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Abstract

In this review, we highlight Professor John Rothwell’s contribution towards understanding basal 

ganglia function and dysfunction, as well as the effects of subthalamic nucleus deep brain 

stimulation (STN DBS). The first section summarizes the rate and oscillatory models of basal 

ganglia dysfunction with a focus on the oscillation model. The second section summarizes the 

motor, gait, and cognitive mechanisms of action of STN DBS. In the final section, we summarize 

the effects of STN DBS on motor and cognitive tasks. The studies reviewed in this section support 

the conclusion that high frequency STN DBS improves the motor symptoms of Parkinson’s 

disease. With respect to cognition, STN DBS can be detrimental to performance especially when 

the task is cognitively demanding. Consolidating findings from many studies, we find that while 

motor network oscillatory activity is primarily correlated to the beta band, cognitive network 

oscillatory activity is not confined to one band but is subserved by activity in multiple frequency 

bands. Because of these findings, we propose a modified motor and associative/cognitive 

oscillatory model that can explain the consistent positive motor benefits and the negative and null 

cognitive effects of STN DBS. This is clinically relevant because STN DBS should enhance 

oscillatory activity that is related to both motor and cognitive networks in order to improve both 

motor and cognitive performance.
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Introduction

Professor John Rothwell’s contribution towards understanding basal ganglia function and 

dysfunction, as well as the effects of subthalamic nucleus deep brain stimulation (STN DBS) 

in Parkinson’s disease (PD), is broad reaching and significant (Ashby and Rothwell 2000; 

Berardelli et al. 2001; Mahlknecht et al. 2017; Rothwell and Edwards 2013). His early work 

provided partial support for the rate model of basal ganglia dysfunction and contributed to 

the refinement of the rate model (Jahanshahi et al. 2000; Thompson et al. 1988). He also 

conducted key experiments whose findings did not support the rate model and were hinting 

at perhaps an alternate model (Brown et al. 1999; Thompson et al. 1988), now more 

commonly referred to as the pattern model or oscillatory model of basal ganglia dysfunction 

(Bergman et al. 1994; Hutchison et al. 2004; Nambu et al. 2015). In addition, his work has 

significantly contributed to our understanding of the therapeutic effects of deep brain 

stimulation and some of the mechanisms that underlie the therapeutic effect of deep brain 

stimulation (Ashby and Rothwell 2000; Jahanshahi et al. 2000; MacKinnon et al. 2005; 

Mahlknecht et al. 2017; Nowak et al. 2005; Prodoehl et al. 2007). Much of this review will 

focus on the subthalamic nucleus (STN) and the effects of STN DBS. First, two models of 

basal ganglia function and dysfunction will be briefly summarized: the rate and oscillation 

model. In this section, we will focus on the oscillation model of basal ganglia dysfunction. 

Second, we will summarize what is known about the mechanisms of action of STN DBS, 

highlight the importance of the STN, and propose ideas to address gaps in our understanding 

especially in the context of the effect of STN DBS on oscillations in the cognitive network. 

Finally, we will summarize the beneficial and detrimental effects of STN DBS on motor and 

cognitive tasks.

Models of basal ganglia dysfunction

Models of basal ganglia dysfunction have evolved over the past several decades. Initial 

models were based on our growing understanding of neuroanatomy, neurochemistry, and 

neurophysiology of the basal ganglia. This guided the development of much of the early 

models including the parallel circuit model, the direct and indirect pathway model, and the 

center surround models of basal ganglia function/dysfunction (Albin et al. 1989; Alexander 

and Crutcher 1990; Alexander et al. 1986; DeLong 1990; Mink and Thach 1993). The nature 

of the neuronal output of the basal ganglia, namely its rate and pattern, has been one focus of 

later models of basal ganglia dysfunction (Bergman et al. 1994; Gatev et al. 2006; Hutchison 

et al. 2004; Nelson and Kreitzer 2014; Salvade et al. 2016; Wichmann 2019). The most 

recent models have focused on much more than the rate and pattern of the output nuclei (e.g. 

external globus pallidus interactions with the striatum and the STN in rodents (Abdi et al. 

2015; Glajch et al. 2016; Mastro et al. 2017), and the significance of striatal microcircuitry 

and synaptic plasticity (Plotkin and Goldberg 2019)). It should be noted that neuroanatomy 

dependent models are closely linked with the output dependent models of basal ganglia 

dysfunction. For instance, both the classic anatomy dependent model of the direct and 

indirect pathways and the output dependent rate model would predict an increased firing rate 

in the basal ganglia output nuclei in persons with PD (Hutchison et al. 1994). Table 1 lists 

the popular models of basal ganglia dysfunction. Even though significant progress has been 

made in understanding basal ganglia dysfunction in the past several decades, none of the 
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models listed in Table 1 fully explain basal ganglia dysfunction and not all predictions from 

these models are supported by empirical findings. This review will focus on the rate and 

pattern or oscillation models, with a particular focus on the oscillation model. Because the 

focus of this review and a central point of discussion in current models of basal ganglia 

dysfunction are abnormal oscillations, we will refer to the pattern model as the oscillation 

model henceforth in this review. For recent detailed reviews and updates on the anatomical 

models of basal ganglia dysfunction, the readers are directed elsewhere (Calabresi et al. 

2014; McGregor and Nelson 2019; Nelson and Kreitzer 2014; Wichmann 2019).

Rate model

The rate model is closely tied with the idea of the direct and indirect pathways of the basal 

ganglia (Albin et al. 1989; DeLong 1990; Nelson and Kreitzer 2014). Simply put, given that 

the output of the basal ganglia is inhibitory, activating the direct pathway is rate decreasing 

resulting in movement initiation, while activating the indirect pathway is rate increasing 

resulting in movement inhibition (Albin et al. 1989; DeLong 1990). Basal ganglia output 

affects cortical activity via the ventrolateral thalamus (Albin et al. 1989; Alexander and 

Crutcher 1990). The excitatory output of the thalamus, which affects cortical output and 

movement initiation, is disinhibited by the decrease in the mean firing rate of the internal 

globus pallidus or inhibited by the increase in the mean firing rate of the internal globus 

pallidus (Albin et al. 1989). In PD, degeneration of the substantia nigra pars compacta leads 

to the over activity of the indirect pathway and under activity of the direct pathway (Albin et 

al. 1989). This leads to an increased firing rate that inhibits thalamocortical neurons. 

Consequently, impairments in initiating movement and slowness of movement ensue. The 

main driving force for the increased discharge of the internal globus pallidus and the 

substantia nigra pars reticulata is posited to be an hyperactive STN (Limousin et al. 1997).

An additional factor which could contribute to the increased basal ganglia discharge rate is 

neuro-plastic changes that accompany dopaminergic degeneration (Wichmann 2019). The 

neuro-plastic changes include 1) a partial loss of the hyper direct cortico-subthalamic 

projections in parkinsonian monkeys (Mathai et al. 2015), as well as reduced cortico-

subthalamic transmission in parkinsonian mice (Chu et al. 2017), and 2) an increase in the 

number of synaptic connections between the external globus pallidus and STN per axon 

terminal which results in the strengthening of the external globus pallidus – STN pathway in 

parkinsonian rats and mice (Fan et al. 2012). While the neuro-plastic changes are triggered 

by dopaminergic loss, the processes that regulate the loss of cortico-subthalamic 

transmission or improve the strength of the external globus pallidus-STN transmission and 

affect basal ganglia output are unknown. One candidate mechanism is the activation of STN 

N-Methyl-d-aspartate receptors, which is likely to affect the neuro-plastic changes at the 

synapses between the external globus pallidus and the STN (Chu et al. 2017; Chu et al. 

