables including age, sex, smoking status, histology, tumor stage, chemotherapy, 

radiotherapy, surgery and the first four principal components (Supplementary Table 3) by 

using the GenABEL package of R software [25]. We then used Bayesian false discovery 

probability (BFDP) with a cut-off value of 0.80 for multiple testing correction to decrease 

the probability of potentially false positive results as recommended for SNPs in high linkage 

disequilibrium (LD) as a result of imputation [26,27]. We assigned a prior probability of 

0.10 and detected an upper boundary hazards ratio (HR) of 3.0 for an association with 

variant genotypes or minor alleles of the SNPs with P<0.05. The chosen SNPs were then 

validated afterwards by using the HLCS genotyping dataset. Next, we performed an inverse 

variance weighted meta-analysis to combine the results of both discovery and replication 

datasets, followed by a multivariate stepwise Cox model to identify independent SNPs 

through adjustments for clinical variables, the top four principal components, demographic 

characteristics, as well as 15 previously published SNPs [28]. We used Manhattan Plots and 

Association Plots to visualize the locations and LD of the selected SNPs.

We then used the combined genotypes or alleles of the identified SNPs to evaluate their 

cumulative effects and the Kaplan-Meier (KM) survival curves to show their associations 

with survival probability, constructed the receiver operating characteristic (ROC) curve and 

time-dependent area under the curve (AUC) to illustrate prediction accuracy for NSCLC 

survival [29], and performed the expression quantitative trait loci (eQTL) analyses with the 
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genomic data from the 1000 Genomes Project and the genotype-tissue expression (GTEx) 

project [30,31]. The bioinformatics functional prediction for the tagging SNPs was then 

performed with SNPinfo [32] (https://snpinfo.niehs.nih.gov), RegulomeDB [33] (http://

www.regulomedb.org) and HaploReg [34] (http://archive.broadinstitute.org/mammals/

haploreg/haploreg.php). Lastly, the differences in mRNA expression levels were examined in 

111 pairs of lung cancer tissues and adjacent normal tissues from the Cancer Genome Atlas 

(TCGA) database through a paired Student t test. We also assessed the differences in mRNA 

expression levels in a larger, but not paired, dataset from TCGA (http://ualcan.path.uab.edu), 

and the KM survival analysis was performed to evaluate the association between the mRNA 

expression levels and survival probability (http://kmplot.com/analysis/index.php?

p=service&cancer=lung). All statistical analyses were performed with a statistical 

significance level of P<0.05 by using the SAS software (version 9.4; SAS Institute, Cary, 

NC, USA), unless otherwise indicated.

Results

Associations between SNPs in the interferon gamma signaling pathway genes and NSCLC 
survival

The overall flowchart of the present study is shown in Figure 1. Basic characteristics of 

1,185 NSCLC patients from the PLCO trial and 984 NSCLC patients from the HLCS study 

have been described in Supplementary Table 1 [28]. After multiple testing correction by 

BFDP≤0.80, we identified 340 SNPs that were significantly associated with NSCLC OS 

(P<0.05), of which 48 SNPs in two genes remained significant after further replication by 

the HLCS genotyping dataset. Subsequently, we performed a combined-analysis of the 

PLCO and HLCS datasets for these newly identified SNPs. As shown in Table 1, three 

representative SNPs were determined after considering the LD among the SNPs, one SNP in 

ELP2 and two SNPs in PIAS1, were found to be associated with a better survival, without 

heterogeneity observed between the two datasets. Other 45 SNPs in high LD (>0.80) with 

these three SNPs in the same genes are presented in Supplemental Table 5; these 45 SNPs 

also feature the same directionality in terms of survival (Supplementary Table 6).

Independent SNPs associated with NSCLC survival in the PLCO dataset

When the three validated SNPs were included in the multivariate stepwise Cox model for the 

PLCO dataset only (because the HLCS study dataset did not have individual genotyping 

data), two SNPs remained independently and significantly associated with survival, even 

after adjustment for additional 15 previously reported SNPs significantly associated with 

NSCLC survival from the same PLCO GWAS dataset (Table 2). The results of selected 

SNPs from PLCO and HLCS are summarized in two separate Manhattan plots 

(Supplementary Figure 2a and Supplementary Figure 2b), respectively, and the regional 

association plot (http://locuszoom.org/) of each SNP is shown in Supplementary Figure 3 

[45].

In the PLCO dataset with complete adjustment for available covariates, patients with the 

protective ELP2 rs7242481 A (i.e., GA+AA) allele or PIAS1 rs1049493 C (i.e., TC+CC) 

allele had a better OS and DSS (Ptrend=0.004 and Ptrend=0.009 for ELP2 rs7242481 A, 
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respectively; Ptrend=0.006 and Ptrend=0.023 PIAS1 rs1049493 C, respectively) (Table 3). In 

comparison with the GG risk genotype, the ELP2 rs7242481 GA genotype was associated 

with a decreased risk of death (HR=0.85, 95% CI=0.73–0.99, P=0.033 for OS and HR=0.84 

95% CI=0.72–0.99, P=0.033 for DSS), and the ELP2 rs7242481 AA genotype was also 

associated with a decreased risk of death (HR=0.74, 95% CI=0.59–0.94, P=0.012 for OS 

and HR=0.76 95% CI=0.59–0.97, P=0.026 for DSS). Similarly, in comparison with the TT 

risk genotype, the PIAS1 rs1049493 TC genotype was associated with a non-significant 

better OS and DSS (HR=0.92, 95% CI=0.78–1.0, P=0.303 and HR=0.91 95% CI=0.76–1.08, 

P=0.285, respectively), and the PIAS1 rs1049493 CC genotype was associated with a 

significantly better OS and DSS (HR=0.75, 95% CI=0.61–0.91, P=0.005 and HR=0.78 95% 

CI=0.63–0.97, P=0.022, respectively) (Table 3).

