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Summary

Genome-wide mapping of chromatin interactions at high-resolution remains experimentally and 

computationally challenging. Here we used a low-input “easy Hi-C” protocol to map the 3D 

genome architecture in human neurogenesis and brain tissues, and also demonstrated that a 

rigorous Hi-C bias-correction pipeline (HiCorr) can significantly improve the sensitivity and 

robustness of Hi-C loop identification at sub-TAD level, especially the enhancer-promoter (E-P) 

interactions. We used HiCorr to compare the high-resolution maps of chromatin interactions from 

10 tissue- or cell-types with a focus on neurogenesis and brain tissues. We found that dynamic 

chromatin loops are better hallmarks for cellular differentiation than compartment switching. 

HiCorr allowed direct observation of cell type- and differentiation-specific E-P aggregates 

spanning large neighborhoods, suggesting a mechanism that stabilizes enhancer contacts during 

development. Interestingly, we concluded that Hi-C loop outperforms eQTL in explaining 

neurological GWAS results, revealing a unique value of high-resolution 3D genome maps in 

elucidating the disease etiology.

Graphical Abstract
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eTOC Blurb

Lu et al. developed a rigorous Hi-C bias-correction pipeline to significantly improve the 

robustness of high-resolution chromatin interaction maps. With a new low-input “easy Hi-C” 

protocol, they mapped chromatin interactions in neural samples, defined cell type-specific 

enhancer loops and aggregates, and concluded that Hi-C outperforms eQTL in explaining GWAS 

results.

Keywords

Hi-C; eHi-C; HiCorr; bias correction; chromatin loop; enhancer-promoter interaction; 
transcription regulation; neurogenesis; GWAS

Introduction

Hi-C has transformed our understanding of mammalian genome organization (Denker and 

de Laat, 2016; Lieberman-Aiden et al., 2009). In the past decade, with increasing 

sequencing depth, a hierarchy of 3D genome structures, such as compartment A/B 

(Lieberman-Aiden et al., 2009), topological domains or topological associated domains 

(TADs) (Dixon et al., 2012; Nora et al., 2012) were revealed. More recently, kilobase 

resolution Hi-C analysis was achieved with sequencing depth at billion-read scale (Jin et al., 

2013; Rao et al., 2014). At this resolution, it is possible to discern specific chromatin loops 

between cis-regulatory elements. The information inherent in the 3D genome, especially 

chromatin loops, is critical for understanding the genetics of complex diseases (de Wit et al., 

2013; Jin et al., 2013; Kagey et al., 2010; Phillips-Cremins et al., 2013), such as the GWAS 

of cognitive traits and psychiatric disorders (Won et al., 2016; Wray et al., 2018).

However, kilobase-resolution Hi-C analysis is challenging both experimentally and 

computationally, especially when the amount of starting material is small. Experimentally, it 
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is important to develop low-input Hi-C protocols that can deliver high quality libraries for 

ultra-deep sequencing. Computationally, mapping chromatin interactions with Hi-C at high-

resolution suffers from the difficulty to correct the data biases, which leads to the low 

reproducibility or coverage in loop calling (Forcato et al., 2017). For example, the 

commonly used genome-wide loop caller HICCUPS yields ~104 CTCF loops (Rao et al., 

2014) that only explain a small number of GWAS hits; Several recent Hi-C studies called 

SNP/gene interactions with locus-focused algorithms (Rajarajan et al., 2018; Wang et al., 

2018; Won et al., 2016), but those algorithms are not suitable for unbiased genome-wide 

loop calling and usually have strong biases towards selected loci and a high false positive 

rate. Alternatively, other studies using targeted capture Hi-C, ChIA-PET, HiChIP, etc. (Fang 

et al., 2016; Javierre et al., 2016; Mifsud et al., 2015; Mumbach et al., 2017; Schoenfelder et 

al., 2015a; Zhang et al., 2013) reported many more E-P interactions, even though those 

methods are incomprehensive, biased due to target selection, and sometimes require even 

more biomaterials than Hi-C. Currently there is not a consensus whether Hi-C is a viable 

option to map E-P loops at sub-TAD level for transcription regulation and human disease 

studies.

To address these challenges, we developed a new genome-wide Hi-C bias-correction 

pipeline that substantially improved the mapping of sub-TAD chromatin loops at fragment 

resolution. We also developed a genome-wide all-to-all version of 4C (Simonis et al., 2006) 

protocol named “easy Hi-C” (eHi-C), which yields high complexity Hi-C libraries with 50–

100K cells as the starting material. With these new toolsets, we mapped chromatin loops in 

10 (e)Hi-C datasets and revealed new insights into the transcriptional regulation and the 

genetics of human diseases.

Results

Design and performance of eHi-C

In Hi-C, 5’ overhangs are created after restrictive DNA digestion (e.g. with HindIII) so that 

ligation junctions can be labeled with biotinylated nucleotides and eventually enriched in a 

pull-down step with streptavidin beads. However, this biotin-dependent strategy has intrinsic 

limitations that prevent the use of Hi-C if only low cell inputs are possible, because the 

efficiency of biotin incorporation is low (Belton et al., 2012), and the recovery rate of biotin-

labeled DNA from the pull-down procedure can be variable.

We therefore developed eHi-C to circumvent the limitations of Hi-C by using a biotin-free 

strategy to enrich ligation products (Figure 1A). The eHi-C protocol is essentially a genome-

wide “all-to-all” version of 4C (Simonis et al., 2006), and only involves a series of 

enzymatic reactions. eHi-C is also closely similar to ELP, another biotin-free genome-wide 

method developed several years ago for fission yeast 3D genome analysis (Tanizawa et al., 

2010). However, ELP does not remove contamination from several species of non-junction 

DNA, and < 4% of ELP reads represent proximity ligation events (Tanizawa et al., 2010). 

Our eHi-C protocol has several key improvements, which allows the generation of high-

yield libraries from small amount of input tissues (Figure S1A–J, more discussion in STAR 

Methods). We tested low-input eHi-C with 0.1 million IMR90 cells and found that the 

resulting DNA libraries had an equivalent complexity as published conventional Hi-C 
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libraries generated with 10 million IMR90 cells; the yield of cis-contacts from eHi-C 

libraries is also better than most of the published HindIII-based Hi-C libraries (Table S1 and 

Figure S1G–H). At low resolution, the contact heatmaps from Hi-C and eHi-C data are 

nearly identical showing the same compartment A/B (Lieberman-Aiden et al., 2009) and 

TAD (Dixon et al., 2012; Nora et al., 2012) structures (Figure 1B–C). The eHi-C method 

also demonstrated near perfect reproducibility with different sequencing depth, and between 

biological replicates in the compartment and TAD analyses (Figure S1I–J). Finally, since 

eHi-C has a distinct error source and bias structure from conventional Hi-C due to protocol 

differences (STAR Methods and Figure S1K–P), we have adjusted our data filtering and 

normalization method to unify the high-resolution analysis of both Hi-C and eHi-C data (see 

later discussion).

Billion-read scale 3D genome datasets in 10 cell- or tissue- types

Theoretically, the best Hi-C analysis resolution is determined by the restrictive endonuclease 

used (~2 kb for 6-base cutters, and ~200 bp for 4-base cutters). However, due to the lack of 

sequencing depth, high-resolution analysis at kilobase-scale is only achievable within 1–2 

Mb. We estimated that for 6-base cutters, ~200 million mid-range (within 2 Mb) cis-contacts 

are required for fragment-level analysis (5–10 kb resolution); usually this translates into ~ 1–

2 billion total non-redundant read pairs (STAR Methods).

We have successfully performed eHi-C in multiple cell- and tissue types. Five of our eHi-C 

datasets meet this sequencing depth requirement, including human induced pluripotent stem 

cells (hiPSCs), derived human neural progenitor cells (hNPCs), human neurons (hNeurons) 

and two postmortem brain tissues (fetal cerebrum and adult anterior temporal cortex) (Table 

S1). The hNPCs and hNeurons were derived from hiPSCs using a previous established 

forebrain neuron-specific differentiation protocol (Chiang et al., 2011; Wen et al., 2014) 

(Figure S2A–E). We also generated or obtained billion read-scale conventional Hi-C data for 

the H1 human embryonic stem cell (hESC), IMR90 (skin fibroblast) (Jin et al., 2013), 

GM12878 (B-Lymphocyte line) (Rao et al., 2014; Selvaraj et al., 2013), and two developing 

human cerebral cortex samples (cortical plate, fetal CP; and germinal zone, fetal GZ) (Won 

et al., 2016) (Table S1 and S2). Altogether, we have sufficient sequencing depth for 

fragment-resolution analysis in 10 tissue- or cell- types.

Genome compartmentalization is known to associate with cell identity and gene regulation 

(Bickmore and van Steensel, 2013; Dekker and Mirny, 2016; Dixon et al., 2015; Lieberman-

Aiden et al., 2009). We therefore performed compartment analysis to examine the overall 

cell-specificity of the Hi-C and eHi-C libraries. The analysis defines compartment A/B with 

the first principal component values (PC1) (Lieberman-Aiden et al., 2009), which represents 

the euchromatin/heterochromatin neighborhoods (Figure S2F). As expected, hiPSCs and 

hESCs have very similar correlation matrices despite the difference in the Hi-C protocol; 

neural differentiation causes significant changes of genome compartments, consistent with 

previous reports (Beagan et al., 2016; Krijger et al., 2016) (Figure S2F). Clustering analysis 

further showed a highly tissue- or cell-type specific genome compartmentalization (Figure 

1D). Notably, all brain/neuron related samples clustered together, and the three fetal brain 
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samples (two Hi-C and one eHi-C) formed the tightest sub-cluster (Figure 1D). These results 

demonstrate the consistency between eHi-C and Hi-C at the low resolution.

HiCorr improves the rigor of Hi-C bias-correction at high-resolution

Identifying chromatin loops, especially the E-P interactions at the sub-TAD level, remains a 

major bioinformatic challenge in Hi-C analysis, as it is increasingly difficult to correct 

biases when the resolution increases to single fragment level (Forcato et al., 2017). We 

previously developed a method to explicitly correct fragment size, distance, GC content and 

mappability biases, and to estimate the expected frequency between any two fragments (Jin 

et al., 2013; Yaffe and Tanay, 2011). Using joint function, this method can correct the 

interaction effects between parameters (e.g. the interaction between fragment size and 

distance). However, this explicit method does not correct biases from unknown sources. 

Alternative strategies, such as VC normalization (Lieberman-Aiden et al., 2009), ICE 

(Imakaev et al., 2012) and Knight-Ruiz (KR) matrix-balancing algorithms (Rao et al., 2014), 

correct both known and unknown biases by normalizing a “visibility” factor (usually the 

total read counts) for each locus, with or without iterations. However, these implicit methods 

assume all biases are hidden in the visibility factor, and the visibility biases are 

“factorizable” (i.e. the visibility between different loci are independent). These assumptions 

are questionable at high-resolution within short to mid-ranges (more discussion in STAR 

Methods). For example, implicit methods do not correct the biases from distance or from the 

size selection of ligation products during Hi-C or eHi-C library preparation (Figure S1O).

We developed a new strategy named HiCorr that corrects the implicit “visibility” factor after 

normalizing all aforementioned known biases, that consequently has the advantages of both 

explicit and implicit methods. HiCorr estimates expected values for every fragment pair and 

uses observed / expected ratios to determine chromatin interactions (Figure S3A, STAR 

Methods). Importantly, we computed the “visibility” only using the trans- reads. This is 

because normalizing cis- visibility has the risk of over-correction since many cis- reads 

come from chromatin loops (Figure 2A): we found that cis- visibility is higher at histone 

marked loci and repetitive elements. The latter is possibly due to the widespread 

contribution of transposable elements to the transcriptional regulatory sequences in the 

mammalian genome (Sundaram et al., 2014) (Figure 2B–D). From the HiCorr-corrected 

ratio heatmaps, we can directly observe discrete chromatin loops without the interference 

from local DNA packaging signal along the diagonal. Compared to other normalization 

methods, HiCorr significantly improves the sharpness of Hi-C heatmaps, highlights the sub-

TAD chromatin interactions, and does not have the over-correction problem at the short 

range (Figure 2E, compare the last column with other columns, more examples in Figure 

S3C). Notably, the implicit “visibility” correction step in HiCorr allows proper 

normalization of large copy number variants, which is difficult for explicit bias-correction 

strategy to correct, as exemplified by Hi-C data in the 22q11.2 heterozygous deletion cells 

(Zhang et al., 2018) (Figure S3B).

HiCorr reveals sub-TAD E-P interactions and aggregates robustly

Since HiCorr outputs ratio matrices representing the fold enrichment of Hi-C signal, we can 

conveniently call red pixels from the HiCorr-corrected heatmaps as chromatin interactions. 
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In this study, we use a simple method calling pixels with ratio greater than 2 and p value 

better than 0.001 as chromatin interactions, after excluding low-coverage pixels (STAR 

Methods). This intuitive pixel-level method does not make prior assumptions about the 

distance, shape, size, or density of chromatin loops. We found that with sequencing depth at 

150~200 million mid-range contacts, our method called 60~150K loop pixels with a high 

reproducibility at 40~60% between biological replicates, which is a significant improvement 

compared to the metrics of existing methods according to (Forcato et al., 2017) (Figure S4, 

more discussion in STAR Methods). Inadequate sequencing depth appears to be the major 

reason for non-reproduced loops, and most non-reproduced pixels can be recovered with 

lower threshold (Figure S4A–D). We therefore always preferred to call loop pixels after 

pooling multiple biological replicates to obtain highest possible read depth (Figure S4). In 

order to estimate the sensitivity of our approach, we compared our loop pixels in GM12878 

cells (conventional HindIII-based Hi-C) to an independent set of Hi-C loops identified by 

HICCUPS in the same cell line (MboI-based in situ Hi-C) (Rao et al., 2014). Our method 

recovered 65% of HICCUPS loops, and also identifies a lot more pixels on enhancers and 

promoters (Figure S4G–I, more detail in STAR Methods). Overall, CTCF mediated loops 

are stronger than H3K27Ac mediated loops (Figure S4J).