2015; Fan et al. 2012). Neuro-plastic changes following dopaminergic degeneration is an 

evolving area of research and is likely to significantly contribute to updating models of basal 

ganglia dysfunction.

One of the limitations of the rate model is that ablative surgery and neurostimulation have 

similar therapeutic effects (Hutchison et al. 2004). Furthermore, ablative surgery and 
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neurostimulation have the same effects in hypokinetic (Parkinson’s disease) and 

hyperkinetic (Huntington’s disease) movement disorders (Nelson and Kreitzer 2014). 

Another limitation is the presence of hypo- and hyperkinetic symptoms (i.e., bradykinesia 

and chorea respectively) in a hyperkinetic disorder such as Huntington’s disease (Thompson 

et al. 1988). Similarly, bradykinesia, a hypokinetic symptom, and dystonia, a hyperkinetic 

symptom, can be found together in PD (Nelson and Kreitzer 2014). Finally, although 

abnormality in firing rates are often found in the output nuclei of the basal ganglia, these 

changes can be considered small in magnitude (Nelson and Kreitzer 2014). The firing rate in 

the internal globus pallidus neurons increases by 10–22% in the Parkinsonian state 

(Hutchison et al. 2004). The changes observed in the basal ganglia output firing rate, while 

significant, are argued to be insufficient to explain the motor dysfunction observed in PD 

(McGregor and Nelson 2019; Nelson and Kreitzer 2014; Wichmann 2019).

Oscillation model

The oscillation model of basal ganglia dysfunction puts suggests that abnormalities in firing 

rates are insufficient at explaining the motor dysfunction observed in PD. Instead, the 

oscillation model postulates that abnormalities in neuronal oscillations may be linked with 

the motor dysfunction observed in PD (Brown 2003; Eusebio and Brown 2007; Hutchison et 

al. 2004). In animal models of PD and in persons with PD, abnormalities in oscillations are 

observed both within and between neuronal populations (Bevan et al. 2002; McGregor and 

Nelson 2019). The source of these pathological oscillations in PD is unknown. Hypothesized 

sources include the striatum, the subthalamic nucleus, and the cortex (Bevan et al. 2002).

The oscillation model is related to the idea of PD affecting multiple neuronal networks 

(Wichmann 2019). It is thought that information transfer across different areas in the motor 

network occurs through oscillations. Neuronal populations oscillating at the same frequency 

are thought to share similar information content (Akam and Kullmann 2010). As a result, 

areas that share similar information content tend to be coherent in either phase or amplitude 

or both (Fries 2005; Siegel et al. 2012). Beta band oscillations and synchronizations within 

the motor network are well documented in PD (Hammond et al. 2007). Beta band 

oscillations are increased in PD and reduced with dopaminergic medication indicating the 

dependence of beta band synchronization on the integrity of dopaminergic inputs to the 

striatum (Brown et al. 2001; Hammond et al. 2007). In PD, beta band synchronization in the 

motor network is considered anti-kinetic and linked with movement suppression (Brown 

2003). On the other hand, gamma synchronization is considered pro-kinetic and is linked 

with movement initiation (Brown 2003).

The oscillation model can serve as a mechanism for action selection (Brittain et al. 2014). 

Beta activity underlies action selection by promoting the current state over a novel action 

(Brittain and Brown 2014). Within the basal ganglia-thalamocortical motor network, beta 

band activity is hypothesized to maintain a tonic state that corresponds to maintaining 

posture at rest prior to initiating movement (Jenkinson and Brown 2011). This tonic state, 

which could be considered a ‘beta threshold’ created by synchronization in the beta band, 

has to be overcome by phasic activity when movement needs to be initiated. A similar view 

was postulated by Courtemanche and colleagues (2003) and their findings suggest that beta 
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band activity in the basal ganglia is non-pathological. Synchronization in the beta band 

across the basal ganglia-thalamocortical network is hypothesized to act as a spatiotemporal 

filter in healthy awake behaving monkeys. In order for the cortical input to the striatum to 

propagate to downstream structures of the pallidum and thalamus, the cortical input should 

exceed this beta synchronization at focused striatal areas that relate to the movement that 

needs to be initiated. Focused/modular cortical input can cause movement related neurons in 

the striatum to phasically burst and desynchronize from the population level beta band 

enhancement (Courtemanche et al. 2003; Hutchison et al. 2004). This results in information 

being propagated to downstream basal ganglia and cortical structures. In this way, action that 

is needed is selected by beta band desynchronization while unwanted actions remain 

suppressed by beta band synchronization. In PD, degenerative loss of dopaminergic neurons 

results in the alteration of the sensorimotor mapping of the surviving neurons (McGregor 

and Nelson 2019). This adversely affects the focused/modular input-output organization of 

the basal ganglia network. While segregation remains, receptive fields are less specific and 

more diffuse leading to a reduction in functional segregation in the basal ganglia networks 

(McGregor and Nelson 2019). Consequently, more neurons may be entrained in the beta 

band and overcoming the widespread beta band enhancement to initiate movement becomes 

more difficult (Hutchison et al. 2004).

Most of the research examining STN beta band synchronization, its relationship to motor 

symptoms of PD, and its alteration by dopaminergic medication has been conducted at rest 

and is quite well understood as it applies to the resting state (Alonso-Frech et al. 2006; Kuhn 

et al. 2006; Kühn et al. 2005; Kuhn et al. 2009; Marceglia et al. 2006; Priori et al. 2004; 

Weinberger et al. 2006). This research concludes that, in persons with PD, beta band 1) 

synchronization is exaggerated at rest, 2) synchronization at rest is associated with motor 

impairment while off medication, 3) synchronization at rest is suppressed by dopaminergic 

medication, and 4) suppression at rest following dopaminergic medication is associated with 

motor improvement (Brittain et al. 2014; Brown and Williams 2005; Hammond et al. 2007).