Combined effects of the two independent SNPs in the PLCO dataset

We first combined the significant protective genotypes (i.e., ELP2 rs7242481 TA+AA and 

PIAS1 rs1049493 CC into a genetic score as the number of protective genotypes (NPGs). As 

shown in Table 3, the increased genetic score of the NPGs was associated with a better 

survival in the multivariate analysis in the PLCO dataset (Ptrend<0.0004 for OS and 

Ptrend=0.002 for DSS). When we dichotomized all the patients into genetic scores of 0–1 and 

2 NPGs, the 2-score group had a significantly better survival (HR=0.64, 95% CI=0.52–0.80, 

P<0.0001 for OS and HR=0.66, 95% CI=0.53–0.83, P=0.0004 for DSS), in comparison with 

the 0–1 score group. As shown in Table 3, the increased genetic score of the NPAs was 

associated with a better survival in the multivariate analysis in the PLCO dataset 

(Ptrend<0.0001 for OS and Ptrend=0.0006 for DSS). When we dichotomized all the patients 

into genetic scores of 0–1 and 2–4 NPAs, the 2–4 score group had a significantly better 

survival (HR=0.77, 95% CI=0.67–0.89, P=0.0004 for OS and HR=0.79, 95% CI=0.68–0.91, 

P=0.002 for DSS), in comparison with the 0–1 score group. Because the NPAs was better 

than NPGs to evenly dichotomize the patients, we used NPAs to facilitate the stratification 

analysis. We further presented KM survival curves to depict these associations between 

protective alleles and NSCLC OS and DSS (Figure 2a–2d).

Stratified analysis for associations between NPAs and NSCLC survival

In the stratified analysis by age, sex, smoking status, histology, tumor stage, chemotherapy, 

radiotherapy and surgery in the PLCO dataset, there were no obvious differences in survival, 

nor interactions, between the strata of these covariates observed in either NSCLC OS or DSS 

(P>0.05 for all strata, Supplementary Table 4).

The ROC curves and time dependent AUC

We assessed the predictive value of the two SNPs with time-dependent AUC and ROC 

curves at the 60th month (or five-year survival) in the PLCO dataset. Compared with the 

model of covariates including age, sex, smoking status, histology, tumor stage, 

chemotherapy, radiotherapy, surgery and the first four principal components, the time-

dependent AUC plot with addition of the two independent SNPs did not improve prediction 

performance of the model at the 60th month. On the other hand, when we performed the 

time-dependent AUC and ROC curves at the 120th month and combined the two independent 

SNPs with the 15 previously published SNPs using the same dataset, the prediction 
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performance of the model was improved significantly for both OS and DSS. The AUCs 

changed from 87.42% to 89.81% (P=0.024) for OS and from 87.95% to 90.46% (P=0.014) 

for DSS (Supplementary Figure 7a and 7b).

The eQTL analysis

In the RNA-Seq data of lymphoblastoid cell lines from 373 European descendants available 

from the 1000 Genomes Project, the ELP2 rs7242481 A allele showed a significant 

correlation with increased mRNA expression levels of ELP2 in all additive, dominant and 

recessive models (P=9.8×10−5, P=0.005 and P<2×10−4, respectively; Figure 3a, 

Supplementary Figure 8a and 8b); however, there was no significant correlation between the 

PIAS1 rs1049493 C allele and mRNA expression levels of PIAS1 in all three genetic models 

(Figure 3d, Supplementary Figure 8c and 8d). Then, we performed eQTL by using the data 

of 369 whole blood samples and 383 normal lung tissue from the GTEx project and found 

that the rs7242481 A allele remained significantly correlated with a higher expression level 

of ELP2 in whole blood samples but not in normal lung tissues (P=2.63×10−15 and P=0.141, 

respectively) (Figure 3c and 3b). The rs1049493 C allele was correlated with a lower 

expression level of PIAS1 in both normal lung tissues and whole blood (P=0.008 and 

P=0.0002) (Figure 3e and 3f). Finally, we performed functional prediction for these two 

independent SNPs utilizing three online bioinformatics tools: SNPinfo, RegulomeDB, and 

HaploReg to predict their biological functions as summarized in Supplementary Figure 4 

and Supplementary Table 7.

Differential mRNA expression analysis in target tissues

As shown in Supplementary Figure 5a–5c, in comparison with adjacent normal tissues, 

tumor tissues had a higher mRNA expression level of ELP2 in lung adenocarcinoma 

(LUAD), lung squamous cell carcinoma (LUSC), and LUAD+LUSC samples combined 

(P<0.001, P<0.001 and P<0.001, respectively). In the UALCAN (http://ualcan.path.uab.edu) 

database, the mRNA expression levels of ELP2 were also significantly higher in tumor 

tissues in LUAD (P<0.001) and in LUSC (P<0.001) (Supplementary Figure 5d and 5e). A 

higher expression level of ELP2 was associated with improved NSCLC survival as shown by 

a KM survival curve of lung cancer constructed online (http://kmplot.com/analysis/

index.php?p=service&cancer=lung). On the other hand, as shown in Supplementary Figure 

6, compared with adjacent normal tissues, tumor tissues had a lower mRNA expression level 

of PIAS1 in LUAD (P<0.0001), LUSC (P<0.001) and LUAD+LUSC combined (P<0.001). 