We next used an independent promoter capture Hi-C (pcHi-C) dataset in GM12878 cells as 

reference (Jung et al., 2019), and directly compare the performance of HiCorr and ICE/KR-

based bias-correction in recovering the promoter-centered loops. In this analysis, the 

ICE/KR-normalized heatmaps were further corrected by distance in order to be comparable 

to HiCorr heatmaps; pixels from the ICE/KR-distance-corrected heatmaps were ranked and 

compared to the pixels called from HiCorr heatmaps. The pcHi-C loops can be classified 

into promoter-promoter interactions (PP, the fragments of both ends were captured with 

promoter-targeting probes) and promoter-other interactions (PO, only one end of the 

interaction is promoter). We found that when the same number of pixels were called, HiCorr 
always recovered more pcHi-C interactions than ICE/KR-distance correction, especially at 

short-range (<100kb) and for PO interactions (Figure 2F). These results are consistent with 

our impression from the heatmaps that HiCorr better reveals sub-TAD E-P interactions at 

short-range (Figure 2E, S3C).

For example, Figure 3A shows an example of a GM12878-specific E-P aggregate, revealing 

discrete loop peaks with various shapes and sizes in the ratio heatmap. Four major 

enhancers/promoters (size ranging from 10kb to 30kb) appear to mediate these chromatin 

interactions, since the same CTCF binding sites in H1 and IMR90 are not sufficient to create 

these interactions (Figure 3A). This example is reminiscent of a “phase separation” model in 

which individual enhancers in a super-enhancer interact with each other via the condensation 

of transcription factors and cofactors (Hnisz et al., 2017). However, this enhancer aggregate 

encompasses >150 kilobase, well beyond the size of a super-enhancer. When any of the four 

enhancers/promoters was repressed by dCas9-mediated enhancer silencing (Pulecio et al., 

2017), we observed the loss of enhancer mark on all enhancers (Figure 3C), and the 

downregulation of two GM12878-specific genes (LINC00158 and MIR155HG) in this 

enhancer aggregate (Figure 3B, D), suggesting that all clustered enhancers/promoters in this 

example function in a coordinated fashion. Interestingly, the expression of two nearby genes 

(MRPL39 and JAM2) are also GM12878-specific and dependent on the enhancer aggregate, 
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possibly through mechanisms that do not require direct chromatin interactions (Bulger and 

Groudine, 2011).

With the removal of the local DNA packaging signal, we can also distinguish chromatin 

compaction events as red pixel domains. The best example is the Polycomb group (PcG) 

associated chromatin domain at HOXA gene family(Narendra et al., 2015; Noordermeer et 

al., 2011; Schoenfelder et al., 2015b). The normalization dimmed the up- and downstream 

TAD signal and allowed direct observation of the ESC-specific repressive chromatin domain 

at HOXA genes, which splits or dissolves when it loses some or all the H3K27me3 mark in 

IMR90 and GM12878 cells (Figure 3E–F).

Chromatin loops, but not compartments, mark neural cell fate and functions

We are particularly interested in identifying enhancer aggregates associated with neural 

differentiation, since they may represent a 3D genome signature for the neuronal lineage. To 

do this, we first identified 323,700 loop pixels in total from hiPSC, hNPC and hNeuron cells, 

each with ~140K pixels (Figure 4A). The overlap between hNeurons and hNPCs is greater 

than their overlap with hiPSCs (Figure 4A). The loop sizes in the three cell types are 

comparable (Figure 4B). Insulators (with CTCF), promoters (with H3K4me3), and 

enhancers (with H3K27ac) are clearly top contributors to chromatin loops (Figure 4C). 

Interestingly, the numbers of enhancer- or promoter interactions increased in hNPCs and 

hNeurons than in hiPSCs (Figure 4C). The genes involved in hNPC and hNeuron chromatin 

loops are strongly associated with neuronal differentiation functions (Figure 4D). We also 

collected GWAS SNPs reported for a number of neuronal or psychiatric phenotypes 

(including intelligence, autism, schizophrenia, Alzheimer’s disease, etc.) and found that they 

are enriched in the hNPC or hNeuron, but not the hiPSC chromatin loop regions; such 

enrichment is not observable for diabetes/obesity GWAS SNPs (Figure 4E).

Because genome compartmentalization is also a good indicator for cell identity, we 

performed a compartment-level analysis of neuron differentiation at 250kb resolution. We 

identified 877 bins that switched their compartment in either hNPCs or hNeurons (Figure 

S5A–B and Table S3). Presumably, these dynamically compartmentalized regions (DCR) are 

relevant to neurogenesis. However, although we observed a consistent correlation between 

H3K27ac occupancy, PC1 values and overall gene expression (Figure S5C–E), gene 

ontology analysis failed to identify neuron related terms in these DCRs (Figure S5F). One 

plausible explanation is that low-resolution analysis lacks the precision to pinpoint neural 

genes. We therefore further tested the relationship between dynamic chromatin loops and 

compartment switching. The anchors of the strongest 3,000 hNPC-specific or hNeuron-

specific (compared to hiPSC) chromatin loops involve more than 2,000 genomic bins in the 

compartment analysis (~20% genome, Figure 4F). Interestingly, a majority of neural loops, 

hence their anchored genes, are present in the unchanged compartments; there were no 

obvious enrichment of neural loops within the compartment-switching regions (Figure 4F). 

Furthermore, the genes anchored at neural loops are still enriched with neural terms in gene 

ontology analysis even after removing those within the compartment switch regions, (Figure 

S5G–H). These results indicate that neuronal gene activation frequently occur without the 
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switching of compartments A and B; dynamic chromatin loops better marks neuronal 

differentiation than compartment switching.

E-P loops and aggregates mark neural differentiation but not gene activation

We next constructed a network of 6,067 promoters and 11,453 enhancers using the 

aforementioned chromatin loops. The network includes 1,939 connected components (i.e. 
connected subnetworks); nearly one-third (603) of them are candidate E-P aggregates 

(multi-node clusters with at least five edges, Figure S6A). We used the ratio of each loop 

pixel to measure the loop strength semi-quantitatively, and identified 174 neural E-P 

aggregates in which the chromatin loops are strengthened in hNeurons compared to hiPSCs 

(STAR Methods and Table S4). As expected, the neural enhancer aggregates contain key 

neural genes, including FOXG1, POU3F3, SOX11, and TCF4 (Figure 5A). Independent Hi-

C data from hESCs and primary brain tissues also supported our observation that the E-P 

loops at these loci were gained during neural differentiation (Figure 5B, more examples in 

Data S1I). Interestingly, many of these enhancer aggregates are substantially strengthened in 

the primary brain tissues, sometimes form striking grid-like patterns (Figure 5B), suggesting 

that hNPCs and hNeurons are in a transition phase of genome rewiring; enhancers and 

promoters continue to aggregate and stabilize during neuronal maturation.

It is however surprising that the neural E-P aggregates do not correlate with gene activation 

(Figure 5C). Our RNA-seq data revealed that the 174 neural E-P aggregates contain both up- 

and down-regulated genes during neurogenesis (Data S1 I and Table S4), although they 

clearly gain higher overall H3K27ac occupancy in hNPC or hNeuron than in hiPSCs (Figure 

5D–E). In fact, when we examined the loop pixels associated with dynamic genes in hNPC 

and hNeurons, both up-regulated and down-regulated genes showed stronger loop intensity 

compared to hiPSC (Figure 5F), consistent with the global trend that cells gain chromatin 

interactions at promoters and enhancers during differentiation (Figure 4C). We could not 

observe consistent loop strength difference between up- and down-regulated genes (Figure 

5F). Furthermore, we also observed continuous E-P aggregation at several gene-dense 

regions in which genes are already active in hESCs and hiPSCs (marked by H3K4me3 and 

H3K27ac); these genes can be either up- or down-regulated in hNPCs and hNeurons in a 

coordinated fashion (Data S1 II and Table S4). All these results indicated that E-P 

aggregation during neurogenesis does not necessarily result in gene activation (see more 

discussion below).

The improved E-P interaction maps outperform eQTL in identifying GWAS target genes

Finally, we explored our dataset to investigate the genetics of brain disorders. We collected 

6,556 lead GWAS SNPs reported for a number of cognitive traits or brain-related disorders 

(including intelligence, autism, schizophrenia, Alzheimer’s disease, etc.) (MacArthur et al., 

2017) and defined their linkage disequilibrium (LD) using the latest TOPMed data (STAR 

Method). We next called 14,943 distal GWAS SNP-promoter pairs (i.e. the predicted 

promoter is outside of the GWAS LD) using chromatin loop data (Table S5). We defined tier 

1 neural loop predictions as the SNP-promoter pairs supported by loops from >=2 of the six 

neural (e)Hi-C datasets. There are 4,421 tier1 pairs involving 2,173 SNPs and 1,439 genes 

(Figure 6A). Similarly, we also defined tier 2 and tier 3 loop predictions, which are 
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supported by only one or zero neural (e)Hi-C datasets. Additionally, we also predicted distal 

GWAS target genes (outside of LD) using the GTEx cis-eQTL data from 48 human 

tissues(Consortium et al., 2017), including 14 neural tissues (13 brain tissues and nerve 

tibial) (Table S5). The overlap between loop and eQTL predictions is modest: 10.4%, 7.8%, 

and 7.5% of tier 1–3 neural loop predictions are supported by neural eQTLs. However, non-

neural eQTL data also have a similar trend (18.4%, 14.7% and 15.4% for tier 1–3 loop 

predictions, Figure 6A), suggesting a lack of tissue specificity.

We therefore systematically compared the performance of chromatin loop and eQTL data in 

explaining GWAS results. We focused on tier 1 loop predictions only within 1Mb, since 

GTEx only called cis-eQTLs in this window (Figure 6B). Firstly, we setup a test comparing 

Hi-C and eQTL as two independent approaches predicting the target genes of distal GWAS 

SNPs. The test assumes that if we make predictions for brain GWAS SNPs, most target 

genes should be expressed in brain. (Similarly, if we made prediction for liver GWAS SNPs, 

most target genes should be expressed in liver.) According to this logic, when we analyze 

brain GWAS SNPs, if method A finds more brain-expressing genes than method B, we can 

say method A is better than B; as a result, genes predicted by method A should have higher 

average expression in brain than genes predicted by method B.

We predicted 1,096 target genes using neural chromatin loops (loop target genes). Using 

eQTL data from each of the 48 GTeX tissues, we also predicted 48 different sets of genes 

(eQTL target genes) for the same collection of GWAS SNPs (Figure 6C). In 12 of the 13 

brain tissues, but less frequently in non-brain tissue (4 of 35), the expression levels of the 

1,096 loop target genes are significantly higher than eQTL target genes (Figure 6C); such 

brain-specific difference (between loop- and eQTL-predictions) cannot be observed with 

randomly chosen GWAS SNPs (Data S1 III). These results indicate that the chromatin loops 

perform better than eQTLs in predicting brain GWAS targets.

We further focused on the 216 GWAS SNPs for which chromatin loops and brain eQTLs 

made conflicting prediction of target genes (Table S5). Figure 6D shows two such examples: 

one locus (rs10153620) associated with attention deficit hyperactivity disorder (ADHD) 

(Ebejer et al., 2013), and the other locus (rs10457592) associated with major depression 

(Hyde et al., 2016). In both examples, chromatin loop predicted key neuronal genes (NRP2 
and POU3F2), while brain eQTLs predicted genes with unclear brain functions (PARD3B 
and FBXL4). Most importantly, we found an overall trend that chromatin loops outperform 

eQTLs in identifying genes with known brain functions. For all of the 216 GWAS SNPs, Hi-

C predicted 176 target genes, which enriched dozens of GO terms related to neural functions 

and transcription regulation (Figure 6E and Table S5). In contrast, the eQTL target genes 

only enriched two relevant GO terms at a p < 0.01 level, highlighting the value of chromatin 

loop data in explaining disease genetics (Figure 6E, see discussion).

Interestingly, although we frequently observed neural loops at known brain GWAS loci, such 

as MEF2C, CTNND1, TRIO, and DRD2 (Data S1 IV), some loci lose chromatin loops 

during neural differentiation. The best example of this is the GWAS locus located in the 

third intron of CACNA1C, which is one of the strongest and best-replicated associations for 

schizophrenia (SCZ) and bipolar disorder (BD) (Moon et al., 2018). Past studies on this 
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locus in neurons or brain tissues suggested a transcription regulatory role, but the causative 

variants are still unknown (Arnold et al., 2013; Eckart et al., 2016; Roussos et al., 2014; 

Song et al., 2018). Unexpectedly, we found a strong CTCF loop connecting the GWAS locus 

to the CACNA1C promoter only in hiPSC; the loop weakens when the gene is upregulated 

during neurogenesis and in brain tissues, possibly due to transcription elongation (Heinz et 

al., 2018) (Figure 6F–G). CACNA1C has a low (compared to hNPCs and hNeurons) but 

detectable expression in hESCs. To test if the CTCF loop is functional, we deleted the three 

corresponding CTCF binding sites and found that CACNA1C is downregulated only in 

hESCs but not in hNPCs (Figure 6H and Figure S6B–C). Therefore, our results indicated 

that the distal GWAS locus can be recruited to the CACNA1C promoter and regulate the 

gene expression.

It should be noted that our data did not suggest which variants in this locus regulate 

CACNA1C transcription; we found no common SNPs affecting CTCF sites in this GWAS 

locus. Our working model is that when the CTCF loop brings the GWAS locus to 

CACNA1C promoter, this locus gains a gene regulatory potential. As a result, genetic 

variants in the risk locus may affect CACNA1C expression. Since we only observed strong 

looping in hESCs, and this CTCF loop progressively weakened during neurogenesis, we 

speculate that the GWAS locus may affect gene expression and disease during early 

development instead of in mature neurons, which is consistent with a recent mouse study 

showing that CACNA1C affects psychological disorders during embryonic development 

instead of adult neurons (Dedic et al., 2018). It is necessary to point out that the expression 

level of CACNA1C is low in hESCs. More studies are necessary to determine: (i) the 

function of CACNA1C in ESCs or early development; (ii) the possibility that the loop might 

be present in certain brain cell types. Nevertheless, this example highlighted the importance 

of examining looping dynamics and cautions against only using brain or neuron data to 

investigate disease genetics.