On the other hand, beta band activity during movement is not as well understood. This is 

important because bradykinesia, the major deficit in PD, occurs during movement 

(Hammond et al. 2007). Research examining STN beta band activity prior to and during 

movement in persons with PD has found that beta band activity is suppressed prior to 

movement, this suppression continues during movement, and is reversed, i.e., beta band 

enhancement, later in movement (Kühn et al. 2004). In addition, when movement requires to 

be unexpectedly inhibited, beta band enhancement is observed earlier relative to trials that 

did not require movement to be inhibited (Kühn et al. 2004). This finding supports the idea 

that beta band suppression facilitates movement while beta band enhancement inhibits 

movement. Kühn et al. (2004) also showed that persons with PD were able to modulate beta 

band activity, i.e. beta band was suppressed prior to movement onset and was enhanced 

when movement was instructed to be inhibited. So the question remains, if persons with PD 

can modulate beta band activity, why is bradykinesia observed in PD? One theory is that, 

while persons with PD are able to modulate beta band activity, the amount of modulation is 

insufficient and therefore bradykinesia is observed. In support of this idea, one study has 

shown that relative to healthy controls, persons with PD exhibit reduced beta 

desynchronization prior to movement onset and during movement in the contralateral 
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sensorimotor cortices (Heinrichs-Graham et al. 2014). However, two studies have shown the 

opposite effect, i.e., increased beta desynchronization during movement in persons with PD 

relative to healthy controls (Chung et al. 2018; Stegemöller et al. 2016). Chung et al. (2018) 

state that increased beta desynchronization during movement can imply that the cortex is not 

functioning normally and that increased beta-band desynchronization can in fact result in 

bradykinesia. The fact that increasing beta band activity was positively correlated to 

movement velocity, accompanied with the fact that administration of levodopa decreased 

beta-band desynchronization was further evidence that increased desynchronization is 

associated with bradykinesia (Chung et al. 2018). To summarize these findings, even though 

people with PD modulate beta oscillations when they move, the amount of suppression is 

possibly not optimal, so their movements remain impaired. One way in which STN DBS 

could improve bradykinesia is by optimally modulating the beta activity during movement. 

Further research is required to determine the extent to which beta band modulation during 

movement is impaired in persons with PD. Additionally, more research is required to 

determine the relationship between beta activity and bradykinesia with respect to the effects 

of dopaminergic medication and STN DBS.

In addition to synchrony in the beta band, more recently the duration of beta bursting has 

acquired considerable attention in PD. This is because short duration beta bursts are 

considered to be non-pathological (Feingold et al. 2015). In healthy monkeys, short duration 

beta bursts are observed following movement and are thought to realign circuit activity so as 

to modify or maintain the strengths of the connections involved in task performance 

according to contextual demands (Feingold et al. 2015). In persons with PD, prolongation of 

beta bursts are predicted to impair such flexibility in the neural control of behavior (Feingold 

et al. 2015) and this could manifest in the form of motor symptoms. In line with this 

prediction, in PD, beta activity is not constantly increased, but varies as a function of both 

duration and amplitude (Tinkhauser et al. 2017). Furthermore, empirical evidence indicates 

that short duration beta bursts in the STN are associated with motor improvement while 

longer duration bursts were related to motor impairment (Tinkhauser et al. 2017). Another 

reason for beta band duration receiving considerable attention is because of its importance in 

adaptive STN DBS. Adaptive STN DBS is a novel method of stimulation where STN DBS 

is turned on or off based on a predetermined beta band amplitude threshold. STN DBS is 

turned on when beta band activity exceeds this threshold and turned off when beta band 

activity falls below this threshold (Little et al. 2013). Preliminary studies show that adaptive 

STN DBS is better than traditional STN DBS (Little et al. 2013) and the mechanism of 

action differs between the two forms of STN DBS. Adaptive STN DBS reduces beta burst 

duration while traditional STN DBS attenuates amplitude (Tinkhauser et al. 2017). 

Crucially, duration of beta bursting is correlated with motor symptoms of bradykinesia, 

rigidity, and tremor (Tinkhauser et al. 2017). Thus beta burst duration appears to be of 

greater importance than beta burst amplitude in the pathophysiology of PD (Starr and 

Ostrem 2013). These ideas, in the context of basal ganglia dysfunction, are emerging and are 

likely to significantly improve our understanding of models of basal ganglia dysfunction in 

the years to come.

One potential limitation of the oscillatory model is that bradykinesia and akinesia appear 

prior to the onset of oscillatory abnormalities at the level of individual neurons in 1-
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methyl-4-phenyl-1,2,3,6-tetrahydropyridine treated monkeys using a progressive dopamine 

depleting process (Leblois et al. 2007). This suggests that oscillatory abnormalities at the 

level of individual neurons might not cause the early symptoms of bradykinesia or akinesia, 

however this does not rule out the possibility that oscillatory abnormalities might still drive 

later symptoms such as rigidity, postural disturbance, and freezing of gait (Leblois et al. 

2007). In addition, oscillatory abnormalities at the level of the individual neuron may appear 

to be quite different from population level oscillatory abnormalities (Leblois et al. 2007). 

Further evidence that questions the causal effect of abnormal oscillations on akinesia/

bradykinesia comes from an experiment conducted in a rodent model of PD. Mallet et al. 

(2008) studied the acute and chronic behavioral response and occurrence of beta band 

oscillations in the STN and frontal cortex in 6-hydroxydopamine lesioned rodents. They 

found that the acute response to systemic dopamine receptor antagonists included akinesia/

bradykinesia but did not include abnormal beta oscillations (Mallet et al. 2008). Abnormal 

beta oscillations appeared only as a chronic response to dopaminergic disruption (Mallet et 

al. 2008). This raises the possibility that the process by which beta oscillations are increased 

is a slow, long-term adaptive or compensatory process. It is likely that dopaminergic 

degeneration results in some yet to be discovered causal process that drives both 

bradykinesia and beta oscillations.

Inconsistencies between model predictions and empirical observations

Professor John Rothwell has often pointed out the inconsistencies between predictions from 

basal ganglia models of dysfunction and observed experimental data. Models of basal 

ganglia dysfunction predict decreased cortical excitability in hypokinetic disorders such 

Professor John Rothwell has often pointed out the inconsistencies between predictions from 

basal ganglia models of dysfunction and observed experimental data. Models of basal as PD. 

However, in persons with PD, some transcranial magnetic stimulation measures of 

corticospinal and intra cortical excitability are greater than in healthy controls, which is 

inconsistent with this prediction (Bologna et al. 2018). Another inconsistency is the 

improvement of dystonia following internal globus pallidus DBS (Vidailhet et al. 2007). 

Dystonia, which is considered as a hyperkinetic movement disorder associated with reduced 

basal ganglia output, is improved by internal globus pallidus DBS (Vidailhet et al. 2007). 

The rate model predicts that reduction of basal ganglia output should make dystonia worse, 

but this is not the case (Jahanshahi and Rothwell 2017). Finally, yet another inconsistency is 

the improvement of drug-induced dyskinesias following a pallidotomy (Rothwell 2011). 

Dyskinesias, or excess movements, are linked with reduced basal ganglia output, yet a 

pallidotomy that reduces basal ganglia output results in improving dyskinesias instead of 

making them worse (Rothwell 2011). These critical insights on inconsistencies between 

model based predictions and actual observed data has led several groups to reassess models 

of basal ganglia dysfunction.

STN DBS

The subthalamic nucleus is a critical structure in the oscillatory model of basal ganglia 

function and dysfunction. This is because, first, it is uniquely positioned to drive basal 

ganglia output via the globus pallidus internus and the substantia nigra pars reticulata 
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exerting its influence on cortical and brain stem nuclei (Wichmann and DeLong 1999). 