In the UALCAN (http://ualcan.path.uab.edu) database, the results were also similar, in 

which the mRNA expression levels of PIAS1 in tumor tissues were lower in both LUAD 

tissues (P<0.001) and LUSC tissues (P<0.001) in comparison with normal tissues. However, 

a higher expression level of PIAS1 mRNA was associated with a better NSCLC survival in 

the TCGA database.

Discussion

In the present study, we identified and validated two potentially functional and independent 

SNPs (i.e., ELP2 rs7242481 and PIAS1 rs1049493) that were significantly associated with 

the survival of NSCLC in Caucasian populations. We also found that ELP2 rs7242481 A 
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allele was significantly associated with an increased mRNA expression of ELP2 in 373 

lymphoblastoid cell lines from the 1000 Genomes Project and an increased mRNA 

expression level in 369 whole blood samples from the GTEx project. Additionally, we also 

found that PIAS1 rs1049493 C allele was significantly associated with a lower mRNA 

expression level of PIAS1 in 383 normal lung tissues and 369 whole blood samples from the 

GTEx project. These results were consistent with those of the gene expression analysis 

between paired tumor and adjacent normal tissue samples and survival analysis in the TCGA 

database. It is worth noting that a significantly higher mRNA expression level of ELP2 was 

found in tumor tissues in the TCGA database, yet a higher expression level of ELP2 was 

associated with a better survival using the same data.

ELP2, or STAT3-interacting protein 1 (STATIP1), is located on chromosome 18 and is 

responsible for encoding the protein ELP2 (elongator protein 2) that makes up the core 

subunit of the elongator complex, a histone acetyltransferase complex that is highly 

associated with RNA polymerase II and various cellular activities [36,37]. In Homo sapiens, 

ELP2 is mostly known as STATIP1 or StIP1, a well-known STAT3 interactor that is involved 

in regulating cytokine signal transduction, and an overexpression of STATIP1 inhibits 

STAT3 activation and nuclear translocation [38]. Studies in the past have also identified 

STAT3 as a converging point of various oncogenic pathways, and activated STAT3 may 

trigger tumor progression by directly regulating oncogenic gene expression as well as 

promote cancer growth via immunosuppression through the inhibition of immune mediators 

such as pro-inflammatory cytokines [39,40].

In the present study, we found that the rs7242481 A allele was significantly associated with 

an increased mRNA expression level of ELP2 in lymphoblastoid cell lines and whole blood 

tissues; this finding is consistent with the results from other studies, suggesting that the 

novel genetic variant rs7242481 A allele may affect survival of NSCLC patients through 

increasing ELP2 mRNA expression, likely inhibiting oncogenic effects of the activated 

STAT3 [39,40]. Additionally, we found that mRNA expression levels of ELP2 in tumor 

tissues from the TCGA database were higher than in adjacent normal tissues in both paired 

and non-paired samples and were associated with a better survival of NSCLC. These suggest 

that overexpression of ELP2 may have occurred as part of our innate immune response to 

alleviate STAT3 inhibitory effect on immune-stimulating cytokines, resulting in a more rapid 

activation of the innate immune system [38,39]. According to the ENCODE database, ELP2 
rs7242481G>A is located in a DNase I hypersensitive site with highly observable levels of 

histone modifications in H3K4Me3 and H3K27Ac acetylation, suggesting that the ELP2 
rs7242481 G>A SNP may lead to significantly enhanced transcriptional activities of ELP2.

PIAS1, or protein inhibitor of the activated STAT1, is located on chromosome 15 and is 

responsible for encoding the E3 SUMO-protein ligase enzyme, which plays a central role as 

a transcriptional coregulator of STAT1 [41]. Recent studies suggest that the deregulation in 

SUMO (small ubiquitin-like modifier)-related pathways may lead to oncogenic 

transformation of tumor suppressors such as PML (promyelocytic leukemia protein) [41,42]. 

An interesting finding is that most of the published molecular and functional studies have 

proposed or identified PIAS1 as an oncogene in NSCLC and other malignant tumors, 

demonstrating that PIAS1 plays an essential role in degrading PML and that the expression 
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of PML and PIAS1 are inversely correlated in NSCLC cell lines [42]. However, results 

obtained from the TCGA database suggest that PIAS1 may be a potential suppressor gene in 

NSCLC, because its expression was higher in adjacent normal tissues than in tumor tissues 

in both paired and non-paired samples with additional evidence that a higher expression 

levels of PIAS1 to be associated with a better survival. Therefore, additional mechanistic 

studies are needed to unravel these discrepancies in the association between PIAS1 
expression levels and NSCLC survival. A potential explanation to the difference in results 

between TCGA analysis and evidence from studies that support the oncogenic role of PIAS1 
[42] might be because that the tumor tissues outlined in TCGA also contain fibroblast cells 

and immune cells, which may alter the resulting observation.