Discussion

In this study we developed a low input “easy Hi-C” protocol for 3D genome mapping from 

50–100K cells. We also developed a new analysis pipeline named HiCorr to improve the 

rigor of Hi-C or eHi-C bias-correction at high-resolution. We showed that HiCorr-correction 

significantly improved the sharpness of Hi-C heatmaps, and allowed direct recognition of E-

P loops at sub-TAD level, with little interference from the local DNA packaging events. 

These results highlighted the importance of rigorous bias-correction in high-resolution Hi-C 

data analysis; we demonstrated that with HiCorr, robust Hi-C map of E-P interactions is 

achievable with a moderate read depth (~200 million mid-range cis-contacts). In many 

examples, the promiscuous TAD blocks in raw heatmaps become discrete E-P loops or 

aggregates after correction, indicating that promoters and enhancers form stable CTCF-

independent interactions and are dominant contributors to intra-TAD signal.

Our Hi-C analysis revealed striking enhancer aggregation events during neurogenesis and in 

mature brain tissues. Many of these enhancer aggregates are near key neural genes. 

However, it is unexpected that differentiation-gained enhancer aggregates do not correlate 

with gene activation, since the enhancer “phase separation” model was initially proposed as 
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a mechanism for trans-activation(Hnisz et al., 2017). It appeared that both up- and down-

regulated genes gained enhancer interactions during neurogenesis (Figure 5C–F). Since 

recent studies have revealed multiple phase separation mechanisms that organize both 

euchromatin and heterochromatin (Erdel and Rippe, 2018), we speculate that even at 

enhancers, different trans- factors (protein or RNA) may create chromatin contacts during 

cellular differentiation, which do not necessarily cause gene activation. More studies are 

required on a case-by-case basis to tease out the underlying mechanisms, and to investigate 

whether the newly gained DNA contacts have gene regulatory functions.

Chromatin loops and eQTLs are two independent methods to identify long-range cis-

regulatory relationships. When studying the function of non-coding variants, it is becoming 

common practice to look for evidence from both chromatin loop and eQTL data. However, 

our study showed a limited consistency between the two methods in predicting GWAS target 

genes: only a small fraction of looped GWAS loci are also supported by eQTLs. One 

possible explanation for this discrepancy is the lack of statistical power in eQTL detection, 

i.e. many cis-regulatory variants may not pass statistical significance due to: (i) limited 

population size; (ii) low minor allele frequency (MAF). However, the sensitivity issue 

cannot explain why loop appears to be more accurate than eQTL when the two methods 

make conflicting predictions (Figure 6D–E). Furthermore, a recent large blood eQTL study 

reported that after increasing the sample size to > 30,000 donors, although many more cis-

eQTLs could be identified, they were mostly short-range eQTLs near promoters and had a 

different genetic architecture from GWAS SNPs(Võsa et al., 2018). The limited success of 

eQTLs in GWAS study highlighted another potential possibility that eQTLs obtained from 

healthy tissues may not reflect the gene regulatory landscape from patients. For example, a 

SNP may only have subtle effects on looped target gene in healthy donors, but plays a more 

prominent role when the locus gains a disease-specific enhancer in patients; in this scenario, 

chromatin loop can identify the correct target genes but eQTL from normal tissues cannot. 

Therefore, our results indicated that high-quality Hi-C loops have a unique value in the study 

of disease genetics: we should treat loops and eQTLs as two distinct lines of biological 

evidence in explaining GWAS results, rather than two mutually confirmatory datasets.

STAR METHODS

RESOURCE AVAILABILITY

Lead contact—Further information and requests for resources and reagents should be 

directed to and will be fulfilled by the lead contact, Fulai Jin (fxj45@case.edu).

Materials availability—All unique/stable reagents generated in this study are available 

from the Lead Contact with a completed Materials Transfer Agreement.

Data and code availability—Data for eHi-C protocol optimization (in IMR90 cells) are 

available at NCBI GEO with accession number GSE89324. Raw and/or processed eHi-C 

and ChIPmentation data in hiPSC, hNPC and hNeuron are available at NCBI GEO with 

accession number GSE115407. Newly generated Hi-C data in hESCs are also included in 

GSE115407. ChIP-seq and eHi-C from fetal or adult brain cortex are available at NCBI 

GEO with accession number GSE116825. This study also re-analyzed published Hi-C data 
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and ChIP-seq data. The accession numbers of raw data are listed in Table S2 and Key 

Resources Table.

The source code for HiCorr can be found in https://github.com/JinLabBioinfo/HiCorr.

The original gel images are available at Mendeley Data and can be found in http://

dx.doi.org/10.17632/tpvjrcg454.2.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cell lines—We used human primary IMR90 fibroblasts (ATCC, #CCL-186) to test eHi-C 

performance. IMR90 cells were grown as previously described(Jin et al., 2013). After 

confluence, the cells were detached with trypsin and collected by spinning down at 900g for 

5 minutes. Then the cells were fixed in 1% formaldehyde for 15 minutes at 37°C, followed 

by 150mM glycine at room temperature for 5 minutes to quench formaldehyde. The fixed 

cells were washed in PBS and pelleted before stored in −80°C. We generated additional 

conventional Hi-C libraries for H1 hESCs (WiCell, #WA01) because published Hi-C data in 

H1 hESC are not deep enough to support the fragment resolution analysis. H1 cells were 

cultured on the hESC-qualified Matrigel (Corning, #354277) coated plates in mTeSR1 

medium (StemCell Technologies, #05850) before harvested for Hi-C analysis. The cell 

fixation protocol is the same as IMR90 cells.

Neurogenesis samples—The hiPSC line used for neurogenesis has been previously 

extensively characterized, including expression of pluripotent markers, karyotyping, lack of 

transgene integration, demethylation of promoter regions of pluripotent genes, in vitro 

differentiation into cell types of three germ layers and teratoma formation(Chiang et al., 

2011; Wen et al., 2014). We followed our previously established protocol for forebrain-

specific neuronal differentiation (Wen et al., 2014). Briefly, hiPSC colonies were lifted by 1 

mg/ml collagenase (Gibco, #17104–019) and cultured in non-treated polystyrene plates with 

embryoid body (EB) medium consisting of 20% KOSR (Knockout Serum Replacement, 

Gibco, #10828–028), 2 μM dorsomorphin (Tocris, #3093) and 2 μM A83–01 (Tocris, #2939) 

for 7 days with daily medium changes. The EBs were then attached on matrigel to develop 

organized rosette-like structure and maintained in neural induction medium (hNPC medium) 

with an equal mixture of DMEM/F12 (Gibco, #11330–032) and Neural basal medium 

(Gibco, #21103–049), N2 supplement (Gibco, #17502–048), B27 supplement (Gibco, 

#17504–044), NEAA (MEM Non-Essential Amino Acids Solution, Gibco, #11140–050) 

and 2 μM cyclopamine (Cellagen Technology, #C2925–10) for 16 days with medium change 

every other day. The neural rosettes were harvested mechanically and transferred to low 

attachment plates (Corning, #3473) in hNPC medium to form neural spheres for 3 days. 

hiNPCs were expanded as monolayer in hNPC medium after dissociation of neural spheres 

by Accutase (Gibco, #A1110501). For neuronal differentiation, monolayer hiNPCs were 

switched to Neurobasal medium with 10 ng/ml BDNF (Peprotech, #450–02), 10 ng/ml 

GDNF (Peprotech, #450–02), GlutaMaxTM (Gibco, #35050061) and B27 supplement. 

Immunostaining was done as previously described (Wen et al., 2014). Quantification of 

different cellular markers was performed by analyzing a minimum of 500 cells from at least 
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4 randomly chosen fields of fluorescent images with ImageJ software. The cell fixation 

protocol is the same as IMR90 cells.

Brain tissues—For brain tissue analysis, anterior temporal cortex was dissected from 

postmortem samples from three adults of European ancestry with no known psychiatric or 

neurological disorder (Dr Craig Stockmeier, University of Mississippi Medical Center). 

Cerebra from three fetal brains were obtained from the NIH NeuroBiobank (gestational age 

17–19 weeks), and none were known to have anatomical or genomic disease (Table S2). 

Samples were dry homogenized to a fine powder using a liquid nitrogen-cooled mortar and 

pestle. All samples were free from large structural variants (>100 kb) detectable using 

Illumina OmniExpress arrays. Genotypic sex matched phenotypic sex for all samples. For 

easy Hi-C, Pulverized tissue (~100 mg) was crosslinked with formaldehyde (1% final 

concentration) and the reaction was quenched using glycine (150 mM). We lysed samples on 

ice with brain tissue-specific lysis buffer (10 mM HEPES; pH 7.5, 10 mM KCl, 0.1 mM 

EDTA, 1 mM dithiothreitol, 0.5% Nonidet-40 and protease inhibitor cocktail). Samples are 

Dounce homogenized before HindIII digestion.

Colon crypt tissues—Crypts were dissected from non-cancer colon mucosa. After 

removing from the patient, we first cut away non–colon mucosa as much as possible, such as 

muscles, blood vessels and fat. The tissue was then treated with Cell dissociation buffer 

(Gibco, #13151–014) to pop out crypts from surrounding mucosa tissue. The suspension 

was filtered through a 300uM cell strainer to remove remaining tissue pieces. Pelleted crypts 

were crosslinked in 1% formaldehyde followed by glycine quenching. The fixed crypts were 

used for eHi-C as described below.

METHODS DETAILS

Easy Hi-C

The overview of eHi-C design: In Hi-C, 5’ overhangs are created after restrictive DNA 

digestion (e.g. with HindIII) so that ligation junctions can be labeled with biotinylated 

nucleotides and eventually enriched in a pull-down step with streptavidin beads. However, 

this biotin-dependent strategy has several intrinsic limitations that prevents the application of 

Hi-C in rare tissue or small cell populations. First, the efficiency of biotin incorporation into 

DNA is usually ~20–30%, sometimes as low as 5%(Belton et al., 2012). Therefore, a 

majority of ligation junctions cannot be recovered. Second, only a portion of labeled ligation 

junction products can be pulled-down after several washes, further lowering the recovery 

rate. Lastly, extensive washes are required in the biotin-pulldown procedure to effectively 

remove contamination of un-ligated DNA products, but this will significantly reduce the 

library complexity.

We reasoned that we might circumvent the limitations of Hi-C by using a biotin-free strategy 

to enrich ligation products, thus improving the assay efficiency. Inspired by the biotin-free 

strategies used in 4C(Simonis et al., 2006) and ELP(Tanizawa et al., 2010), we developed 

eHi-C, which only involves a series of enzymatic reactions to generate DNA libraries for the 

mapping of genome architecture (Figure 1A). In this protocol, we begin with the in situ 
proximity ligation procedure in which we performed HindIII digestion and proximity 
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ligation while keeping nuclei intact(Nagano et al., 2013; Nagano et al., 2015; Rao et al., 

2014). In eHi-C, HindIII digested chromatins were ligated without end repair, leading to 

HindIII-digestible junction products (Figure 1A). After nuclear lysis and reverse 

crosslinking, the DNA are digested with more frequent 4-base cutter DpnII before self-

ligation. DNA with DpnII restrictive overhangs on both ends, including ligation junction 

products, will form circles. We used exonuclease to remove DNA that failed to form circles, 

as well as contaminations from un-ligated ends and other linear DNA species. At last, we cut 

the circularized DNA again with HindIII; only re-linearized junction DNA will be sequenced 

(Figure 1A).

The eHi-C method is essentially a genome-wide “all-to-all” version of 4C and also closely 

similar to ELP, another biotin-free genome-wide method developed several years ago to 

identify DNA contacts in fission yeast(Tanizawa et al., 2010). However, the design of ELP 

was flawed because it cannot remove contaminations from several species of non-junction 

DNA (Figure S1A). As a result, less than 4% of ELP reads represent proximity ligation 

events(Tanizawa et al., 2010). The eHi-C protocol solves this issue by introducing an 

exonuclease digestion step. Additionally, because all reads from ELP are next to HindIII 
sites, it cannot distinguish PCR duplicates from reproducible ligation events between the 

same pair of HindIII ends (Figure S1B). Our eHi-C method addresses this issue with a 

custom adapter with random barcode as a unique molecule index (UMI) (Figure 1A, Figure 

S1C). We also used in situ ligation in eHi-C to improve the library quality (Figure 1A). 

Taken together, we have significantly optimized the eHi-C strategy to obtain high quality 

libraries for ultra-deep sequencing from small-scale bio-samples, which is not feasible with 

the original ELP method.

Because there is theoretically no DNA loss in its protocol (Figure 1A), eHi-C should have a 

higher recovery rate of ligation junction products than conventional Hi-C, which is 

important for the analyses of small cell populations. The only exception is the exonuclease 

digestion step: Ligation junction DNA may be digested if they fail to self-ligate (Figure 1A). 

From a control experiment, we determined that the efficiency of the self-ligation reaction is 

high (~60%, Figure S1D).

Easy Hi-C protocol: In this study, low-input eHi-C libraries were prepared in two settings. 

In the first scenario (“aliquot” setting), we started with 1 million IMR90 cells and go 

through the protocol described below and usually resulted in ~250–500ng DNA for library 

preparation (Figure 1A). 10% or 20% of these DNA were used to generate library (0.1 or 0.2 

million cells per library). In the second scenario (“mini” setting), we started the experiments 

with lysing 0.1 or 0.2 million cells following the same protocol as described below, except 

that all steps before library preparation were performed in 25% volume. Because the cell 

lysis and HindIII digestion conditions are different from the published in situ Hi-C protocol. 