Second, it is a zone of cortical input via the hyperdirect pathway receiving projections from 

the primary motor cortex, supplementary motor area, premotor cortices and prefrontal 

cortices (Nambu et al. 2002). Third, by means of its reciprocal connections to the globus 

pallidus externus, the STN forms a localized feedback system that can support rhythmic 

firing even in the absence of cortical and striatal input (Plenz and Kital 1999). Consequently, 

the STN may function as the intrinsic pacemaker of the basal ganglia (Bevan et al. 2002; 

Plenz and Kital 1999) and could drive oscillatory activity in the basal ganglia-

thalamocortical networks. Fourth, given that the STN is anatomically and functionally 

segregated into motor, associative, and limbic areas (Hamani 2004), it has the capability to 

modulate motor, oculomotor, cognitive, and limbic function. Finally, the STN has been 

shown to have the ability to integrate activity from the motor and cognitive networks 

(Delaville et al. 2015).

The STN has emerged as the most targeted location for effective deep brain stimulation in 

advanced PD. Following the initial United States Food and Drug Administration (FDA) 

approval of STN DBS in 2002 for advanced PD, STN DBS was approved by the FDA for 

PD with early motor complications in 2016. This approval followed the findings of a 2-year 

clinical trial that reported significant improvements in the quality of life of persons with PD 

with early motor complications (Schuepbach et al. 2013). Because of this, the use of STN 

DBS in persons with PD is likely to increase, yet our understanding of the mechanisms of 

action of STN DBS is incomplete. Understanding the mechanism of action of STN DBS is 

critical to maintain motor benefits, reduce detrimental effects, and extend DBS to other 

conditions. The next sections will discuss what we know about the motor and cognitive 

mechanisms of action of STN DBS and the effect of STN DBS on motor and cognitive 

behavior.

Motor, gait, and cognitive mechanisms

Given that the STN is divided into motor, associative, and limbic sections (Hamani 2004), it 

follows that STN DBS is likely to affect motor, cognitive, and limbic function. The limbic 

mechanisms are beyond the scope of this paper (for a review see, Marceglia et al. 2011; 

Temel et al. 2005). The primary mechanism by which STN DBS is thought to bring about 

the observed clinical effect is by modulating oscillatory activity in the basal ganglia-

thalamocortical motor network (Kuhn et al. 2008). This is most likely due to STN DBS 

causing axonal excitation (Holsheimer et al. 2000). In addition, activation of dendrites and 

the cell body of the neuron may also contribute to the modulation of oscillatory activity 

(Montgomery 2017). We will first list the mechanisms that are thought to underlie altered 

motor function. Second, we will list the mechanisms that underlie altered gait function. And 

third, we will list the mechanisms that underlie altered cognitive function.

Motor mechanisms—High frequency STN DBS has been shown to modify oscillatory 

activity in the basal ganglia-thalamocortical motor network. More specifically high 

frequency STN DBS facilitates beta power desynchronization and gamma power 

synchronization in the basal ganglia-thalamocortical motor network and this is associated 

with the observed clinical benefit (Cao et al. 2017; Eusebio et al. 2012; Müller and Robinson 
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2018). The excessive beta power synchronization in the premotor and motor cortices is 

significantly reduced by bilateral STN DBS relative to off stimulation in participants with 

PD (Gulberti et al. 2015; Kang and Lowery 2014; Whitmer et al. 2012). The strongest beta 

power desynchronization occurred over the area of cortex identified as the origin of the 

hyperdirect pathway fibers projecting to the STN (Whitmer et al. 2012). In addition to 

modifying activity in beta and gamma bands, STN DBS has been shown to modify activity 

in the mu or alpha band. During movement tasks, STN DBS reduced power in the mu or 

alpha band over frontal areas and this was correlated with a decrease in Unified Parkinson’s 

Disease Rating Scale motor score and faster movement initiation (Devos et al. 2004; Spay et 

al. 2018).

STN DBS may also affect more complex oscillation patterns than solely changing power in 

a given frequency band. STN stimulation reduced the magnitude of motor cortex beta-high 

gamma phase-amplitude coupling at rest, which was excessive in participants with PD who 

were off stimulation compared to participants with dystonia and epilepsy (de Hemptinne et 

al. 2015). Increased phase-amplitude coupling is thought to impair information flow in the 

cortex resulting in motor dysfunction (de Hemptinne et al. 2013). The reduction of beta-high 

gamma phase-amplitude coupling at rest with STN DBS is highly correlated with the beta 

waveform sharpness ratio in motor cortex (Cole et al. 2017). The sharpness ratio evaluates 

the asymmetry of the waveform shape by comparing the sharpness between the beta peaks 

and troughs. In PD with no stimulation, motor cortex beta oscillations have a high sharpness 

ratio, meaning more asymmetry, which is reduced with STN DBS making the waveform 

more symmetric or sinusoidal. A decrease in the sharpness ratio is thought to represent a 

decrease in the synchronous synaptic input to motor cortex, which is hypothesized to 

enhance neural communication (Cole et al. 2017; Sherman et al. 2016). Additionally, the 

beta sharpness ratio was correlated with the clinical rigidity score, with a decrease in 

sharpness ratio relating to an improvement in rigidity score (Cole et al. 2017). Before and 

during an upper limb movement task, beta-high gamma phase-amplitude coupling was 

reduced with no stimulation compared to at rest, however, phase-amplitude coupling was 

still excessive compared to participants with dystonia and epilepsy (de Hemptinne et al. 

2013). During STN stimulation, beta-high gamma phase-amplitude coupling reduced even 

further during movement, suggesting a facilitation of movement with STN DBS compared to 

off stimulation through a reduction in phase-amplitude coupling (de Hemptinne et al. 2015). 

High frequency STN DBS modulates oscillations within the motor network in several ways 

during rest and movement. These modulations can be linked to improvements in motor 

symptoms and performance.

The motor response to STN DBS depends on the frequency of stimulation (McConnell et al. 

2012). High frequency stimulation (~>130 Hz) provides the greatest benefit with respect to 

tremor, akinesia, bradykinesia, and rigidity (Benabid et al. 2009). It is thought that 

stimulating at high frequencies suppresses pathological oscillations in the beta band and 

partially entrains neuronal discharge at stimulation frequencies in downstream and upstream 

targets (Brown et al. 2004; Hashimoto et al. 2003; Kang and Lowery 2014; Swann et al. 

2016). Brown and colleagues propose that high frequency STN DBS, i.e. >70 Hz, is pro-

kinetic while stimulation frequencies <30 Hz are anti-kinetic (Brown 2003; Hutchison et al. 

2004). Therefore, stimulating in pro-kinetic frequencies will tend to facilitate movement 
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while stimulating in anti-kinetic frequencies will tend to impair movement. Several authors 

have shown that stimulating in frequencies of >130 Hz abolishes abnormal oscillations in the 

beta band in the basal ganglia-thalamocortical motor network (Kuhn et al. 2008; Whitmer et 

al. 2012). On the other hand, stimulating at low frequencies has no beneficial effect and at 

some frequencies can exacerbate motor symptoms of PD. STN DBS at beta band 

frequencies (20 Hz) has been shown to slow movement when compared to stimulating at 

higher frequencies (50 Hz) (Chen et al. 2007), as well as when compared to no stimulation 

or lower than 20 Hz (Eusebio et al. 2008) stimulation in participants with PD. This 

frequency dependent mechanism of modulating oscillatory activity is thought to mediate the 

clinical motor benefit that accompanies STN DBS.