In the present study, we showed that the PIAS1 rs1049493 C allele was associated with 

lower mRNA expression levels of PIAS1 in whole blood and normal lung tissues, suggesting 

that the novel rs1049493 C variant allele may affect survival of NSCLC by lowering PIAS1 
mRNA expression levels; however, it must be noted that the directionality of PIAS1 
rs1049493 C allele yielded mixed results between mRNA levels of PIAS1 and NSCLC 

survival. Mixed observations on PIAS1 and cancer survival were also observed in other 

literatures as well as in the KM Plotter for combined histology of lung cancer 

(Supplementary Figure 6f) [42,46]. As a result, the directionality and mechanisms of PIAS1 
in carcinogenesis and patient survival warrant additional molecular validation. According to 

the ENCODE database, PIAS1 rs1049493 T>C is located in a DNase I hypersensitive site 

with observable levels of histone modifications in H3K4Me1 acetylation, suggesting that the 

PIAS1 rs1049493 T>C SNP may lead to altered transcriptional activities of PIAS1.

Currently, there are conflicting outcomes in the IFNγ signaling: to increase an innate 

immune cell recruitment and type I T helper cell activation but to induce an increased 

tolerant molecule (i.e., PD-L1) expression in tumor cells to promote immune evasion [11,43, 

44]. Also, further functional investigation into the mechanisms of the ELP2 rs7242481 and 

PIAS1 rs1049493 SNPs are warranted. Furthermore, since both the discovery and 

replication datasets were from Caucasian populations, our findings may not be generalizable 

to other ethnic populations. It is also worth noting that the discovery dataset and replication 

dataset had some differences in distribution of baseline characteristics, leading to fewer 

significant SNPs being validated. Although the PLCO discovery dataset had a relatively 

large number of patients, the number of patients in some subgroups were still relatively 

small, which could cause a reduced statistical power in detecting potential weak effects of 

other SNPs. Furthermore, genetic mutation detection and tumor mutation burden [47] have 

been considered important for developing targeted therapies as the first-line treatments for 

cancer (i.e., PD-1 or PD-L1 inhibitors) in precision medicine as well as in the prediction of 

primary resistance to immunotherapy, but such treatment information was not available for 

further analysis in the present study. For the translational significance, any novel biomarkers 

for prognosis, such as the SNPs identified in the present study, would be clinically 

informative, if their effects on tumor phenotypes of NSCLC, such as tumor 

microenvironment [48], could be evaluated. This suggests that future studies need to collect 

such important clinical information in the study design, which could establish the 

associations between these IFNγ-related SNPs and immunotherapy-related NSCLC 

survival.
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The observed directionality of mRNA levels of PIAS1 and NSCLC survival appears to be 

inconsistent in the biological plausibility, likely due to the diversity of tissues and different 

patients used in the analysis, as observed in previously published studies [42,46]; therefore, 

the expression data should be obtained from appropriate and relevant tissue types of the 

same study populations to avoid discrepant results. Our findings may not have immediate 

clinical utility, because the magnitude of the HR for clinical significance needs to be much 

higher and well-verified compared with those from GWAS studies of survival. Once further 

validated, however, these findings may allow researchers to explore potentially functional 

SNPs in more rigorous experimental investigation for their biological plausibility and 

clinical utility.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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PD-1 Programmed cell death protein 1

PD-L1 Programmed death-ligand 1

SNPs Single-nucleotide polymorphisms

GWAS Genome-Wide Association Study

PLCO the Prostate, Lung, Colorectal and Ovarian Cancer Screening Trial

HLCS Harvard Lung Cancer Susceptibility Study

OS Overall survival

DSS Disease-specific survival

LD Linkage disequilibrium

BFDP Bayesian false discovery probability

eQTL Expression quantitative trait loci

TCGA the Cancer Genome Atlas

ROC Receiver operating characteristics

ELP2 Elongator acetyltransferase complex subunit 2

STATIP1 STAT3-interacting protein 1

STAT1 Signal transducer and activator of transcription 1

PIAS1 Protein inhibitor of activated STAT1

PML promyelocytic leukemia protein

EAF Effect allele frequency

HR Hazards ratio

CI Confidence interval

AUC Area under the receiver operating characteristics curve

References

[1]. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. CA Cancer J Clin 2019;69:7–34. 
[PubMed: 30620402] 

[2]. Molina JR, Yang P, Cassivi SD, Schild SE, Adjei AA. Non-small cell lung cancer: epidemiology, 
risk factors, treatment, and survivorship. Mayo Clin Proc 2008;83:584–94. [PubMed: 18452692] 

[3]. Siegel RL, Miller KD. Jemal A. Cancer Statistics, 2017. CA Cancer J Clin 2017;67:7–30. 
[PubMed: 28055103] 

[4]. Lemjabbar-Alaoui H, Hassan OU, Yang YW, Buchanan P. Lung cancer: Biology and treatment 
options. Biochim Biophys Acta 2015;1856:189–210. [PubMed: 26297204] 

Zhao et al. Page 11

Cancer Epidemiol Biomarkers Prev. Author manuscript; available in PMC 2021 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



[5]. Zienolddiny S, Skaug V. Single nucleotide polymorphisms as susceptibility, prognostic, and 
therapeutic markers of nonsmall cell lung cancer. Lung Cancer 2012;3:1–14. [PubMed: 
28210120] 

[6]. Koury j, Lucero M, Cato C, Chang L, Geiger J, Henry D, et al. Immunotherapies: Exploiting the 
Immune System for Cancer Treatment. J Immunol Res 2018;2018:9585614. [PubMed: 
29725606] 

[7]. Pandya PH, Murray ME, Pollok KE, Renbarger JL. The Immune System in Cancer Pathogenesis: 
Potential Therapeutic Approaches. J Immunol Res 2016;2016:4273943. [PubMed: 28116316] 

[8]. Mizukoshi E, Kaneko S, Telomerase-Targeted Cancer Immunotherapy. Int J Mol Sci 2019;20.