We have made modifications in order to ensure nuclei integrity during ligation.

Cell lysis, HindIII digestion, and in situ ligation.: Cell pellet from ~1 million cells was 

lysed in 1ml cell lysis buffer (10mM Tris-Cl, pH7.5, 10mM NaCl, 0.2% NP-40, 1X 

proteinase inhibitor cocktail (Roche, #118735800001)) before incubating on ice for 15 

minutes. If there is cell clump in the tube, we dounce the cells for 10 times every cycle for 3 
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cycles, with one-minute on ice between each cycle. After douncing, the nuclei were put on 

ice for another 5 minutes and then pelleted by centrifuging (2,500g for 5 minutes at 4°C). 

The pellets were washed once in 1X Cutsmart buffer (NEB) before resuspended in 360ul 1X 

Cutsmart buffer. After resuspension, 40ul of 1% SDS were added (final 0.1%), and the tubes 

were incubated at 65°C for 10 minutes. To quench the SDS, 44ul of 10% Triton X-100 (final 

1%) was then added to each tube. For chromatin digestion, 400U HindIII (NEB, #R3104M 

100U/μl) were added to each tube followed by incubation at 37°C for 4 hours. To ensure 

efficient digestion, another 400U of HindIII were added to each tube again for overnight 

digestion. On day 2, we digested the nuclei for another 4 hours by adding fresh HindIII 
enzyme (400U). After digestion, the enzyme was inactivated by adding 40ul of 10% SDS 

(final 1%) to each tube and incubation at 65°C for 20 minutes. The digested products were 

then transferred to a new 15ml tube and mixed with 3.06ml 1.15X ligation buffer (75.9mM 

Tris-HCl, ph7.5, 5.75mM DTT, 5.75mM MgCl2 and 1.15mM ATP). 187ul 20% Triton 

X-100 was added to the mixture and incubated at 37°C for 1 hour. For ligation, the products 

were then mixed with 30ul of T4 DNA ligase (Invitrogen, #15224–025, 1U/ul) and 

incubated at 16°C overnight. After ligation, the tubes were put at room temperature for 30 

minutes and the nuclei were pelleted by centrifuging at 2,500g for 5 minutes. The 

supernatant was discarded to remove the free DNA and only the nuclei pellets were kept. 

The nuclei pellet step is skipped in the “dilute” libraries in Table S1. The nuclei pellets were 

then resuspended in 3.06ml of 1.15X ligation buffer and mixed with 40ul of 10% SDS and 

187ul of 20% Triton X-100 for nuclear lysis.

Reverse crosslinking, DpnII digestion and self-ligation.: After nuclear lysis, the mixture 

was then reverse crosslinked at 65°C overnight after adding 25ul of 20mg/ml proteinase K. 

DNA were purified with Phenol: Chloroform: Isoamyl Alcohol (25:24:1) (Affymetrix, 

#UN2922) following standard protocol. ~2–3μg DNA are expected from 1M cells. The DNA 

was then digested with 50U DpnII (NEB, #R0543L, 10U/μL) in a total volume of 100uL at 

37°C for 2 hours. After digestion, the enzyme was heat inactivated at 65°C for 25 minutes. 

The mixture was first incubated with 0.5 volume of PCRClean DX beads (Aline 

Biosciences) at room temperature for 10 minutes before harvesting the supernatant 

according to vendor’s protocol. The supernatant was then incubated with 2 volumes of 

PCRClean DX beads at room temperature for 10 minutes. DNA on the beads was then 

harvested in 300ul nuclease free water. The two-step bead purification results in DNA with a 

size range ~100–1,000bp. The DNA products were then mixed with 200ul of 5X ligation 

buffer, 5U T4 DNA ligase (Invitrogen, #15224–025, 1U/ul) and water to a total volume of 

1ml. Self-ligation was done by incubating the tubes at 16°C overnight.

Exonuclease digestion and DNA circle re-linearization.: The self-ligated DNA were 

purified again with Phenol: Chloroform: Isoamyl alcohol and digested with 6U of lambda 

exonuclease (NEB, #M0262S) in 200μL volume at 37°C for 30 minutes. The exonuclease 

was then inactivated by incubating at 65°C for 20 minutes. Resulting DNA were purified 

with 2 volumes of PCRClean DX beads as described above. For DNA circle re-linearization, 

bead bound DNA were eluted and digested with 20U HindIII again at 37°C for 2 hours in 

150μL volume. The HindIII enzyme was inactivated at 65°C for 20 minutes, and the DNA 

was purified with 2 volume PCRClean DX beads for another time as described above. In the 
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end, bead-bound DNA was eluted in 50ul nuclease free water. From 1M cells, we expect 

250–500ng DNA in the end.

Library preparation.: We took ~10–20% of re-linearized DNA (~50ng) for library 

generation following Illumina TruSeq protocol. Briefly, the DNA was first end repaired 

using End-it kit (Epicentre, #ER0720). The end-repaired DNA was then A tailed with 

Klenow fragment (3′–5′ exo–; NEB, #M0212L) and purified with PCRClean DX beads. 

Bead bound DNA were eluted in 20μL water and then reduced to 4μL using Speedvac at 

50°C. The 4ul DNA product was mixed with 5ul of 2X quick ligase buffer, 1ul of 1:10 

diluted annealed adapter (10uM) and 0.5ul of Quick DNA T4 ligase (NEB, #M2200L). The 

ligation was done by incubating at room temperature for 15 minutes and the enzyme was 

then inactivated by incubating at 65°C for 10 minutes. DNA was then purified with 1.8 

volume of DX beads as described above. Elution was done in 14ul nuclease free water. For 

checking eHi-C library quality, we only needed to sequence less than 1 million reads on 

MiSeq (Illumina). Because the proportion of PCR duplicates from low-depth sequencing is 

very low, we used regular TruSeq indexed adapters (Illumina) without UMI barcode. To 

deep sequence an eHi-C library, we used custom TruSeq adapter in which the index is 

replaced by a 6 base random sequence. The custom adapter was generated by annealing the 

following two oligos: Universal oligo – 

AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGAT

C*T UMI oligo -- /5Phos/

GATCGGAAGAGCACACGTCTGAACTCCAGTCACNNNNNNATCTCGTATGCCGTCT

TCTGCTT*G

PCR amplification of DNA libraries.: To amplify the DNA libraries, we mixed 13ul adapter 

ligated DNA with 1ul of 20uM oligo C (AATGATACGGCGACCACCGAGATCTACAC), 

1ul of 20uM oligo D (CAAGCAGAAGACGGCATACGAGAT) and 15ul of 2X KAPA HiFi 

Hotstart ready mix (Kapa Biosystems, #KK2602). And the PCR amplification was done as 

follows: denature at 98°C for 45 seconds, cycle at 98°C for 15 seconds, 60°C for 30 seconds, 

72°C for 30 seconds, and we did 5 cycles at first for estimating the total cycle number 

needed, and then further extension at 72°C for 5 minutes. The products were then purified 

using 1.8 volume of PCRClean DX beads (Aline Biosciences, #C-1003–50) to remove 

primer contamination as described above. And the DNA was eluted in 20ul nuclease free 

water. And library quantification was done following the protocol of Illumina library 

quantification kit (KAPA Biosystems, #KK4824). PCR was done again in 50μL volume for 

a target final concentration ~20–40nM (usually ~3–4 additional cycles). The generated 

libraries were then subjected to sequencing.

ChIPmentation—We used ChIPmentation(Schmidl et al., 2015) to map histone 

modification and/or CTCF in different samples. Briefly, cells and tissues were fixed in 1% 

formaldehyde at room temperature for 15 minutes followed by glycine quenching. To isolate 

nuclei, we lysed brain tissues with a specific lysis buffer (10 mM HEPES; pH 7.5, 10 mM 

KCl, 0.1 mM EDTA, 1 mM dithiothreitol (DTT), 0.5% Nonidet-40 and protease inhibitor 

cocktail) for 10 minutes at 4°C. For cell cultures, we used lysis buffer 1 (50 mM HEPES; pH 

7.5, 140 mM NaCl, 1 mM EDTA, 10% glycerol, 0.5% Nonidet-40, 0.25% Triton X-100 and 
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protease inhibitor cocktail) for 10 minutes at 4°C. The collected nuclei were then washed 

with a lysis buffer II (200mM NaCl, 1mM EDTA pH8.0, 0.5mM EGTA pH8.0, 10mM Tris-

Cl pH8.0 and protease inhibitor cocktail) for 20 minutes at room temperature. The nuclei 

were pelleted at 1,800g for 10 minutes at 4°C and then resuspended in lysis buffer III 

(10mM Tris-Cl pH8.0, 100mM NaCl, 1mM EDTA, 0.5mM EGTA, 0.1% Na-Deoxycholate, 

0.5% N-lauroylsarcosine and protease inhibitor cocktail) for sonication. The chromatin was 

sheared for 10 cycles (15 seconds on and 45 seconds off at constant power 3) on Branson 

450 sonifier. 20–50ug of chromatin was used for each H3K4me3 (Abcam, #ab8580)/ 

H3K27Ac (Abcam, #ab4729)/ H3K27me3 (Millipore, #07–449)/ H3K36me3 (Abcam, 

#ab9050) pulldown and 100–150ug for each CTCF (Abcam, #ab70303) pulldown. First, 

11ul of Dynabeads M-280 (Life Technologies, Sheep Anti-Rabbit IgG, #11204D) was 

washed three times with 0.5mg/ml of BSA/PBS on ice and then incubated with designated 

antibody for at least 2 hours at 4°C. The beads/antibody complexes were then washed with 

BSA/PBS. The pulldown was done in binding buffer (1% Trixon-X 100, 0.1% Sodium 

Deoxycholate and protease inhibitor cocktail in 1X TE) by mixing the beads/antibody 

complexes and chromatin. After pulling down for overnight, the beads/antibody/chromatin 

complexes were washed with RIPA buffer (50mM HEPES pH8.0, 1% NP-40, 0.7% Sodium 

Deoxycholate, 0.5M LiCl, 1mM EDTA and protease inhibitor cocktail). The beads 

complexes were then subjected to ChIPmentation by incubating with homemade Tn5 

transposase in tagmentation reaction buffer (10mM Tris-Cl pH8.0 and 5mM MgCl2) for 10 

minutes at 37°C. To remove free DNA, beads were washed twice with 1x TE on ice. The 

pulldown DNA was recovered by reversing crosslink for overnight followed by PCRClean 

DX beads (Aline Biosciences, #C-1003–50) purification. To generate ChIP-seq libraries, 

PCR was applied to amplify the pulldown DNA with illumina nextera primers. Size 

selection was then done with PCRClean DX beads to choose the fragments ranging from 

100bp to 1000bp.

CRISPR experiments

Generating doxycycline inducible Cas9 expressing hESC line (DI-Cas9-H9): The DI-

Cas9-H9 cells were generated as previously described (Ma S et al., 2018). Briefly, the 

pBlue-AAVS1-Puro-Cas9-M2rtTA-AAVS1 HITI donor plasmid was constructed by ligating 

the HindIII restricted Puro-Cas9-M2rtTA fragment cut out from the Puro-Cas9-M2rtTA 

plasmid to the pBlue-AAVS1-AAVS1 vector linearized with HindIII. To construct the Puro-

Cas9-M2rtTA plasmid, CAG-M2rtTA-pA sequence was amplified from Neo-M2rtTA 

plasmid and subcloned into the Puro-Cas9 plasmid linearized with MfeI and MluI. To 

construct the pBlue-AAVS1-AAVS1 plasmid, a pair of oligos for AAVS1 gRNA targeting 

sequence (g-AAVS1-F: TCACCAATCCTGTCCCTAGGTTTA; g-AAVS1-R: 

CTAGGGACAGGATTGGTGACGGTG) were annealed and ligated to the pBlue vector 

linearized with XhoI and NotI. H9 cell line was maintained on Matrigel (Corning, #354277) 

in mTeSR1 (STEMCELL Technologies, #85850/05850). Cells were cultured at 37 °C in a 

humidified atmosphere with 5% CO2 in air. Cells were passaged with TrypLE (Gibco, 

#12604–021). Transfection was done using electrotransfection (1 pulse, 300 V, 4 ms, BTX). 

A total of 25μg plasmid (donor: Cas9: gAAVS1RNA = 3: 3: 2) was used in each 

electroporation. Around 4~9 million cells were resuspended with 500μL PBS in a 0.4 cm 

cuvette. Two days later, 0.5μg/mL puromycin was used to treat cells for 3 days. Cells were 

Lu et al. Page 18

Mol Cell. Author manuscript; available in PMC 2021 August 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



allowed to grow visible colonies for about 10 days, and then the colonies were picked into 

96-well plate. Colonies were expanded and identified by PCR and sequencing (5-F: 

GGTTAATGTGGCTCTGGTT; 5-R: CTTGTACTCGGTCATCTCG; 3-F: 

TGACGGTTCACTAAACGAG; 3-R: AGAGGTTCTGGCAAGGAG).

Deleting CTCF sites in ESCs and NPCs with sgRNAs-CARGO: We made CARGO(Gu 

et al., 2018) constructs whenever we need to transfect multiple sgRNAs into the same cell. 

With CARGO system, we could assemble 4–10 sgRNAs simultaneously into one plasmid 

following the protocol described by Gu et al.(Gu et al., 2018). The CARGO plasmids are 

gifts from the laboratory of Joanna Wysocka. All sgRNAs were designed on CCTop-

CRISPR/Cas9 target online predictor (https://crispr.cos.uni-heidelberg.de/) and manually 

picked. For CARGO, (n+1) pairs of oligos are necessary to assemble n sgRNAs. The 

CARGO oligo sequences are listed in Table S2. We deleted three CTCF-containing regions 

at CACNA1C locus (C1~C3). Successful deletion was verified with PCR. The primers used 

for detecting deletion efficiency are as follows: C1 (Product length wt: 616 bp, del: 471–518 

bp; fwd: ACAGGATGCTATGGGACACC; rev: AGGGAGGAGGAAGAAATGGA); C2 

(Product length wt: 786 bp, del: 531–603 bp; fwd: CCTGGGGTGTTGAGAGAGAA; rev: 

ATTCACCCAAAAGGCTTCCT); C3 (Product length wt: 9,358 bp, del: 550–600 bp; fwd: 

TGAGCCCAAAGGCACTAGAC; rev: TACCCAGAACAGGCACTTCC).