In summary, the oscillatory mechanisms that underlie the motor benefit include, modifying 

power, modifying phase-amplitude coupling, and are dependent on the frequency of STN 

DBS.

Gait mechanisms—Parkinsonian gait is a hypokinetic gait disorder characterized by 

reduced amplitude of movements, reduced velocity, and increased stride-to-stride variability 

(Mirelman et al. 2019; Pötter-Nerger and Volkmann 2013). With the progression of the 

disease gait symptoms worsen with greater incidences of freezing of gait and falls 

(Mirelman et al. 2019). If beta band oscillatory activity is involved in the pathophysiology of 

gait symptoms observed in PD, then it follows that 1) beta band activity will be enhanced at 

rest and is likely to be sub-optimally suppressed during gait relative to rest, 2) beta band 

synchrony between neural regions will be increased at rest and possibly insufficiently 

reduced during gait relative to rest, 3) persons with PD who are classified as freezers are 

likely to manifest with greater beta band activity than those who are non-freezers, and 4) 

persons with PD who are classified as freezers are likely to manifest with greater beta band 

activity during freezing episodes of gait compared to non-freezing episodes of gait. As 

predicted by basal ganglia models of dysfunction, one study has shown attenuation of STN 

beta band activity during gait compared to rest in persons with PD (Hell et al. 2018). In 

addition, they also found that correlation of beta band activity between the left and right 

STN was reduced during gait relative to rest suggesting reduced beta band synchrony 

between neural regions during gait (Hell et al. 2018). In another study conducted while at 

rest, in persons with PD who are classified as freezers, and whose freezing responds to 

dopaminergic medication, STN beta band power in the high beta frequency band was greater 

than that of non-freezers (Toledo et al. 2014). In one more study conducted while walking 

on a treadmill, persons with PD who are freezers presented with greater STN beta band 

power in the low beta frequency compared to non-freezers (Singh et al. 2013). In contrast to 

the findings reported in the above studies, a more recent study has found that during non-

freezing gait in freezers relative to non-freezers, beta band activity was reduced (Syrkin-

Nikolau et al. 2017). Three out the four studies reviewed here extend the anti-kinetic effect 

of oscillations in the beta frequency to gait symptoms in PD and support predictions from 

the oscillatory model of basal ganglia dysfunction.

The effect of STN DBS, for the most part, is similar to the effect of levodopa on hypokinetic 

gait deficits. Most of the levodopa responsive gait symptoms are STN DBS responsive and 

those that are levodopa resistant are STN DBS resistant as well. Similar to levodopa, STN 

David et al. Page 10

Exp Brain Res. Author manuscript; available in PMC 2021 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



DBS improves spatial characteristics and has no effect on temporal characteristics of gait in 

persons with PD (Cossu and Pau 2017; Pötter-Nerger and Volkmann 2013). Improvement in 

spatial characteristics are likely to be driven by improved amplitude scaling, possibly related 

to beta band attenuation, as a result of STN DBS. This improvement in amplitude scaling, 

i.e., increasing the amplitude of movements, is observed both during gait initiation (Follett et 

al. 2010), as well as during gait (Cossu and Pau 2017; Pötter-Nerger and Volkmann 2013). 

The improvement in amplitude scaling is observed in the range of motion of arm swing, 

trunk rotation, trunk lateral flexion, pelvic rotation, and hip, knee, and ankle range of motion 

(Cossu and Pau 2017; Pötter-Nerger and Volkmann 2013). It is likely that the increase in 

amplitude scaling drives the increase in gait velocity, as there is a documented relationship 

between lower-limb range of motion and gait velocity (Oberg et al. 1994).

STN DBS treatment of levodopa resistant gait symptoms is complex. One review (Pötter-

Nerger and Volkmann 2013) and one meta-analysis (Cossu and Pau 2017) conclude that 

temporal characteristics of gait that are typically levodopa resistant are also resistant to STN 

DBS. These symptoms include stance time, swing time, and cadence (Cossu and Pau 2017; 

Pötter-Nerger and Volkmann 2013). There is evidence that points to the lack of an effect of 

STN DBS on gait parameters such as cadence (Faist 2001), stride-to-stride variability, and 

freezing of gait (Hausdorff et al. 2009). But, there is also evidence that points to the 

beneficial effect of STN DBS on these gait parameters (Fasano et al. 2011). Poor control of 

cadence and stride-to-stride variability are seen in persons who manifest freezing of gait 

(Hausdorff et al. 2003). One hypothesis is that because PD is an asymmetric disease, the 

lateralized nature of the disease causes deficits in inter-limb coordination that leads to poor 

control of cadence and stride-to-stride variability during gait (Fasano et al. 2011). Therefore, 

in theory, if STN DBS parameters can be programmed to reduce asymmetry, then inter-limb 

coordination could improve, resulting in improved control of cadence and stride-to-stride 

variability, which in turn would result in improving freezing of gait. This hypothesis was 

tested by Fasano and colleagues (2011), and they found that reducing stimulation intensity 

on the side contralateral to the limb with the larger stride length resulted in reduced stride-

to-stride variability, improved inter-limb coordination, and reduced duration and frequency 

of freezing of gait episodes. In addition to STN DBS intensity, location of the active contact 

and stimulation frequency affect gait symptoms. Careful targeting of the STN DBS lead 

especially the dorsal aspect of the STN are correlated with the best gait outcomes (Johnsen 

et al. 2010), but a later study contradicts this finding (Hilliard et al. 2011). With respect to 

stimulation frequency, some studies show that low frequency stimulation at 60Hz improves 

gait symptoms, specifically it reduced frequency of freezing episodes while maintaining 

motor benefit relative to 130Hz stimulation frequency (Moreau et al. 2008; Xie et al. 2017; 

Xie et al. 2015). However, other studies show no difference between low frequency 

stimulation and high frequency stimulation with respect to improving gait symptoms (Phibbs 

et al. 2014; Sidiropoulos et al. 2013; Vallabhajosula et al. 2015).

While there are similarities in the effects of levodopa and STN DBS, there are differences as 

well. In persons with STN DBS, the effect of levodopa appears to be greater than the effect 

of STN DBS (Ferrarin et al. 2005; Ferrarin et al. 2004; Krystkowiak et al. 2003). Some 

studies show that the combined effect of levodopa and STN DBS results in the greatest 

improvement of gait symptoms (Ferrarin et al. 2005; Ferrarin et al. 2004; Krystkowiak et al. 
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2003), while one study has shown that STN DBS provides no additive benefits (McNeely 

and Earhart 2013). This suggests while there are overlapping mechanisms of action of 

levodopa and STN DBS, there are also non-overlapping mechanisms of action unique to 

each levodopa and STN DBS.

In summary, the oscillatory mechanisms that underlie the gait benefit are largely driven by 

beta band attenuation, which in turn drives amplitude scaling of 1) arm swing of upper 

limbs, 2) trunk rotation, and 3) hip, knee, and ankle range of motion. Location of the active 

contact and frequency of stimulation may be additional factors that can influence gait 

symptoms.