[9]. Wang RF, Wang HY. Immune targets and neoantigens for cancer immunotherapy and precision 
medicine. Cell Res 2017;27:11–37. [PubMed: 28025978] 

[10]. Gong J, Chehrazi-Raffle A, Reddi S, Salgia R. Development of PD-1 and PD-L1 inhibitors as a 
form of cancer immunotherapy: a comprehensive review of registration trials and future 
considerations. J Immunother Cancer 2018;6:8. [PubMed: 29357948] 

[11]. Borcoman E, Kanjanapan Y, Champiat S, Kato S, Servois V, Kurzrock R, et al. Novel patterns of 
response under immunotherapy. Ann Oncol 2019;30:385–96. [PubMed: 30657859] 

[12]. Fridley BL, Biernacka JM. Gene set analysis of SNP data: benefits, challenges, and future 
directions. Eur J Hum Genet 2011;19:837–43. [PubMed: 21487444] 

[13]. Witte JS. Genome-wide association studies and beyond. Annu Rev Public Health 2010;31:9–20. 
[PubMed: 20235850] 

[14]. Gallagher MD, Chen-Plotkin AS. The Post-GWAS Era: From Association to Function. Am J 
Hum Genet 2018;102:717–30. [PubMed: 29727686] 

[15]. Zaidi MR, Merlino G. The two faces of interferon-gamma in cancer. Clin Cancer Res 
2011;17:6118–124. [PubMed: 21705455] 

[16]. Lloyd CM, Hessel EM. Functions of T cells in asthma: more than just T(H)2 cells. Nat Rev 
Immunol 2010;10:838–48. [PubMed: 21060320] 

[17]. Ivashkiv LB, Donlin LT. Regulation of type I interferon responses. Nat Rev Immunol 
2014;14:36–49. [PubMed: 24362405] 

[18]. Tau G, Rothman P. Biologic functions of the IFN-gamma receptors. Allergy 1999;54:1233–51. 
[PubMed: 10688427] 

[19]. Castro F, Cardoso AP, Goncalves RM, Serre K, Oliveira MJ. Interferon-Gamma at the Crossroads 
of Tumor Immune Surveillance or Evasion. Front Immunol 2018;9:847. [PubMed: 29780381] 

[20]. Hocking WG, Hu P, Oken MM, Winslow SD, Kvale PA, Prorok PC, et al. Lung cancer screening 
in the randomized Prostate, Lung, Colorectal, and Ovarian (PLCO) Cancer Screening Trial. J 
Natl Cancer Inst 2010;102:722–31. [PubMed: 20442215] 

[21]. Oken MM, Marcus PM, Hu P, Beck TM, Hocking W, Kvale PA, et al. Baseline chest radiograph 
for lung cancer detection in the randomized Prostate, Lung, Colorectal and Ovarian Cancer 
Screening Trial. J Natl Cancer Inst 2005;97:1832–39. [PubMed: 16368945] 

[22]. Mailman MD, Feolo M, Jin Y, Kimura M, Tryka K, Bagoutdinov R, et al. The NCBI dbGaP 
database of genotypes and phenotypes. Nat Genet 2007;39: 1181–86. [PubMed: 17898773] 

[23]. Tryka KA, Hao L, Sturcke A, Jin Y, Wang ZY, Ziyabari L, et al. NCBI’s Database of Genotypes 
and Phenotypes: dbGaP. Nucleic Acids Res 2014;42:975–79.

[24]. Zhai R, Yu X, Wei Y, Su L, Christiani DC. Smoking and smoking cessation in relation to the 
development of co-existing non-small cell lung cancer with chronic obstructive pulmonary 
disease. Int J Cancer 2014;134:961–70. [PubMed: 23921845] 

[25]. Aulchenko YS, Ripke S, Isaacs A, van Duijn CM. GenABEL: an R library for genome-wide 
association analysis. Bioinformatics 2007;23:1294–96. [PubMed: 17384015] 

[26]. Park JH, Geum DI, Eisenhut M, van der Vliet HJ, Shin JI. Bayesian statistical methods in genetic 
association studies: Empirical examination of statistically non-significant Genome Wide 
Association Study (GWAS) meta-analyses in cancers: A systematic review. Gene 2019;685:170–
78. [PubMed: 30416053] 

[27]. Wakefield J A Bayesian measure of the probability of false discovery in genetic epidemiology 
studies. Am J Hum Genet 2007;81:208–27. [PubMed: 17668372] 

Zhao et al. Page 12

Cancer Epidemiol Biomarkers Prev. Author manuscript; available in PMC 2021 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



[28]. Tang D, Zhao YC, Qian D, Liu H, Luo S, Patz EF, et al. Novel genetic variants in HDAC2 and 
PPARGC1A of the CREB-binding protein pathway predict survival of nonsmall cell lung cancer. 
Mol Carcinog 2020;59:104–15. [PubMed: 31713888] 