DI-Cas9-H9 cells were maintained in mTeSR1 medium (STEMCELL technologies, #85850) 

on matrigel. Cells were detached and suspended to single cells by Accutase (Fisher, 

#A1110501). CARGO vector transfection was done following the manufacturer’s instruction 

of Amaxa 2b nucleofector, using Kit 1 (Lonza, Human stem cell nucleofector Kit 1, 

#VPH-5012) and program B-16. After 24 hours recovery, cells were treated with 1μg/mL of 

Doxycycline to induce Cas9 expression for 48 hours before harvesting. The hNPCs were 

differentiated as described above and seeded at 170k cells per cm2. Transfection was done 

following the manufacturer’s instruction of Amaxa 4D nucleofector. Briefly, cells were 

treated with Accutase to make single cell suspension and then pelleted at 110g for 5min. P3 

primary cell 4D-nucleofector X kit L (Lonza, #V4XP-3024) was applied combining 

program CU-133. After 24 hours recovery, cells were treated with 1μg/mL of Doxycycline 

to induce Cas9 expression for 48 hours before harvesting for DNA and RNA extraction.

Construct dCas9-KRAB-puro for CRISPRi assay: EF1-dcas9-KRAB was PCR amplified 

from Lenti-dCas9-KRAB-blast (Addgene, #89564) with primers (F: 

CCTTTTGCTCACATGTGCTAGCTGCAAAGATGGATAAAG, R: 

AACTTTGCGTTTCTTTTTCGGAACTGATGATTTGAT); T2A-puro was PCR amplified 

from the LentiCRISPRv2 plasmid (Addgene, #98654) using primers (F: 

AAGAAACGCAAAGTTGGATCCGGCGCAACAAACTTC, R: 

CGAGCTCTAGGAATTCTCAGGCACCGGGCTTGCG). The two PCR products were 

assembled into px332-original plasmid (gifts from the laboratory of Joanna Wysocka(Gu et 

al., 2018)) between PciI and EcoRI sites by In-Fusion HD cloning (TAKARA, #639648).

CRISPRi enhancer inhibition in GM12878 cells with sgRNAs-CARGO: We constructed 

CARGO vectors containing multiple sgRNAs as described above. GM12878 cells (Coriell 

Institute, #CEPH/UTAH Pedigree 1463) were maintained in RPMI1640 with 15% FBS. 
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GM12878 cells were seeded in fresh medium at 350k cells per ml the day before 

nucleofection. 4 million cells were used for each nucleofection. First, cells were pelleted at 

90g for 5min and then resuspended in 100ul of nucleofection reagent (SF cell line 4D-

Nucleofector X kit, Lonza, #V4XC-2024) together with 5–7ug designated plasmids. The 

nucleofection was done on a 4D lonza nucleofector using program CM-137. Puromycin 

selection was done at 3μg/mL for 48 hours after letting the cell recover for 24 hours post 

transfection. Cells were then harvested for RNA extraction, or fixed with 1% formaldehyde. 

We performed H3K27ac ChIP-qPCR using ChIP-mentation protocol described before. 10% 

of chromatin was saved as input control. The qPCR and ChIP-qPCR primers used are listed 

in Table S2.

3C-qPCR—To confirm whether deletion of CTCF at the CACNA1C locus would lead to 

loss of chromatin loops, we did 3C assay in hESCs. We followed the protocol as previously 

described(Miele et al., 2006). First, H9 cells harboring CTCF deletion were generated as 

above by nucleofection and fixed for 3C assay. Briefly, Cells were permeabilized in a lysis 

buffer (10mM Tris-Cl, pH8.0, 10mM NaCl, 0.2% NP-40 and 1X proteinase inhibitor 

cocktail), and nuclei were collected by centrifuging at 2500g for 5min. The nuclei were then 

digested with HindIII-HF (NEB, #R3104M), 400U for 5 million cells at 37 °C overnight. 

After inactivation of HindIII, the proximity ligation was done with T4 DNA ligase 

(Invitrogen, #15224–025) at 16°C for overnight. Chromatins were then reverse-linked by 

proteinase K and purified by phenol: chloroform. Two BAC clones (RP11–265G12 and 

RP11–698B23) cover the studied region were applied as genomic background control. Equal 

moles of the DNA from two BACs were mixed together and used to generate the control 

template following the protocol. Primers designed for 3C-qPCR are listed Table S2.

QUANTIFICATION AND STATISTICAL ANALYSIS

The overview of eHi-C performance—We tested eHi-C in low-input setting with ~0.1–

0.2 million human primary lung fibroblast IMR90 cells and used low- or high-depth 

sequencing to evaluate the library quality (Table S1). As expected, averagely 95% of eHi-C 

reads begin with digested HindIII restrictive sequence AGCTT, indicating that nearly all 

reads are from re-linearized HindIII-digestible DNA circles. When one eHi-C library from 

0.1 million cells is deep-sequenced to 150 million mapped read pairs, the percentage of PCR 

duplicates is lower than the published IMR90 Hi-C libraries prepared with 100 times more 

(10 million) cells(Jin et al., 2013) (Table S1), indicating a significantly improved library 

complexity.

We also compared the sources of errors in Hi-C and eHi-C libraries(Belton et al., 2012; Jin 

et al., 2013). In conventional Hi-C, read pairs falling into the same HindIII fragments are 

considered invalid, and the major type of invalid reads are “dangling reads” originated from 

non-ligation DNA. In contrast, the only type of invalid pairs from eHi-C are self-circles, all 

the other types of invalid pairs are removed by exonuclease treatment (Figure S1E).

While eHi-C avoids several types of common false reads found in Hi-C, it has a drawback of 

getting false reads from undigested HindIII sites, which can be computationally filtered as 

back-to-back read pairs next to the same restrictive sites (Figure S1E–F). After data filtering, 
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we found that the yield of cis-contacts from eHi-C libraries, especially the ones prepared 

with in situ ligation procedure, is better than most of the published HindIII-based Hi-C 

libraries prepared with ~10–25 million cells (Figure S1G–H and Table S1). Importantly, the 

contact heatmaps from Hi-C and eHi-C data are identical showing the same component A/

B(Lieberman-Aiden et al., 2009) and TAD(Dixon et al., 2012) structures (Figure 1B–C). All 

these results demonstrated that eHi-C is a reliable alternative to Hi-C and can correctly 

identify 3D genome features from small cell populations.

Easy Hi-C data pre-processing for QC and performance analysis—Note: The 

data filtering step of deep Hi-C and eHi-C data for fragment level analysis is slightly 

different from the performance analysis here. Please refer to “Hi-C and eHi-C data filtering 
for fragment level analysis” for details.

Alignment and removing PCR duplications: Published IMR90 Hi-C data are used in this 

study to compare with eHi-C. The accession numbers of Hi-C data are listed in Table S2. All 

the sequencing data are mapped to human reference genome hg19 using Bowtie. For Hi-C, 

the two ends of paired-end (PE) reads were mapped independently using the first 36 bases of 

each read. PCR duplications were defined as PE reads with both ends mapped to the same 

locations. For eHi-C, because nearly all the mappable reads start with HindIII sequence 

AGCTT, we trimmed the first 5 bases from every read, took the next 36 bases, and added the 

6-base sequence AAGCTT to the 5’ of every read before mapping using the whole 42 bases. 

Some MiSeq runs were performed with reads shorter than 41 bases, and the full-length reads 

will be used in those cases. After mapping, we further filtered the reads requiring the 

positions of both ends to be exactly at the HindIII cutting sites. The deep sequenced eHi-C 

libraries were prepared with UMI adapter, PCR duplications were defined as identical PE 

reads also with the same UMI barcode. The eHi-C libraries sequenced on MiSeq were not 

intended for deep sequencing and therefore were prepared without UMI barcode. We assume 

no PCR duplication in MiSeq libraries because the sequencing depth is very low.

Conventional Hi-C data filtering and QC analysis: After removing PCR duplications, we 

analyzed the library quality by classifying the reads into different categories. In both Hi-C 

and eHi-C, the percentage of trans- contacts can be easily calculated by counting the number 

of reads with two ends on different chromosomes (listed in Table S1). For cis- reads in Hi-C 

data, we first discard the reads with both ends mapped to the same HindIII fragments as 

invalid pairs. Dangling ends are defined as “inward” pairs among the invalid pairs (Figure 

S1E) and the percentages are listed in Table S1. The rest of the invalid pairs are classified 

into “other false” category.

All rest read pairs represent two different HindIII fragments in cis. Since cut-and-ligation 

events are expected to generate reads within 500bp upstream of HindIII cutting sites due to 

the size selection (“+” strand reads should be within 500bp upstream of a HindIII site, and 

“−” strand reads should be within 500bp downstream a HindIII site), we only keep read pairs 

with both ends satisfying this criteria. The other pairs are also classified into “other false” 

category in Table S1. We next split all the remaining reads into three classes based on their 

strand orientations (“same-strand”, “inward”, or “outward”) (Figure S1E). We have 

previously shown that although theoretically “same-strand” reads should be twice as many 
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as “inward” or “outward” reads, in reality more “inward” or “outward” reads can be 

observed due to incomplete digestion of chromatin(Jin et al., 2013). We therefore estimate 

the total number of real cis-contact as twice the number of valid “same-strand” pairs (Table 

S1).

eHi-C data filtering and QC analysis: For eHi-C library, the only type of invalid cis- pairs 

are self-circles with two ends within the same HindIII fragment facing each other (Figure 

S1E). Similar to Hi-C, we also computed the total number of real cis-contact as twice the 

number of valid “same-strand” pairs. Reads from undigested HindIII sites are back-to-back 

read pairs next to the same HindIII sites facing away from each other (Figure S1F).

Compare the bias structure of Hi-C and eHi-C

Summary:  We analyzed the intrinsic biases that may affect the eHi-C experimental 

procedure. As expected, both Hi-C and eHi-C show a decay of contact frequency with 

increasing distance (Figure S1K). The contact frequencies involving very small HindIII 
restriction fragments (< 200bp) are low in both Hi-C and eHi-C libraries, because the small 

fragments are less likely to be sheared or digested (see STAR Methods), or due to the spatial 

hindrance for small fragments to ligate (Figure S1L)(Yaffe and Tanay, 2011). The eHi-C has 

an overall better performance capturing ligation between small-sized (~200bp-1kb) 

fragments (Figure S1L, M and P), presumably because DpnII can digest small HindIII 
fragments effectively as long as the restrictive sites are present. Furthermore, the profile of 

distance decay at short range is affected by the length of the two HindIII fragments (Figure 

S1M and 1P), indicating an interaction between the three parameters. Intriguingly, the GC-

bias profile in eHi-C library is opposite to what was observed for conventional Hi-C(Yaffe 

and Tanay, 2011) (Figure S1N). We speculate that this might be because both ends of the 

eHi-C library start with a fixed HindIII restrictive sequence (AGCTT). Therefore, the GC-

bias in eHi-C reflects the efficiency of DNA polymerase elongation after it has already gone 

through first few bases during PCR amplification or sequencing. Finally, as expected, eHi-C 

libraries are also constrained by the size selection of ligation products (Figure S1O). These 

analyses provide a basis for the eHi-C data normalization and computational inference of 

DNA contacts.

Methods:  To plot the decay of contact with distance (Figure S1K), we only used “same-

strand” cis- contact reads. For any given distance, we found all HindIII fragment pairs with 

gap distance between 0.9 * L and 1.1 * L, and computed the average contact frequency 

among them. We normalized these numbers by dividing them by the average contacts from 

all the intra-chromosome HindIII fragment pairs. For length bias (Figure S1L), we divided 

all the HindIII fragments into 40 equal-sized groups and computed the average trans- contact 

frequency for each pair of groups, and enrichment values were calculated by normalizing to 

the global average. Similarly, we also plotted the GC bias (Figure S1N) using trans- data. 

We divided all the HindIII ends into 20 equal-sized groups by GC content. For Hi-C, the GC 

content was computed using the 200bp near each HindIII end. For eHi-C, the GC content 

was computed for the region between a HindIII end and the nearest DpnII site.
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Compartment level Hi-C or eHi-C data analysis

Calling compartments from Hi-C or eHi-C data: We performed compartment level 

analysis following the method described previously(Lieberman-Aiden et al., 2009). We 

divide the genome into 250kb bins and generate the contact matrices between bins for each 

chromosome. We next normalize the matrix M by genome distance. For every interaction 

value xi,j (i is the row number, j is the column number) in matrix M, let the distance for this 

interaction be L|j−i|, and we calculated the average of all interaction values with the same 

distance avg ∑L j − i x . Thus, the normalized matrix M′ is:

xi, j′ = xi, j/avg ∑L j − i x .

We next generated the correlation matrix M″ = cor(M′), in which each element xi, j′′  is the 

Pearson’s correlation coefficient for two vectors xi, *′  and xj, *′  from M′, representing the 

similarity of two bins’ interaction pattern. The principal component analysis on the 

correlation matrix then assigns the genome into two compartments depending on whether 

the PC1 of a bin is negative or positive value. We used the H3K4me3 data in each cell type 

to determine the compartment A and B (More H3K4me3 peaks: compartment A; fewer 

H3K4me3 peaks: compartment B). Since H3K4me3 data for the fetal CP and GZ are not 

available, we used the H3K4me3 data from fetal cortex instead.