Cognitive mechanisms—Few studies have examined the effect of STN DBS on 

oscillatory activity in the basal ganglia-thalamocortical cognitive network. Cavanagh et al. 

(2011) found that performance on high-conflict trials of a decision-making task was 

impaired with STN DBS due to faster response times, which reflect impulsivity. In PD with 

no stimulation and healthy controls, cue-related medial prefrontal cortex theta band power 

predicted slower response times but with STN stimulation this relationship was inverted 

(Cavanagh et al. 2011). With STN DBS, high medial prefrontal cortex theta band power 

corresponded with faster response times, suggesting that this could be a mechanism for 

impulsivity that occurs with STN DBS (Cavanagh et al. 2011). In addition, Hatz and 

colleagues (2018) found that for individuals whose verbal fluency performance worsened 

with STN DBS, there was an increase in delta power over the left temporal lobe.

While enhanced delta and theta power with STN DBS has been related to worsened 

cognitive performance, Kelley and colleagues (2018) found that high frequency STN DBS 

had no effect on interval timing performance compared to off stimulation. However, when 

they stimulated STN at 4 Hz, interval timing performance was improved while midfrontal 

delta power was enhanced. This suggests that the STN and cortex communicate in the delta 

and theta frequency ranges to affect aspects of cognitive control. High frequency stimulation 

may disrupt this communication leading to worsened cognitive performance while 

stimulation at delta frequency may improve cognitive performance.

Interestingly, Swann and colleagues reported that high frequency STN DBS improved 

performance on the stop signal task, a measure of inhibitory control, by improving stopping 

speed (Swann et al. 2011). This improvement corresponded with enhanced beta power 

around the time of stopping in the right frontal cortex with STN DBS compared to no 

stimulation (Swann et al. 2011). The stop signal task relies on the cognitive control of motor 

response inhibition and is generally interpreted as a cognitive task (Logan et al. 1984; 

Verbruggen and Logan 2009). If this task was viewed as a motor task, then the enhancement 

of power in the beta band could be easily predicted. However, as a cognitive task, this result 

seems contradictory to the previously described effects of STN DBS on cognitive 

performance. However, one could postulate that for cognitive tasks that rely heavily on 

motor responses, the benefits of STN DBS on movement may result in improvement of 

aspects of cognitive performance, such as reaction time.
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STN DBS has task-dependent effects on cortical oscillatory activity, resulting in power 

changes in delta, theta, and beta bands. DBS-induced cortical power changes during 

cognitive tasks were mostly related to detrimental or no effects on performance. Further 

research on the effects of STN DBS on cortical activity related to cognitive tasks, motor 

tasks, and tasks that require a motor and cognitive component is needed to corroborate and 

expand on current findings.

An oscillation model for movement and cognition

A hallmark of basal ganglia neuronal organization is that different nuclei of the basal ganglia 

are made up of repeating neuronal architectures, are reciprocally connected, and innervate 

functionally related regions in the basal ganglia output nuclei (Bevan et al. 2002). The STN, 

given its unique position within the basal ganglia as an input and output zone, anatomically 

segregated in to motor, cognitive, and limbic portions, can serve to integrate information 

from different networks, such as the motor and cognitive networks.

Studies suggest that the STN has the ability to integrate activity from motor and cognitive 

networks (Brunenberg et al. 2012; Delaville et al. 2015; Kolomiets et al. 2001). One line of 

evidence for the STN integrating input from motor and cognitive networks comes from a 

study conducted in anesthetized healthy rats (Kolomiets et al. 2001). Kolomiets and 

colleagues (2001) found that, in addition to the convergence of inputs from the motor and 

prefrontal cortices in the STN, the same neurons in the STN responded to inputs from both 

the motor and prefrontal cortices (Kolomiets et al. 2001). This allows for interactions 

between input from the motor and cognitive networks (Kolomiets et al. 2001). Another line 

of evidence comes from structural and resting state functional connectivity using MRI in 

healthy humans (Brunenberg et al. 2012). Brunenberg and colleagues (2012) showed that 

there was a mediolateral gradient with respect to structural and functional connectivity in the 

STN. Medial parts of the STN were more connected to non-motor regions of the cortex 

while lateral parts were more connected to motor regions of the cortex. However, they did 

not find a complete segregation of motor and non-motor regions within the STN. Therefore, 

they state that motor and non-motor circuits are partially integrated within the STN 

(Brunenberg et al. 2012). Yet another line of evidence comes from recording local field 

potentials from rats lesioned with 6-hydroxydopamine performing a task that involves motor 

and cognitive processes (Delaville et al. 2015). They showed that during the task coherence 

between the STN and motor cortex was in the high beta band while coherence between the 

STN and medial frontal cortex (cognitive) was in the low gamma band. They also found no 

coherence between the motor cortex and the medial prefrontal cortex. Taken together these 

findings suggested that the motor and medial prefrontal areas were participating in 

functionally distinct networks, each with a link to the STN and support an integrative role 

for the STN between cognitive and motor networks.

The integrative role played by the STN in movement and cognition is important because 

stimulating the STN via high frequency deep brain stimulation is more than likely to 

influence both motor and cognitive networks. Whether this is beneficial or detrimental to 

cognitive function depends on the oscillatory frequency that serves a particular cognitive 

function. In figure 1A, we provide an oscillatory model that is a modification of Brown and 

David et al. Page 13

Exp Brain Res. Author manuscript; available in PMC 2021 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



colleagues’ pro-kinetic and anti-kinetic oscillation model (Brown 2003; Hutchison et al. 

2004). The model illustrates that oscillatory activity <10 Hz, 10–30 Hz, and >70Hz subserve 

normal function. Oscillatory activity is context specific and optimized depending on the 

motor and cognitive requirements of the task. In figure 1B, we provide an oscillatory model 

that is a modification of Brown and colleagues’ pro-kinetic and anti-kinetic oscillation 

model (Brown 2003; Hutchison et al. 2004), and extend the idea to the associative/cognitive 

domain. We have added pro-associative (thick blue dashed arrow) and anti-associative neural 

oscillations to their model (thin red dashed arrow). In figure 1C, we provide a motor and 

associative oscillatory model that shows the hypothesized effects of high frequency STN 

DBS. Similar to the idea of a pro-kinetic (thick blue arrow) and anti-kinetic (thin red arrow) 

effect of high frequency of STN DBS in the movement domain, it is likely that there are pro-

associative (thin dashed blue arrow) and anti-associative (thick red dashed arrow) effects of 

high frequency STN DBS in the cognitive domain. When the frequency of STN DBS aligns 

with pro-kinetic and pro-cognitive neural oscillations, either motor or cognitive or both 

behaviors are enhanced. On the other hand, when the frequency of STN DBS only aligns 

with pro-kinetic oscillations and not with pro-cognitive oscillations, motor behaviors are 

enhanced and cognitive behaviors are likely to be impaired. This modified motor and 

associative/cognitive oscillatory model explains the consistent positive motor benefits found 

with STN DBS that are outlined in the next section. It may also explain the negative and null 

cognitive effects that we outlined in the previous section in terms of brain mechanisms and 

expand upon in the next section in terms of behavior.