[29]. Chambless LE, Diao G. Estimation of time-dependent area under the ROC curve for long-term 
risk prediction. Stat Med 2006;25:3474–86. [PubMed: 16220486] 

[30]. Consortium GT, Human genomics. The Genotype-Tissue Expression (GTEx) pilot analysis: 
multitissue gene regulation in humans. Science 2015;348:648–60. [PubMed: 25954001] 

[31]. Lappalainen T, Sammeth M, Friedlander MR, Hoen PA, Monlong J, Rivas MA, et al. 
Transcriptome and genome sequencing uncovers functional variation in humans. Nature 
2013;501:506–11. [PubMed: 24037378] 

[32]. Xu Z, Taylor JA. SNPinfo: integrating GWAS and candidate gene information into functional 
SNP selection for genetic association studies. Nucleic Acids Res 2009;37:600–05.

[33]. Boyle AP, Hong EL, Hariharan M, Cheng Y, Schaub MA, Kasowski M, et al. Annotation of 
functional variation in personal genomes using RegulomeDB. Genome Res 2012;22:1790–97. 
[PubMed: 22955989] 

[34]. Ward LD, Kellis M. HaploReg v4: systematic mining of putative causal variants, cell types, 
regulators and target genes for human complex traits and disease. Nucleic Acids Res 
2016;44:877–81.

[35]. Wang Y, Liu H, Ready NE, Su L, Wei Y, Christiani DC, et al. Genetic variants in ABCG1 are 
associated with survival of nonsmall-cell lung cancer patients. Int J Cancer 2016;138:2592–2601. 
[PubMed: 26757251] 

[36]. Dong C, Lin Z, Diao W, Li D, Chu X, Wang Z, et al. The Elp2 subunit is essential for elongator 
complex assembly and functional regulation. Structure 2015;23:1078–86. [PubMed: 25960406] 

[37]. Winkler GS, Petrakis TG, Ethelberg S, Tokunaga M, Erdjument-Bromage H, Tempst P, et al. 
RNA polymerase II elongator holoenzyme is composed of two discrete subcomplexes. J Biol 
Chem 2001;276:32743–49. [PubMed: 11435442] 

[38]. Collum RG, Brutsaert S, Lee G, Schindler C. A Stat3-interacting protein (StIP1) regulates 
cytokine signal transduction. Proc Natl Acad Sci U S A 2000;97:10120–25. [PubMed: 10954736] 

[39]. Wang T, Niu G, Kortylewski M, Burdelya L, Shain K, Zhang S, et al. Regulation of the innate 
and adaptive immune responses by Stat-3 signaling in tumor cells. Nat Med 2004;10:48–54. 
[PubMed: 14702634] 

[40]. Wang Y, Shen Y, Wang S, Shen Q, Zhou X. The role of STAT3 in leading the crosstalk between 
human cancers and the immune system. Cancer Lett 2018;415:117–28. [PubMed: 29222039] 

[41]. Lee JS, Choi HJ, Baek SH. Sumoylation and Its Contribution to Cancer. Adv Exp Med Biol 
2017;963:283–98. [PubMed: 28197919] 

[42]. Rabellino A, Carter B, Konstantinidou G, Wu SY, Rimessi A, Byers LA, et al. The SUMO E3-
ligase PIAS1 regulates the tumor suppressor PML and its oncogenic counterpart PML-RARA. 
Cancer Res 2012;72:2275–84. [PubMed: 22406621] 

[43]. Ni L, Lu J. Interferon gamma in cancer immunotherapy. Cancer Med 2018; 7:4509–16. [PubMed: 
30039553] 

[44]. Qing Y, Stark GR. Alternative activation of STAT1 and STAT3 in response to interferon-gamma. 
J Biol Chem 2004;279:41679–85. [PubMed: 15284232] 

[45]. Prium R, Welch R. LocusZoom: regional visualization of genome-wide association scan results. 
Bioinformatics 2010;26:2336–37. [PubMed: 20634204] 

[46]. Chanda A, Chan A, Deng L, Kornaga EN, Enwere EK, Morris DG et al. Identification of the 
SUMO E3 ligase PIAS1 as a potential survival biomarker in breast cancer. PLoS ONE 
2017;12:e0177639. [PubMed: 28493978] 

[47]. Berland L, Heeke S, Humbert O, Macoco A, Long-Mira E, Lasalle S, et al. Current views on 
tumor mutation burden in patients with non-small cell lung cancer treated by immune checkpoint 
inhibitors. J Thoracic Dis 2019;11:71–80.

[48]. Graves E, Maity A, Le Q. The Tumor Microenvironment in Non-small Cell Lung Cancer. Semin 
Radiat Oncol 2010;20:156–163. [PubMed: 20685578] 

Zhao et al. Page 13

Cancer Epidemiol Biomarkers Prev. Author manuscript; available in PMC 2021 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1: Study flowchart: The overall procedures of the present study.
Abbreviations: SNPs, single-nucleotide polymorphisms; MAF: minor allelic frequency; 

HWE: Hardy-Weinberg Equilibrium; PLCO, The Prostate, Lung, Colorectal and Ovarian 

Cancer Screening Trial; HLCS, the Harvard Lung Cancer Susceptibility Study; NSCLC, 

non-small cell lung cancer; ELP2, elongator acetyltransferase complex subunit 2; PIAS1, 

protein inhibitor of activated STAT1.
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Figure 2: Prediction of survival with combined protective alleles
Abbreviations: OS, overall survival; DSS, disease-specific survival; NPA: number of 

protective alleles; PLCO, The Prostate, Lung, Colorectal, and Ovarian Cancer Screening 

Trial.