Identifying regions with different neighborhood profiles, or differentially 
compartmentalized regions (DCRs): In compartment level analysis, The +/− sign of 

eigenvector, or PC1 value, is used to determine compartment A/B. Additionally, the actual 

PC1 values were often used as a semi quantitative measurement for the correlation with gene 

expression and active chromatin, such as in the reference (Dixon et al., 2015). Therefore, 

when comparing two samples, a common practice is to directly compute the differences 

between the PC1 values, bigger difference indicates more significant compartment 

switching. However, we found that this approach can be sometimes misleading when the two 

samples have extensive changes at compartment level, especially on smaller chromosomes. 

In this study, we actually used a more rigorous way to compute the compartment changes 

between two samples. To find the statistically significant DCRs, instead of directly using 

eigenvectors (PC1), we defined a “similarity score” to describe how similar the interaction 

patterns of the same bin i between cell type A and cell type B are. Only cis data are used.

si
A, B = cor xi, A′′ , xi, B′′

Because si
A, B ∈ [ − 1, 1], we first do data transformation x = (s + 1)/2, then used Beta 

distribution to model the similarity score.

f(x) = xα − 1(1 − x)β − 1
B(α, β) 0 ≤ x ≤ 1; α, β > 0
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B(α, β) is the Beta function; α, β are the shape parameter to describe the Beta distribution. 

We computed the p-value to pick up the bins with significantly different interaction patterns 

between two cell types.

p = Prob(X < x ∣ α, β) .

To further increase the stringency of DCRs, we also require all DCRs should switch their 

compartments (the +/− sign of the PC1 value should switch).

Fragment-resolution Hi-C or eHi-C data analysis

Determine the sequencing depth required for fragment-level analysis: The highest 

possible resolution of Hi-C analysis is between individual restrictive fragments (fragment 

level). Depending on the restrictive enzyme used, the theoretically best resolution for Hi-C is 

2 kb (with 6-cutter, e.g. HindIII) or 128 bp (with 4-cutter, e.g. DpnII). However, the 

feasibility to achieve high resolution also depends on the sequencing depth. Here we propose 

a rule-of-thumb to determine the sequencing depth requirement for high-resolution analysis.

There are ~350,000 HindIII fragments in human genome (we merge fragments < 5 kb in to 

neighboring fragments, ~7kb resolution), and therefore ~65 billion possible fragment pairs. 

With ~1 billion total contacts, the average reads number of a fragment pair is only 0.015. 

Therefore, genome-wide fragment level Hi-C analysis is not possible with billion-scale 

sequencing depth due to the lack of statistical power. On the other hand, within a short range 

(such as ~1–2 Mb), data density is high enough so that most fragment pairs have non-zero 

values. According to our experience, the density of cis- data is ~20 fold higher than trans-; 

and the cis- data density within 2Mb is ~30 fold higher than over 2Mb (Table S1).

Analyses of the ~350,000 HindIII fragments in human genome has an average resolution of 

5–10 kb. There are ~3.5 billion possible fragment pairs in cis, and ~100 million possible 

pairs with the 2 Mb window. In order to determine the minimum sequencing depth, we 

required the average expected frequency to be > 2 between all fragment pairs within 2 Mb. 

The purpose is to prevent too many zeros in the contact matrices. This translates to a 

requirement of at least 200 million cis- contacts within 2 Mb (or mid-range contacts) after 

data filtering.

It should be noted that the mid-range contacts are not evenly distributed within the 2 Mb 

window. In the example of GM12878 cells, with the global average value in 2 Mb being 2, 

the average contact number decreases when the distance increases, e.g. 6 (100 kb), 2 (500 

kb), 1 (1 Mb), and 0.4 (2 Mb). Therefore, unless ~2~−5 times more data above minimum are 

generated, we still expect a suboptimal performance for the range between 1 Mb and 2 Mb. 

In a typical Hi-C experiment, ~40–80% of all cis- contacts are within 2 Mb. Therefore, 

~300–500 million filtered cis- contacts are required for fragment level analysis within 2 Mb. 

Depending on the cis- / trans- ratio of the Hi-C experiments, the minimum number of 

contacts (cis and trans) after filtering should be ~0.5–1 billion (Table S1).
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The same rule also applies to Hi-C data with 4-cutter, which theoretically may achieve finer 

resolution. For 1kb resolution within 2Mb window (7-fold finer), a minimum of ~25 billion 

contacts (0.5 × 72 billion) is required. To our knowledge, the densest published dataset is the 

in situ Hi-C data in GM12878 (4.9 billion total contacts)(Rao et al., 2014), which is roughly 

enough for 1 kb resolution in 1 Mb window, or 2kb resolution in 2Mb window. Taken 

together, sequencing depth, not the choice of cutter, is the bottleneck for kilobase-scale 

resolution Hi-C analysis due to the cost-effectiveness limitation of current sequencing 

technology.

Hi-C and eHi-C data filtering for fragment level analysis: This step is largely the same as 

described in “Conventional Hi-C data filtering and QC analysis” and “eHi-C data filtering 
and QC analysis” with additional data filtering at the fragment level. Specifically, for Hi-C 

data, we keep all “same-strand” reads, discard all “inward” data for fragment pairs with the 

size of gap less than 1kb, and discard all “outward” data for fragment pairs with gap size less 

than 25kb, as reported previously(Jin et al., 2013). For eHi-C, we also keep all “same-

strand” reads, but discard all “inward” data for fragment pairs with the size of gap less than 

25kb, and discard all “outward” data for fragment pairs with gap size less than 1kb. We used 

different rules in eHi-C because strand-directions in eHi-C and Hi-C are opposite (Figure 

S1E). For example, undigested HindIII sites cause “inward” reads in Hi-C but “outward” 

reads in eHi-C.

Fragment-resolution Hi-C analysis to identify cis- looping interactions: This part 

describes the method to analyze cis- Hi-C data within 2Mb window at fragment resolution. 

The eHi-C data analysis follows the same idea but is slightly different (section “Fragment-

resolution eHi-C analysis to identify cis- looping intractions”). We have previously reported 

a fragment level Hi-C data analysis to model the significance of ligation product enrichment 

between any pairs of HindIII fragments(Jin et al., 2013) based on a previous systematic 

study of biases in Hi-C data.(Yaffe and Tanay, 2011) The pipeline includes a normalization 

step that estimates expected frequencies between any two fragments after correcting several 

explicit Hi-C biases, a negative binomial model to assess the statistical significance, and a 

peak-calling step identifying significant fragment pairs as DNA loops. In this study, we 

included an additional factor in the normalization step to correct an implicit “visibility” 

factor, which can correct unknown sources of biases and improve the normalization results 

(“A model to estimate expected frequencies between two HindIII fragments”, “Correcting 

known sources of biases with explicit approach” and “Implicitly correcting unknown biases 

hidden in “visibility””). We still used a negative-binomial model to compute the p values for 

each fragment pairs (“Use negative binomial model to compute the significance of pixels”). 

Finally, we devised a balanced loop-calling method which reduces biases by considering 

both enrichment ratio and p-values (“Looping calling and visualization in ratio heatmaps”).

A model to estimate expected frequencies between two HindIII fragments: In Hi-C, 

every HindIII fragment has two ends that can form ligation junction with other fragments, 

and the two ends of the same fragment may have different local mappability and GC content 

values. We therefore analyze the two ends of a fragment differently. Note that if two ends i 
and j belong to the same HindIII fragments, they will have the same length and distance 
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parameters, but different GC-content and mappability parameters. The goal of this 

normalization step is to estimate μi,j, the expected number of reads between two ends i and j. 
We have developed a new model to compute μi,j, which corrects both known and unknown 

sources of Hi-C biases.

μi, j = mi * mj * Fi, j
gc * Li, j * V i * V j

In this equation, mi and mj are the mappability of end i and end j. Fi, j
gc  is a correction factor 

for GC-bias. Li,j is the expected cis-contact frequency between end i and end j if both ends 

are 100% mappable. The explicit correction of factors mi, mj, Fi, j
gc  and Li,j are the same as 

described previously(Jin et al., 2013). We introduce two additional factors, Vi and Vj, for the 

“visibility” of the two ends. The correction of visibility corrects unknown sources of biases 

implicitly.

To further explain this model: (1) Mappability bias originates from the sequence alignment 

step, the mappability of two fragments are independent from each other, and independent 

from all other sources of biases. (2) The computation of Li,j corrects biases from distance 

and the length of the two fragments. These three parameters are interacting factors affecting 

the proximity ligation in Hi-C protocol, which need to be corrected using the joint function 

(Figure S1M). (3) The GC contents of the two fragments are likely interacting factors, which 

also need to be corrected using joint function Fi, j
gc . On the other hand, as Yaffe et al. 

pointed out(Yaffe and Tanay, 2011), the GC content of the two ends introduce bias mainly 

through affecting PCR efficiency during the library preparation, which is an independent 

step from the proximity ligation in Hi-C protocol. Therefore, we assume that the correcting 

factors in Fi, j
gc  and Li,j are independent from each other. (4) After correcting the 

aforementioned explicit biases, we assume that the implicit visibility factors Vi and Vj are 

additional independent sources of biases that are also independent from each other. 

Biologically, Vi and Vj may be understood as the concentration of the two ends in the Hi-C 

protocol. For example, HindIII sites at open chromatin are more likely to be digested by 

restrictive enzyme. Another possibility is that there might be unannotated copy number 

variants for a fragment. (5) Theoretically, the mappability biases can be corrected during 

visibility correction. An alternative model is: μi, j = Fi, j
gc * Li, j * V i * V j, in which Vi and Vj 

incorporate mi and mj as implicit bias sources. Here, we still correct mappability explicitly 

even though the difference between two models are trivial.

Correcting known sources of biases with explicit approach: This step is largely the same 

as described previously(Jin et al., 2013). Firstly, local fragment mappability is expected to 

have a linear effect on the expected ligation frequency(Yaffe and Tanay, 2011). We used a 

real value mi (ranges from 0 to 1) to represent the mappability of fragment i at forward or 

reverse strand (representing the two ends of the restriction fragment). To calculate the 

mappability of a fragment, we generated 36-base pseudo-reads every 9 bases within 500 
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bases from the end of fragment i, and then use bowtie to determine the fraction of uniquely 

mapped pseudo-reads.

It has been reported that ligation product processing and sequencing may be biased due to 

local GC content 200bp near restrictive cutting site(Yaffe and Tanay, 2011). We therefore 

corrected this bias by adjusting μi,j according to the local GC content of the two fragments. 

We split all the ends in to 20 equal-size groups according to their GC contents, and 

calculated two-dimensional GC-bias matrices (for the fold enrichment of average read 

counts between groups) using trans- Hi-C data. We corrected GC-bias in cis- Hi-C data with 

the GC-bias matrices.

To correct biases from end size and distance, we sorted all the ends based on the length of 

their corresponding HindIII fragments, and divided all the ends into 20 equal size groups. 

We define the distance between two ends being the size of the gap between their 

corresponding fragments, and set up 400 groups for distance within the range ~0–2Mb, or 

one group per 5kb distance. Therefore, group 1 has gap size ~0–5kb; group 2 has gap size 

~5–10kb; group 3 is ~10–15kb, etc. Because when we do the data filtering, we remove 

“inward” reads between end pairs with gap size < 1kb, in order to be consistent, we further 

split group 1 into two new groups with gap size ~0–1kb and gap size ~1–5kb. Therefore, 

there are total 401 groups based on distance.

Let Gi
len and Gj

len be the group assignment of ends i and j based on length; Gi, j
dist be the group 

assignment for the pair of end i and j based on the distance between the two ends; Gi
gc and 

Gj
gc be the group assignment for the ends i and j based on GC content of its two ends; and xi,j 

be the observed paired-end reads count between ends i and j.

We used the following equation to estimate Li,j

Li, j = ∑
k, l

xk, l
mk * ml

/ ∑
k, l

1

For ∀{k, l} satisfying: Gk
len = Gi

len, Gl
len = Gj

len, Gk, l
dist = Gi, j

dist, and chr(k) = chr(l), mk > 0.2, 

ml > 0.2 (Minimum mappability values of 0.2 are set to avoid division-by-zero errors). 

Therefore, this is a joint function of two size parameters and the distance parameter. There 

are 16,040 groups in total with different combination of fragment size and distance.

Fi, j
gc  is a correction factor for GC-bias, which can be computed with trans- Hi-C data using 

the following equation:

Fi, j
gc =

∑k, l
xk, l

mk * ml
/ ∑k, l1

∑u, v
xu, v

mu * mv
/ ∑u, v1
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For ∀{k, l} satisfying: Gk
gc = Gi

gc, Gl
gc = Gj

gc, chr(k) ≠ chr(l), mk > 0.2, ml > 0.2

And for ∀{u, v} satisfying: chr(k) ≠ chr(l), mu > 0.2, mv > 0.2

In this equation, the denominator is the average frequency of all trans- fragment pairs; and 

the numerator is the average frequency of a subset of those fragment pairs after stratifying 

GC-content. Note chr(i) is the chromosome where fragment i is in. The same equation was 

also used to correct trans- Hi-C data except requiring chr(k) ≠ chr(l).

Implicitly correcting unknown biases hidden in “visibility”: We computed visibility for 

every HindIII end using trans- Hi-C data. Since known sources of biases are corrected 

explicitly for cis- data normalization in 2Mb, we need to remove the known biases while 

calculating visibility factor. The following equation is used to compute Vi:

V i =

∑k
xi, k

mi * mk * Fi, k
gc * Fi, k

len

∑u, v
xi, k

mu * mv * Fu, v
gc * Fu, vlen / ∑u1

For ∀{k, l} satisfying: chr(k) ≠ chr(i), mk > 0.2, chr(k) ≠ chr(l), mk > 0.2, ml > 0.2;

And for ∀{u, v} satisfying: chr(u) ≠ chr(v), mu > 0.2, mv > 0.2.