Motor and cognitive tasks

In this section, we review the effects of STN DBS on both motor and cognitive tasks. We 

also address the extent to which tasks have both motor and cognitive components since 

many of the experimental tasks employed have both motor and cognitive components. 

Examples of such tasks include dual tasks in which a motor task is performed at the same 

time as concurrent memory tasks (Alberts et al. 2008) and the stop signal task (Logan et al. 

1984; Verbruggen and Logan 2009).

It is important to note that one source of variability in both motor and cognitive results could 

be due to variability in STN DBS lead placement and active contacts used. This variability 

has been linked to declines in cognition (Welter et al. 2014; York et al. 2009). In fact, 

reoperation to correct DBS lead placement has been shown to improve outcomes (Ellis et al. 

2008). In the future, the development of new neuroimaging techniques to accurately target 

the STN (Verhagen Metman et al. 2016) and directional DBS to shape the electric field 

(Dembek et al. 2017) may result in an improvement in the motor and cognitive effects of 

STN DBS during initial programming.

Motor tasks

The motor response to STN DBS is quite remarkable in persons with advanced PD and is 

therapeutically beneficial. STN DBS is effective at improving movement initiation (Brown 

et al. 1999), movement speed (Brown et al. 1999; Nowak et al. 2005; Sturman et al. 2010; 

Vaillancourt et al. 2004), force generation (Brown et al. 1999; Nowak et al. 2005; Prodoehl 
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et al. 2007; Sturman et al. 2010), reducing rigidity (Shapiro et al. 2007), reducing tremor 

(Sturman et al. 2004; Sturman et al. 2007), and significantly reducing the score on the motor 

section of Unified Parkinson’s Disease Rating Scale (Brown et al. 1999; Limousin et al. 

1998; Nowak et al. 2005; Prodoehl et al. 2007).

Participants with PD display more difficulties with complex motor tasks compared to simple 

motor tasks (Benecke et al. 1987b). They present with added performance deficits when 

executing more complex simultaneous or sequential motor tasks (Benecke et al. 1986; 

Benecke et al. 1987a). Simple and complex motor tasks have some aspects of control that 

are common. One way in which to consider simple and complex tasks is in terms of whether 

their control is driven by modulating intensive or coordinative parameters (Hening et al. 

2009). Intensive aspects of control are common to both simple and complex motor tasks 

(Hening et al. 2009). Intensive aspects of control comprise a single major dimension of 

intensity. These include movement speed, movement amplitude, peak force, and scaling 

(Hening et al. 2009; Schettino et al. 2006; Snider et al. 2014). STN DBS effectively treats 

deficits in intensive aspects of control and significantly improves movement speed and peak 

torque (Brown et al. 1999; Nowak et al. 2005; Sturman et al. 2010). Complex movements 

are characterized by coordinative aspects of control that include processing and integration 

of different neural inputs as well as different motor components (Hening et al. 2009; 

Schettino et al. 2006; Snider et al. 2014). STN DBS is not as effective at treating deficits in 

coordinative aspects of control and can be detrimental to performance (Alberts et al. 2008; 

David et al. 2018).

The reason why STN DBS could impair simultaneous or sequential motor tasks is possibly 

because of the greater cognitive requirements that underlie coordinative aspects of control 

while performing these tasks. The next section will discuss the effect of STN DBS on 

cognition and motor tasks with greater cognitive demands.

Cognitive tasks

Research studies examining the cognitive effects of STN DBS have been on the rise because 

of the significant incidence of cognitive symptoms in advanced PD (Emre et al. 2007; Hely 

et al. 2008), the medically refractory nature of cognitive symptoms in advanced PD (Hely et 

al. 2005), and the impact cognitive symptoms have on the quality of lives of persons with 

PD and their caregivers (Goldman et al. 2018; Jones et al. 2017; Schrag et al. 2000). Not 

only are the cognitive deficits observed in persons with PD heterogeneous, they also have 

both, varying neural representations and varying neuropathologies (Biundo et al. 2016).

A general pattern of studies examining the effect of STN DBS on cognition is that the 

efficacy of STN DBS reduces or becomes detrimental cognitive task increases. Alberts when 

the complexity or difficulty of the and colleagues (2008) reported that simple dual-task 

performance was unchanged with STN DBS. However, on a complex dual-task requiring 

simultaneous performance of a force maintenance task and the n-back task (2-back), a test of 

working memory, cognitive performance was worsened with bilateral STN DBS compared 

to unilateral and no stimulation. Similarly, compared to no stimulation, STN DBS impaired 

working memory and response inhibition performance on a more difficult version of the 

tasks, the spatial delayed response task and Go-NoGo task, respectively, but had no effect on 
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performance of the simpler versions (Hershey et al. 2004). Impaired response inhibition on 

the most difficult version of a task with STN DBS has been reported again on the Go-NoGo 

task and during paced Random Number Generation (Georgiev et al. 2016; Williams et al. 

2015). In addition, STN DBS impaired performance on decision-making tasks during high-

conflict trials but not on low-conflict trials (Cavanagh et al. 2011; Frank et al. 2007). 

Together these studies suggest that to reveal the cognitive deficits that occur with STN DBS, 

it is necessary to use a cognitively demanding task. This could be the Go-NoGo task with a 

high level of prepotency, the fast-paced Random Number Generation task, the n-back or 

spatial delayed response task with a high memory load, or a high-conflict decision-making 

task.

During a cognitively demanding oculomotor task with high levels of prepotency affecting 

inhibition, we have shown that STN DBS is detrimental to performance (Goelz et al. 2017). 

We found that during the antisaccade task, relative to no stimulation and age and sex 

matched healthy controls, STN DBS significantly increased prosaccade errors, the prepotent 

response that was required to be inhibited (Goelz et al. 2017). The finding that STN DBS 

increases prosaccade errors relative to no stimulation is quite robust and has been replicated 

by Bakhtiari and colleagues (2019). In a follow-up analysis we found that STN DBS 

significantly impaired measures of preparatory set and this was related to the observed 

failure in inhibition, i.e., increase in prosaccade errors during the antisaccade task (Goelz et 

al. 2019). It is known that the STN receives input from the supplementary eye field, frontal 

eye field (Nambu et al. 2002), and the dorsolateral prefrontal cortex (Benarroch 2008; 

Morris et al. 2017), which are primary cortical areas associated with preparatory set of the 

antisaccade task (DeSouza et al. 2003; Everling and Munoz 2000; Schlag-Rey et al. 1997; 

Sweeney et al. 1996). It has also been shown that STN DBS alters activity in the very same 

frontal (Hilker et al. 2004; Mayer et al. 2016) and prefrontal areas such as the DLPFC 

(Campbell et al. 2008; Kalbe et al. 2009; Limousin et al. 1997). We could hypothesize that 

STN DBS could disrupt frontal activity underlying preparatory set and drive the inhibitory 

impairment seen during the antisaccade task.