Kaplan-Meier (KM) survival curves for NSCLC patients of two validated SNPs and 

combined protective alleles in the PLCO trial. (a) by 0, 1 and 2 protective alleles in OS, (b) 

by 0, 1 and 2 protective alleles in DSS, (c) Dichotomized groups of the NPA into 0–1 and 2–

4 in OS, and (d) Dichotomized groups of the NPA into 0–1 and 2–4 in DSS from the PLCO 

trial.
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Figure 3: Correlation of genotypes with the mRNA expression levels of the corresponding genes
Abbreviations: eQTL, expression quantitative trait loci; GTEx, Genotype-Tissue Expression 

project; ELP2, elongator acetyltransferase complex subunit 2; PIAS1, protein inhibitor of 

activated STAT1.

eQTL analysis of the independent and significant SNPs associated with NSCLC survival. 

rs7242481 A allele is associated with a higher mRNA expression of ELP2 (a) in 373 

European samples from the 1000 Genomes Project and (c) in 369 genotyped whole blood 

samples, but not in (b) 383 genotyped normal lung tissues from the GTEx project; 

rs1049493 C allele was not significantly associated with an altered mRNA expression of 

PIAS1 (d) in 373 European samples from the 1000 Genomes Project, but is significantly 

associated with a decreased mRNA expression of PIAS1 (e) in 383 normal lung tissue and 

(f) 369 whole blood samples from the GTEx project.
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Table 1.

Associations of three significant SNPs with overall survival of patients with NSCLC in both discovery and 

validation datasets from two previously published GWASs

SNPs* Allele
a Gene

PLCO (n=1185) HLCS (n=984) Combined-analysis

FDR BFDP EAF
HR 
(95% 

CI)
b P 

b EAF
HR 
(95% 

CI)
c P 

c
P 

het
d

I 
2

HR 
(95% 

CI)
e P 

e

rs7242481 G>A ELP2
0.50 0.56

0.35 0.86 
(0.77–
0.95)

0.004 0.36 0.83 
(0.74–
0.93)

0.002 0.658 0 0.85 
(0.78–
0.92)

3.02×10−5

rs11071978 T>A PIAS1 0.50 0.72 0.36
0.86 
(0.78–
0.96)

0.006 0.34
0.82 
(0.72–
0.92)

0.001 0.529 0
0.84 
(0.77–
0.91)

2.34×10−5

rs1049493 T>C PIAS1 0.50 0.69 0.45
0.87 
(0.79–
0.96)

0.006 0.45
0.87 
(0.78–
0.96)

0.009 0.989 0
0.87 
(0.81–
0.93)

1.24×10−4

*
The other 45 SNPs in high LD (r2 >0.8) with these three SNPs are presented in Supplementary Table 5 and Supplementary Table 6.

Abbreviations: SNPs, single-nucleotide polymorphisms; NSCLC, non-small cell lung cancer; GWAS, genome-wide association study; PLCO, the 
Prostate, Lung, Colorectal and Ovarian cancer screening trial; HLCS, Harvard Lung Cancer Susceptibility Study; EAF, effect allele frequency; HR, 
hazards ratio; CI, confidence interval; FDR, false discovery rate; BFDP, Bayesian false discovery probability; LD, linkage disequilibrium;

a
Effect/reference allele;

b
Adjusted for age, sex, stage, histology, smoking status, chemotherapy, radiotherapy, surgery, PC1, PC2, PC3 and PC4;

c
Adjusted for age, sex, stage, histology, smoking status, chemotherapy, radiotherapy, surgery, PC1, PC2 and PC3;

d
Phet: P value for heterogeneity by Cochrane’s Q test;

e
Meta-analysis in the fix-effects model.
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Table 2.

Two indenpendent SNPs in a multivariate Cox proportional hazards regression analysis with adjustment for 