This equation counts the total trans- reads for a HindIII end (after correcting the known bias 

including mappability, GC content and fragment length), and computes its correction factor 

by dividing with the average count of all the ends. Fgc is the same correction factor for the 

GC-bias computed in “Correcting known sources of biases with explicit approach”. Flen is a 

correction factor for HindIII fragment length calculated with trans- data:

Fi, jlen =
∑k, l

xk, l
mk * ml

/ ∑k, l1

∑u, v
xu, v

mu * mv
/ ∑u, v1

For ∀{k, l} satisfying: Gk
len = Gi

len, Gl
len = Gj

len, chr(k) ≠ chr(l), mk > 0.2, ml > 0.2;

And for ∀{u, v} satisfying: chr(u) ≠ chr(v), mu > 0.2, mv > 0.2.

Finally, after estimating the μ values for all the ends, we can sum all end-specific values to 

obtain expected Hi-C read counts for the whole fragment. The fragment-specific μ values are 

the Poisson parameter between fragments.

Use negative binomial model to compute the significance of pixels: Two classes of loop 

calling methods, looking for either “global enrichment” or “local enrichment”, have been 

developed to identify cis- chromatin interactions from Hi-C data. However, the identified 

loops from these methods only partially overlapped(Forcato et al., 2017). This is mainly due 
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to the interference from high background signal at short range, reflected by the strong signal 

along the diagonal in raw contact matrices. “Global enrichment” methods are highly 

sensitive to Hi-C data normalization because under- or over- correction of Hi-C biases will 

lead to a large number of false positives or false negatives. On the other hand, the alternative 

“local enrichment” performs better identifying discrete peak summits with low surrounding 

signal, but loses its power when surrounding background signal is high, such as at short-

range.

We have previously shown that the Hi-C reads count Xi,j between two fragments i and j can 

be modeled by negative binomial distribution(Jin et al., 2013):

Xi, j NB ri, j =
μi, j

β − 1, p = β − 1
β

This distribution has mean μi,j and variance β * μi,j, in which β is a constant number. To 

estimate β, we first selected 20 μ values spanning the range of all μi,j, then we for each of the 

selected 20 μ value, we took all pairs with expected values between 0.99 * μ and 1.01 * μ 
(this typically includes at least 100,000 fragment pairs), and then plotted the variance within 

each group against their expected reads count. Therefore, β is the slope value between 

variance and mean estimated from linear regression analysis. For each dataset, β needs to be 

re-estimated. We can therefore calculate p-value using negative binomial distribution for any 

pair of fragments pi,j = P(Xi,j ≥ xi,j | μi,j, β) reflecting the significance of enrichment. 

Importantly, negative binomial distribution has additive properties when p is constant: read 

counts between any two groups of fragments can be modeled by Xi∊I,j∊J~NB(ri∊I,j∊J, p), in 

which I and J are two disjoint subsets of restriction fragments, and 

ri ∈ I, j ∈ J = ∑i ∈ I, j ∈ J ri, j = 1
β − 1 ∑i ∈ I, j ∈ J μi, j is dependent on the sum of expected 

random collision frequency between two groups of fragments. This additive property is 

convenient because we can quickly determine the parameters for statistical tests when 

neighboring HindIII fragments are merged. Using this model, we can calculate the p value 

for any fragment pair i and j: pi,j = Prob(Xi,j > xi,j|μi,j, β).

Looping calling and visualization in ratio heatmaps: We computed the enrichment ratio 

of each pixel and used the value to draw the ratio heatmaps.

ei, j = xi, j + d / μi, j + d ,

In this equation, d is a dummy number to prevent large ratio when μi,j is very small.

The loop calling procedure identifies red pixels as chromatin interactions. Using p-value 

alone for loop calling is biased toward short-range, because the data density at short-range is 

high, a pixel may achieve statistical significance even with modest enrichment. It actually 

makes better sense to call loops using enrichment ratios. However, using a ratio cutoff is 

biased toward long-range because when μi,j is very small due to the low data density, the 
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ratio can be very big but lacks statistical significance. If the dummy number is too small, the 

ratio heatmaps have many red noisy pixels at long-range.

We devised a method to address this problem by adjusting the dummy number. For any 

pixel, the ratio decreases with increasing d, but its p-value does not change. Therefore, if we 

use a two-fold cutoff, there will be fewer positive pixels when dummy number is higher. We 

picked the minimum dummy number so that every pixel passed the two-fold cutoff have p-

value < 0.001. The dummy numbers are 6 (H1 hESC), 10 (IMR90, fetal CP, fetal GZ, and 

adult cortex), 7 (GM12878), 13 (hiPSC, hNPC, hNeuron, and fetal cortex). These dummy 

numbers are also used to compute the ratios when we draw the ratio heatmaps. In the ratio 

heatmaps, we used a default color scale so that the pixels with over two-fold enrichment are 

in brightest red.

Fragment-resolution eHi-C analysis to identify cis- looping interactions: There are some 

important differences between Hi-C and eHi-C data normalization. Firstly, eHi-C read from 

a HindIII end is completely predictable (Figure S1). Therefore, the mappability of a HindIII 
end is only 0 or 1. We therefore first filtered out data from all the 0 mappability ends. 

Furthermore, if a HindIII fragment does not have DpnII sites, it should not generate ligation 

reads because we used DpnII to fragment the DNA. We therefore next removed all the reads 

from such fragments and excluded these fragments from further analysis. After this 

additional data filtering, the resulting model does not involve mappability anymore. As 

discussed in “Compare the bias structure of Hi-C and eHi-C”, eHi-C reads are restricted by 

the size of DNA circles from the ligation product, we therefore need an additional parameter 

to model DNA circle size.

μi, j = Fi, j
gc * Fi, jcir * Li, j * V i * V j

In this equation, everything else is the same as Hi-C analysis except that Fi, j
cir is a correction 

factor for the size of ligation product of two ends. Let leniHD be the length form a HindIII 

end i to its nearest upstream DpnII site, leni, jcir = leniHD + lenjHD.

The following equations are used for eHi-C analysis:

Li, j = mean xk, l ,

For ∀{k, l} satisfying: Gk
len = Gi

len, Gl
len = Gj

len, Gk, l
dist = Gi, j

dist, chr(k) = chr(l).

Fi, j
gc =

mean xk, l
mean xu, v

For ∀{k, l}satisfying: Gk
gc = Gi

gc, Gl
gc = Gj

gc, chr(k) ≠ chr(l), and for ∀{u, v} satisfying: 

chr(u) ≠ chr(v).
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Fi, jcir =
mean xk, l
mean xu, v

For ∀{k, l}satisfying: lenk, l
cir = leni, jcir, chr(k) ≠ chr(l), and for ∀{u, v} satisfying: chr(u) ≠ 

chr(v).

V i =

∑k
xi, k

Fi, k
gc * Fi, k

len * Fi, k
cir

∑u, v
xi, k

Fu, v
gc * Fu, vlen * Fu, vcir / ∑u1

For ∀{k}satisfying: chr(k) ≠ chr(i), and for ∀{u, v} satisfying: chr(u) ≠ chr(v).

Fi, jlen =
mean xk, l
mean xu, v

For ∀{k, l}satisfying: Gk
len = Gi

len, Gl
len = Gj

len, chr(k) ≠ chr(l), and for ∀{u, v} satisfying: 

chr(u) ≠ chr(v).

Loop calling reproducibility—Assess the reproducibility of our loop calling method 

requires independent datasets with adequate sequencing depth. As mentioned in “Determine 
the sequencing depth required for fragment-level analysis”, we need ~200 million mid-range 

contacts (within 2Mb) for fragment-level loop calling. Therefore, we performed 

reproducibility analysis after splitting datasets with ~400 million mid-range contacts or 

more. To summarize, inadequate sequencing depth and batch variation are the two major 

causes for lower reproducibility; our peak caller consistently achieves Jaccard Index ~0.3 

with 60~150K mid-range (< 2Mb) loop calls at ~10kb resolution. This means that ~50% of 

pixels called from one replicate will be called in another replicate. This is a significant 

improvement compared to the metrics of existing methods according to (Forcato et al., 

2017). Specifically, Forcato et al. reported median JI < 0.03 for cis- interactions across 

multiple loop callers. Forcato et al. also reported that at high-resolution, HICCPUS achieved 

best JI among all methods because it is more conservative (calling fewer than 10K loops), 

but the median JI of HICCUPS is still only ~ 0.07.

Loop calling reproducibility in GM12878 and hiPSC cells: The GM12878 Hi-C dataset 

has 5 biological replicates from two different labs with ~385 million total mid-range 

contacts (Table S1). We therefore split the 5 replicates into two subsets with roughly equal 

mid-range contacts (199M and 187M) and compare the reproducibility of chromatin loop 

callings (Table S1). Using the same peak calling method described above, the two subsets 

identified 65K and 84K chromatin loops with 28K overlapping (Figure S4A).
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We next explored the reason for the non-reproduced loops in GM12878 cells. Our loop pixel 

caller requires p values < 0.001, and ratio > 2 after dummy number adjustment (see 

“Looping calling and visualization in ratio heatmaps”), but when sequencing depth is not 

adequate, loops from one subset may not pass significant test due to low read numbers. We 

found that most of the non-reproduced loops in one subset still have enrichment signal (but 

less significant) in the other subset. For example, among the 56,564 loops identified from 

subset 2 but not subset 1, in subset 1 data 37,106 (66%) have ratios > 1.5, and 43,515 (77%) 

have p values < 0.05; only 692 (1.2%) do not have any enrichment signal (Figure S4B). Due 

to this reason, we always identify more loops when data from subsets are pooled together; 

the pooled data identity all the overlapped loops and over 80% of the subset-specific non-

overlap loops (Figure S4A). We concluded that inadequate sequencing depth is a major 

reason for non-reproduced loops, and therefore always use pooled data when multiple 

biological replicates are available.

We also performed the same analysis after splitting the hiPSC eHi-C data into two subsets 

with 172M and 176M mid-range cis-contacts (Table S1). The two subsets called 64K and 

55K loop pixels with ~22K common ones (Figure S4C). Again, inadequate sequencing 

depth is the major reason for non-reproduced loops (Figure S4D).

Loop call reproducibility in fetal brain: The fetal brain Hi-C dataset is generated by the 

same lab with a total of ~471 million mid-range contacts from 6 Hi-C experiments, 

including 3 cortical plate (CP) and 3 germinal zone (GZ) cortex samples (Table S1). The 

sequencing depth and QC metrics of the 6 samples are quite even (Table S1). Although we 

treated CP and GZ samples separately in all follow-up analyses, the similarity between the 

two samples are very high, most likely reflecting the fact that CP and GZ are two spatially 

close regions of brain cortex. At compartment level, CP and GZ show highest similarity 

(Figure 1D). Our method identified 138K and 141K loops from CP and GZ sample, with 

71K overlapping (Jaccard index 0.35) (Figure S4E). After pooling CP and GZ data together, 

we called 244,586 loops covering 99.8% of the overlap loops between CP and GZ, and 78% 

of non-overlap loops.

Given the high reproducibility between CP and GZ data, we also tried to group this dataset 

into three subsets (every subset has one CP and one GZ); each subset has 150~160 million 

mid-range contacts (Table S1). Again, the three subsets identified similar number of 

chromatin loops (114K, 116K and 119K), the overlap between any two subsets is 54~58K 

loops. 59~64% of chromatin loops from any subset can be called in at least another subset 

(Figure S4F, left panel). Again, the pooled dataset can recover nearly 80% of all loops 

identified from the subset analysis, including 60~70% of the subset-specific loops (Figure 

S4F, right panel).

Reproducible neural chromatin loops among 6 neural samples: Finally, we compared the 

loops identified from 6 neural samples (hNPC, hNeuron, fetal cortex, adult cortex, CP and 

GZ), and postulated that a meta-analysis of these heterogeneous samples may improve both 

sensitivity and accuracy, even though the variation between samples may also reflect the 

tissue- or cell-type specificity. We identified 165K loops that are observed in at least 2 

samples, which are considered credible neural loops (Figure S4K). As expected, this number 
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is higher than loops identified from any sample alone; averagely ~60% of loops from any 

single dataset are credible neural loops level.

Other data analysis methods

ChIP-seq analysis: ChIP-seq data were mapped to human reference genome hg19 using 

Bowtie. The first 36 bases of each read were used for mapping. We only use non-redundant 

reads to eliminate possible duplicates from biased PCR amplification. We used 

MACS(Zhang et al., 2008) with default parameters to call ChIP-seq peaks.

Network analysis: For network analysis of neuron differentiation chromatin loops, we took 

all fragments containing TSSs, and all fragments containing H3K27ac peaks in hiPSC, 

hNPC or hNeuron. All chromatin loops in the three cell types are used to construct the 

network. Each fragment is a node and every chromatin loop is an edge. We built the network 

with NetworkX(Hagberg et al., 2008) and visualized with Cytoscape(Shannon et al., 2003). 

The network in Figure 5A is drawn using only a portion of top interactions (~800) based on 

enrichment ratios. The resulting network is divided into hundreds of components and the 

smallest component is two node and one edge. We defined 603 multi-node components 

(with at least 5 edges) as candidates of enhancer-promoter aggregates. We call neuron-

specific component if the average ratio of all its edges in hNeuron is >1.5 fold higher than 

the average ratio in hiPSC. 174 components satisfied these criteria.

Gene Ontology analysis: For GO analysis, we used RefSeq genes as the background genes 

downloaded from UCSC table browser. We downloaded the complete gene sets (function 

categories) from MSigDB (Molecular Signatures Database, version 5.2) from GSEA website 

(http://software.broadinstitute.org/gsea). We used one-tailed binomial test to calculate p-

values of enrichment of any function categories. We used the R package qvalue to estimate 

q-values and FDR for the p-values. We used a cutoff FDR < 0.05 in the analysis.