Similarly, during a sequential reaching task with a high spatial memory load, we showed that 

STN DBS worsened cognitive performance (David et al. 2018). Participants were asked to 

visually encode 3 sequential targets, after a brief delay they were asked to look and point as 

accurately as possible to the remembered targets in the order that they were presented. STN 

DBS, relative to no stimulation, did not affect eye error but significantly increased pointing 

error. This showed that STN DBS probably adversely affected neural processes related to the 

transfer of information from eye-centered coordinates to limb centered coordinates (David et 

al. 2018). This transfer of information from eye to limb centered coordinates requires normal 

cognitive executive function (Inzelberg et al. 2008), and is thought to take place in the 

posterior parietal cortex (Batista et al. 1999; Buneo et al. 2002). Previous studies have 

shown that STN DBS alters activity in the posterior parietal cortex (Hilker et al. 2004; Trost 

et al. 2006; Vafaee et al. 2004). It is probable that STN DBS disrupts visuomotor 

transformations of this area and this could be related to the increased spatial error observed 

during pointing. The studies conducted in our lab consistently show that STN DBS disrupts 

cognitive aspects of motor tasks that are cognitively demanding.
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Recent reviews on the effects of STN DBS on cognition concluded that the worsening of 

cognitive function was rare (Mehanna et al. 2017) and that STN DBS effects on cognition 

were heterogeneous (Cernera et al. 2019). These are both valid conclusions, especially as 

both reviews focused on the effects of STN DBS on many different standardized 

neuropsychological tests to examine cognitive functions. Studies comparing STN 

stimulation to no stimulation have reported no effect of stimulation on a variety of 

neuropsychological tests measuring executive function, memory, verbal fluency, and 

visuospatial processing (Fraraccio et al. 2008; Hälbig et al. 2004; Morrison et al. 2004; 

Tremblay et al. 2015; Witt et al. 2004). Studies that examined the pre vs post-surgery effects 

of STN DBS, comparing cognitive performance to PD controls, showed no effect of STN 

DBS on most neuropsychological tasks tested, however, each study also showed at least one 

worsened measure of cognition. The cognitive functions that have been reported to worsen 

are verbal fluency, executive function, and memory (Alegret et al. 2004; Castelli et al. 2010; 

De Gaspari et al. 2006; Demeter et al. 2017; Marshall et al. 2012; Merola et al. 2014; 

Moretti et al. 2003; Morrison et al. 2004; Sáez-Zea et al. 2012; Smeding et al. 2011; 

Smeding et al. 2006; Williams et al. 2011; Witt et al. 2008; York et al. 2008; Zangaglia et al. 

2009). However, it should be noted that many of these studies were pre vs. post-surgery 

comparisons, where the post-surgery time point lacked an off vs. on stimulation comparison. 

Therefore, STN stimulation effects could not be separated from the lesion effects, making it 

difficult to conclude that these changes are due solely from STN stimulation.

Three studies comparing STN stimulation to no stimulation report an improvement on some 

cognitive tasks that measure executive function (Castner et al. 2007; Jahanshahi et al. 2000; 

Page and Jahanshahi 2007). However, some tasks on which performance was improved with 

STN DBS, such as the Stroop Test and the Wisconsin Card Sorting Test (Jahanshahi et al. 

2000; Page and Jahanshahi 2007), have been shown not to be affected by STN DBS in other 

studies (Fraraccio et al. 2008; Hälbig et al. 2004). Additionally, controlled longitudinal 

studies discussed in the previous paragraph have not shown any significant improvement on 

cognitive tasks over time with STN DBS.

STN DBS has no effect on the majority of standardized neuropsychological tests and when 

an effect is reported, the change is not consistent across studies. This is in contrast to the 

repeated detrimental effects found in cognitively demanding tasks and motor tasks that rely 

heavily on cognitive control. This discrepancy may occur due to the limited insight most 

neuropsychological tests can have on clinically relevant behavior. Problems associated with 

using neuropsychological tests include that the tests were not designed to measure clinically 

relevant deficits, precise task design affects the results, the tests involve multiple complex 

cognitive constructs that could each affect the results, and that the tests are typically not 

measuring behavioral function (Burgess et al. 2006). Future studies would benefit from 

using tasks directly relevant to behavior instead of neuropsychological tests to evaluate the 

cognitive effects of STN DBS.

Conclusion

The studies reviewed here support the conclusion that with respect to motor symptoms of 

Parkinson’s disease, high frequency STN DBS attenuates activity in the beta band and 
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improves the motor symptoms of PD. With respect to cognitive symptoms, evidence is 

accumulating to support the statement that STN DBS can be detrimental to performance 

especially when the task is cognitively demanding. We have provided a modified oscillatory 

model of basal ganglia dysfunction and suggest that similar to pro-kinetic and anti-kinetic 

frequencies that underlie motor function there are pro-cognitive and anti-cognitive 

frequencies that underlie cognitive function. While motor network oscillatory activity is 

primarily correlated to the beta band, cognitive network oscillatory activity is not confined to 

one band. Cognitive function is subserved by activity in multiple frequency bands. In order 

to observe both motor and cognitive benefits, STN DBS should enhance oscillatory activity 

that is related to both motor and cognitive function.

With the advent of STN DBS for the treatment of PD, we have gained a significant amount 

of knowledge about models of basal ganglia dysfunction, STN DBS mechanisms of action, 

and the motor and cognitive effects of STN DBS. Professor John Rothwell has contributed 

significantly to each of these domains during his illustrious and productive career. He has 

been an archetype of collaborative effort that spans continents in the pursuit of empirical 

evidence to test the many predictions from the very early models of basal ganglia 

dysfunction. As we move in to the era of adaptive STN DBS, models of basal ganglia 

function need to be updated, STN DBS mechanisms of actions need to be better understood, 

and the predictions of updated models of basal ganglia dysfunction need to be tested in the 

associative and limbic domains as well as the motor domains. The most effective way 

moving forward is to follow in the footsteps of Professor John Rothwell’s collaborative 

approach to moving the science forward and seek out collaborative efforts in the form of 

animal models, computational modeling, and human studies to address the many 

unanswered questions that remain.
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Fig 1. 
A. Healthy motor and associative oscillatory model. Oscillatory activity subserves normal 

motor and cognitive function. B. The Parkinson’s disease motor and associative oscillatory 

model. Dopaminergic degeneration results in low frequency oscillations being enhanced and 

high frequency oscillations being suppressed. C. STN DBS motor and associative oscillatory 

model. High frequency STN DBS may result in opposite effects in terms of enhancing or 

impairing motor and cognitive behavior in the motor and associative networks respectively. 

STN, subthalamic nucleus; GPi, internal globus pallidus; SNr, substantia nigra pars 

reticulata. Adapted from Hutchison et al. (2004).
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Table 1.

Models of Basal Ganglia Dysfunction

1. Parallel circuit model (Alexander et al. 1986)

2. Classic direct and indirect pathway model (Albin et al. 1989; Alexander and Crutcher 1990; DeLong 1990)

3. Rate model (Albin et al. 1989; DeLong 1990; Nelson and Kreitzer 2014)

4. Center surround or action selection model (Mink 1996; Mink and Thach 1993)

5. Oscillation/pattern model (Bergman et al. 1994; Gatev et al. 2006; Hutchison et al. 2004; Salvade et al. 2016; Wichmann 2019)
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