other covariates and 15 previously published SNPs for NSCLC in the PLCO Trial

Variables Category Frequency HR (95% CI) 
a

P 
a

HR (95% CI) 
b

P 
b

Age Continuous 1185 1.03 (1.02–1.05) <0.0001 1.04 (1.02–1.05) <0.0001

Sex Male 698 1.00 1.00

Female 487 0.80 (0.69–0.93) 0.004 0.78 (0.67–0.91) 0.002

Smoking status Never 115 1.00 1.00

Current 423 1.67 (1.26–2.26) 0.0004 1.94 (1.44–2.62) <0.0001

Former 647 1.64 (1.25–2.16) 0.0004 1.90 (1.42–2.52) <0.0001

Histology Adenocarcinoma 577 1.00 1.00

Squamous cell 285 1.20 (0.99–1.45) 0.057 1.25 (1.03–1.51) 0.025

others 323 1.32 (1.11–1.56) 0.002 1.37 (1.15–1.63) 0.0006

Tumor stage I-IIIA 655 1.00 1.00

IIIB-IV 528 2.94 (2.42–3.58) <0.0001 3.11 (2.55–3.79) <0.0001

Chemotherapy No 639 1.00 1.00

Yes 538 0.58 (0.48–0.69) <0.0001 0.58 (0.48–0.70) <0.0001

Radiotherapy No 762 1.00 1.00

Yes 415 0.95 (0.81–1.12) 0.526 0.94 (0.80–1.12) 0.497

Surgery No 637 1.00 1.00

Yes 540 0.21 (0.17–0.28) <0.0001 0.20 (0.15–0.26) <0.0001

ELP2 rs7242481 G>A GG/GA/AA 495/544/146 0.86 (0.78– 0.96) 0.007 0.86 (0.77– 0.96) 0.007

PIAS1 rs1049493 T>C TT/TC/CC 368/579/248 0.87 (0.79– 0.97) 0.009 0.89 (0.80– 0.99) 0.024

Abbreviations: SNP: single-nucleotide polymorphisms; NSCLC, non-small cell lung cancer; PLCO, the Prostate, Lung, Colorectal and Ovarian 
cancer screening trial; HLCS, Harvard Lung Cancer Susceptibility Study; HR: hazards ratio; CI: confidence interval.

a
Adjusted for age, sex, tumor stage, histology, smoking status, chemotherapy, radiotherapy, surgery, and PC1, PC2, PC3, PC4;

b
Other 15 published SNPs were included for further adjustment: five SNPs in PMID: 27557513; one SNP in PMID: 29978465; two SNPs in 

PMID: 30259978; two SNPs in PMID: 26757251; three SNPs in PMID: 30650190; and two SNPs in PMID: 30989732.
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Table 3.

Associations between the number of protective alleles of two independent SNPs with OS and DSS of NSCLC 

in the PLCO Trial

Genotypes/Alleles Frequency
a OS

b
DSS

b

Death (%) HR (95% CI) P Death (%) HR (95% CI) P

ELP2 rs7242481 G>A

 GG 491 336 (68.43) 1.00 306 (62.32) 1.00

 GA 538 361 (67.10) 0.85 (0.73–0.99) 0.033 318 (59.11) 0.84 (0.72–0.99) 0.033

 AA 146 92 (63.01) 0.74 (0.59–0.94) 0.012 85 (58.22) 0.76 (0.59–0.97) 0.026

 Trend test 0.004 0.009

 Dominant

 GG 491 336 (68.43) 1.00 306 (62.32) 1.00

 GA+AA 684 453 (66.23) 0.82 (0.71–0.95) 0.008 403 (58.92) 0.82 (0.81–0.96) 0.011

PIAS1 rs1049493 T>C

 TT 356 250 (70.22) 1.00 225 (63.20) 1.00

 TC 571 377 (66.02) 0.92 (0.78–1.08) 0.303 334 (58.49) 0.91 (0.76–1.08) 0.285

 CC 248 162 (65.32) 0.75 (0.61–0.91) 0.005 150 (60.48) 0.78 (0.63–0.97) 0.022

 Trend test 0.006 0.023

 Dominant

 TT 356 250 (70.22) 1.00 225 (63.20) 1.00

 TC+CC 819 539 (65.81) 0.86 (0.74–1.00) 0.053 484 (59.10) 0.87 (0.74–1.02) 0.082

NPG
c

 0 398 274 (68.84) 1.00 249 (62.06) 1.00

 1 622 415 (66.72) 0.94 (0.81–1.10) 0.424 371 (59.65) 0.95 (0.81– 1.12) 0.566

 2 155 100 (64.52) 0.62 (0.49–0.79) <0.0001 91 (58.71) 0.64 (0.50– 0.83) 0.001

 Trend test 0.0004 0.002

Dichotomized NPG

 0–1 1020 689 (67.6) 1.00 618 (60.59) 1.00

 2 155 100 (64.5) 0.64 (0.52–0.80) <0.0001 91 (58.71) 0.66 (0.53–0.83) 0.0004

NPA
d

 0 140 100 (71.43) 1.00 88 (62.86) 1.00

 1 431 295 (68.45) 1.03 (0.82–1.30) 0.796 269 (62.41) 1.08 (0.84–1.37) 0.561

 2 379 248 (65.44) 0.85 (0.68–1.08) 0.189 222 (58.58) 0.89 (0.69–1.14) 0.355

 3 192 120 (62.50) 0.74 (0.56–0.97) 0.028 110 (57.29) 0.79 (0.59–1.05) 0.103

 4 33 21 (63.64) 0.51 (0.31–0.82) 0.005 19 (57.58) 0.53 (0.32–0.81) 0.013

 Trend test <0.0001 0.0006

Dichotomized NPA

 0–1 571 395 (69.18) 1.00 357 (62.52) 1.00

 2–4 604 389 (64.40) 0.77 (0.67–0.89) 0.0004 351 (58.11) 0.79 (0.68– 0.91) 0.002

Abbreviations: SNP, single nucleotide polymorphism; NSCLC, non-small cell lung cancer; PLCO, Prostate, Lung, Colorectal and Ovarian cancer 
screening trial; HR, hazards ratio; CI, confidence interval; OS, overall survival; DSS, disease-specific survival. NPG, number of protective 
genotypes; NPA: number of protective alleles.
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a
10 missing date were excluded;

b
Adjusted for age, sex, smoking status, histology, tumor stage, chemotherapy, surgery, radiotherapy and principal components;

c
Protective genotypes were ELP2 rs7242481 GA+AA and PIAS1 rs1049493 TC+CC;

d
Protective alleles were ELP2 rs7242481_A and PIAS1 rs1049493_C.
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