GWAS SNP, eQTL, and LD analyses: We compiled lists of GWAS SNPs in neuronal 

relevant disease and diabetes/obesity relevant disease from the NHGRI-EBI GWAS 

catalog(MacArthur et al., 2017) (Table S5). The eQTL data of 44 tissues were downloaded 

from GTEx portal.(Consortium et al., 2017) We calculated linkage disequilibrium (LD) for 

all pairs of genetic variants within 1Mb, among individuals with global Europe ancestry 

estimate ≥0.8 in TOPMed freeze5b samples. The global ancestry estimates were derived 

from local ancestry estimates from RFMix(Maples et al., 2013) using data from the Human 

Genome Diversity Project (HGDP)(Li et al., 2008) as the reference panel with seven 

populations, namely Sub-Saharan Africa, Central and South Asia, East Asia, Native 

America, Oceania, and West Asia and North Africa (Middle East). Global ancestry for each 

TOPMed individual is defined as the mean local ancestry across all HGDP SNPs. We 

defined the LD of a GWAS SNP being the region that every SNP inside has D’ > 0.8 with 

the lead SNP. Consequently, the median size of LD’s is ~150kb. A bigger LD should be 

more inclusive with potential causal SNPs, which is probably beneficial for the study of 

SNPs from highly heterogeneous sources provide by GWAS catalog. Additionally, bigger 

LD also make it more likely that the defined outside-LD SNP-gene pairs (loop or eQTL) 

represent distal regulatory relationship.
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Predicting GWAS target genes with chromatin loop or eQTL data: For any GWAS lead 

SNP, we define a loop target gene if its TSS loop to the GWAS LD. Similarly, because eQTL 

data are in the format of SNP-gene pairs, we also predict a GWAS SNP’s eQTL target gene 

if the eQTL data link a SNP in the LD to the TSS. Note that in this study, we only focused 

on predicted genes with TSS outside of the GWAS LD. Additionally, since the GTEx only 

called cis-eQTLs within 1Mb, we only used chromatin loops in this window for fair 

comparison.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• HiCorr allows robust mapping of sub-TAD chromatin interactions with Hi-C

• Low-input “easy Hi-C” protocol compatible with 50–100K cells

• Enhancer loops and aggregates are better marks of cell identity than 

compartments

• Chromatin loops outperform eQTLs in defining neurological GWAS target 

genes
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Figure 1. Mapping 3D genome with eHi-C.
A, The scheme of eHi-C. B, Heatmaps show the contact matrices (Chr17) from Hi-C and 

eHi-C at 250kb resolution. The eigenvectors from Hi-C and eHi-C were very similar, leading 

to the same compartment A/B assignment. The comparison of eigenvectors between Hi-C 

and eHi-C in two other chromosomes are shown in the right panel. Histogram listed the r2 

values of all chromosomes when comparing eigenvectors between eHi-C and Hi-C data. C, 

Heatmaps of contact matrices from Hi-C and eHi-C at 40kb resolution. The top track is 

drawn using a published IMR90 Hi-C dataset with ~3 billion reads. A track of TAD 

structures is plotted in green. On the right is a scatter plot comparing the directionality 

indexes (DI). The +/− sign of DI is used to determine TAD boundary. Very few bins change 

their signs of DI, indicating consistent TAD boundaries between Hi-C and eHi-C. D. 

Heatmap showing the similarity between 5 Hi-C and 7 eHi-C datasets (including a low-

depth IMR90 eHi-C dataset) at compartment level. The correlation coefficient is computed 

by comparing the correlation matrices from different samples.
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Figure 2. HiCorr improves the rigor of Hi-C bias-correction.
A, Chromatin loops contributes to cis but not trans Hi-C reads, leading to an elevated cis/

trans visibility ratio. B, Scatter plot of all fragments in GM12878 Hi-C data showing a skew 

towards higher cis- than trans- visibility. C-D, Epigenetically marked regions and repeat 

elements have a higher cis/trans visibility ratio. E, Comparing the results of different 

visibility correction methods. The number in the lower left corner indicates color scale. For 

example, the color box of “2” in the ratio heatmaps indicates that any contact with O/E > 2 

will be shown in dark red; contacts with 1< O/E < 2 will be in light red; white pixels in the 

heatmaps are O/E < 1. F. Comparison between HiCorr and ICE in capturing promoter-

centered interactions from pcHi-C data in GM12878 cells. Note that for ICE curves, we 

performed ICE normalization followed by distance-correction. The promoter-center 

interactions from pcHi-C are divided into four groups based on distance (short- or long-

range) and the type of interactions (promoter-promoter or promoter-other). The plots 
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showing the number of recovered pcHi-C interactions when the same number of total loop 

pixels were called from HiCorr- or ICE-corrected contact heatmaps. Up to 500K total loop 

pixels were tested in these plots.
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Figure 3. Cell type-specific chromatin loops or enhancer aggregates.
A-B, The bias corrected Hi-C heatmaps at a GM12878-specific enhancer aggregate (A), and 

the transcription levels of the six genes in this region (B). C, Left: Browser tracks showing 

the GM12878 ChIP-seq data and the locations of guide RNAs for the enhancer inhibition 

with sgRNAs-CARGO (STAR Methods). Right: ChIP-qPCR results showing the loss of 

H3K27ac occupancy after inhibiting each of enhancers. D, The expression levels of every 

gene when the four enhancers indicated in (A and C) are repressed using CRISPRi; data are 

representative from > 3 independent experiments. Error bar: s.d. of 3 PCR replicates; * p < 

0.05, ** p < 0.01 in t test. E, Architecture of HoxA gene cluster in H1, IMR90 and 

GM12878 cells. F, Expression of HoxA genes in these three cell types.
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Figure 4. Chromatin loops are hallmarks of neural differentiation and neural functions.
A, Venn diagram showing the overlap between chromatin interactions from hiPSCs, hNPCs 

and hNeurons. B, Distance distribution of chromatin loops in three cell types. C, Bar graph 

showing the percentage of chromatin interactions with various histone marks. D, Gene 

ontology terms for genes involved in top 3,000 chromatin loop pixels in each cell type 

ranked by ratio. E. Enrichment of neuron- or diabetes/obesity relevant GWAS SNPs at 

chromatin loops. ***p<0.001, binomial test. F, Compartment switching status of the hNPC- 

(upper) or hNeuron-specific (lower) loops. The four quadrants indicate the compartment-

switching status after differentiation. Red dots: bins containing neural loops. All bins in the 

genome were plotted in the background as blue cloud. Number of red bins, total bins, and 

percentages are shown in each quadrant.
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Figure 5. Identifying E-P aggregates associated with neurogenesis.
A, An exemplary enhancer-promoter network with ~800 chromatin loops during 

neurogenesis. Neuron-specific network components can be identified as candidate neuronal 

enhancer aggregates. Genes in a few neural enhancer aggregates are listed on the right: red, 

upregulated in neural differentiation, green, downregulated. B, Formation of enhancer 

aggregate at the FOXG1 locus during neural differentiation. C, Summary of gene expression 

in neural enhancer aggregates. D, Classification of neural enhancer aggregates based on their 

dynamic gene expression during differentiation. E, H3K27ac occupancy at different 

categories of neural enhancer aggregates. F, Compare the strength (ratio) of loop pixels at 

the differentially expressed genes (DEGs). Top 500 DEGs were picked by comparing hNPC 

(left) or hNeuron (right) to hiPSC. ***, p < 0.001; **, p< 0.01 Wilcoxon rank-sum test.
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Figure 6. Chromatin loop outperforms eQTLs in explaining GWAS results.
A, Heatmap showing the chromatin loop predicted GWAS target genes, and their overlap 

with GTEx eQTL data. Highlighted: Tier 1 neural predictions supported by at least two 

neural Hi-C datasets. B, Distance distribution of predicted GWAS SNP-TSS pairs, based on 

whether they are supported by loop, eQTL, or both. C, We used neural loops to predict 

1,096 target genes for brain GWAS SNPs, and compared their expression to eQTL predicted 

genes in 48 GTeX tissues. Tissue with red stars: neural loop-predicted genes have higher 

expression levels than eQTL-predicted genes. *p<1e-2,**p<1e-3,***p<1e-4,****p<1e-5 

Wilcoxon rank sum test; Highlighted in yellow: 13 brain tissues. Numbers in parenthesis: 

the number of genes predicted with eQTL data in each tissue. D, Two GWAS loci examples 

for which neural loop and eQTL make conflicting predictions. E, GO terms enriched in loop 

or eQTL predicted target genes, when the two methods make conflicting predictions. F, The 

CACNA1C GWAS locus is associated with an hiPSC-specific CTCF loop. Highlighted are 
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the three CTCF occupied regions and the CTCF motif directionality. G, Expression of 

CACNA1C during neurogenesis using RNA-seq data. H, CTCF deletion downregulates 

CACNA1C in hESC but not NPC. Data are representative from > 3 independent 

experiments. Error bar: s.d. of three independent experiments; * p < 0.05, ** p < 0.01 in t 
test.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Rabbit polyclonal anti-H3K4me3 Abcam Cat#ab8580; RRID:AB_306649

Rabbit polyclonal anti-H3K27ac Abcam Cat#ab4729; RRID:AB_2118291

Rabbit polyclonal anti-H3K27me3 Millipore Cat#07–449; RRID:AB_310624

Rabbit polyclonal anti-H3K36me3 Abcam Cat#ab9050; RRID:AB_306966

Rabbit polyclonal anti-CTCF Abcam Cat#ab70303; RRID:AB_1209546

Biological Samples

Adult anterior temporal cortex Dr Craig Stockmeier, University of Mississippi 
Medical Center

This study

Fetal cerebra NIH NeuroBiobank This study

Chemicals, Peptides, and Recombinant Proteins

Collagenase Gibco Cat#17104–019

Dorsomorphin Tocris Cat#3093

A83–01 Tocris Cat#2939

Cyclopamine Cellagen Technology Cat#C2925–10

BDNF Peprotech Cat#450–02

GDNF Peprotech Cat#450–02

Deposited Data

Data of eHi-C protocol optimization on 
IMR90

This study GEO: GSE89324

Raw and analyzed data of H1 and neuron 
differentiation

This study GEO: GSE115407

Raw and analyzed data of brain tissues This study GEO: GSE116825

Fetal CP and GZ HiC Chromosome conformation elucidates regulatory 
relationships in developing human brain

GSM2054564, GSM2054565, 
GSM2054566, GSM2054567, 
GSM2054568, GSM2054569

GM12878 HiC A 3D Map of the Human Genome at Kilobase 
Resolution Reveals Principles of Chromatin 
Looping

GSM1551583, GSM1551584, 
GSM1551586

GM12878 HiC Whole-genome haplotype reconstruction using 
proximity-ligation and shotgun sequencing

GSM1181867, GSM1181868

IMR90 Hi-C A high-resolution map of the three-dimensional 
chromatin interactome in human cells

GSM1055800, GSM1055801, 
GSM1154021, GSM1154022, 
GSM1154023, GSM1154024, 
GSM1055802, GSM1055803, 
GSM1154025, GSM1154026, 
GSM1154027, GSM1154028

H1 Hi-C Chromatin architecture reorganization during stem 
cell differentiation

GSM1267196. GSM1267197

H1 ChIP-seq: input, H3K4me1, 
H3K4me3, H3K27ac, H3K27me3, 
H3K36me3

Roadmap Epigenomics Project GSE16256

H1 ChIP-seq: CTCF ENCODE Project Consortium GSM733672

IMR90 input A high-resolution map of the three-dimensional 
chromatin interactome in human cells

GSM1055808
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REAGENT or RESOURCE SOURCE IDENTIFIER

IMR90 CTCF A high-resolution map of the three-dimensional 
chromatin interactome in human cells

GSM1055825

IMR90 H3K4me1 A high-resolution map of the three-dimensional 
chromatin interactome in human cells

GSM1055814

IMR90 H3K4me3 A high-resolution map of the three-dimensional 
chromatin interactome in human cells

GSM1055816

IMR90 H3K27ac A high-resolution map of the three-dimensional 
chromatin interactome in human cells

GSM1055818

IMR90 H3K27me3 Roadmap Epigenomics Project GSE16256

IMR90 H3K36me3 A high-resolution map of the three-dimensional 
chromatin interactome in human cells

GSM1055820

GM12878 input ENCODE Project Consortium GSM733742

GM12878 CTCF ENCODE Project Consortium GSM733752

GM12878 H3K4me1 ENCODE Project Consortium GSM733772

GM12878 H3K4me3 ENCODE Project Consortium GSM733708

GM12878 H3K27ac ENCODE Project Consortium GSM733771

GM12878 H3K27me3 ENCODE Project Consortium GSM733758

GM12878 H3K36me3 ENCODE Project Consortium GSM733679

Source gel image This study DOI: 10.17632/tpvjrcg454.2

Experimental Models: Cell Lines

IMR90 fibroblasts ATCC CCL-186

H1 hESC WiCell WA01

Human skin fibroblast CCD-1079Sk ATCC CRL-2097

hNPC differentiated from hiPSC This study N/A

hNeuron differentiated from hiPSC This study N/A

DI-Cas9-H9 This study N/A

GM12878 Coriell Institute CEPH/UTAH Pedigree 1463

Oligonucleotides

Oligos and primers used in this study 
(see Table S2)

This study N/A

Recombinant DNA

Lenti-dCas9-KRAB-blast Addgene Cat#89564

LentiCRISPRv2 Addgene Cat#98654

px332-original plasmid Joanna Wysocka (Gu et al., 2018) N/A

CARGO plasmids Joanna Wysocka (Gu et al., 2018) N/A

Software and Algorithms

HiCorr This study https://github.com/JinLabBioinfo/HiCorr

Bowtie Langmead et al., 2009 http://bowtie-bio.sourceforge.net/
index.shtml

Compartment level analysis This study https://github.com/shanshan950/
compartment_analysis

Domain Caller Dixon et al., 2013 http://bioinformatics-renlab.ucsd.edu/
collaborations/sid/domaincall_software.zip
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REAGENT or RESOURCE SOURCE IDENTIFIER

ImageJ Schneider et al., 2012 https://imagej.nih.gov/ij/

MACS Zhang et al., 2008 https://github.com/taoliu/MACS

NetworkX Hagberg et al., 2008 https://networkx.github.io/

Cytoscape Shannon et al., 2003 https://cytoscape.org/

Gene Ontology DAVID Bioinformatics Resources https://david.ncifcrf.gov/
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