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Abstract

Understanding interactions between immune cells and their targets is an important step on the path 

to fully characterizing the immune system, and in doing so, learning how it combats disease. Many 

studies of these interactions have a narrow focus, often looking only at a binary result of whether 

or not a specific treatment was successful or only focusing on the interactions between two 

individual cells. Therefore, in an effort to more comprehensively study multicellular interactions 

among immune cells and their targets, we used in vitro longitudinal time-lapse imaging and 

developed an automated cell cluster analysis tool, or macro, to investigate the formation of cell 

clusters. In particular, we investigated the behavior of cancer-specific CD8+ and CD4+ T cells on 

how they interact around their targets, cancer cells and antigen-presenting cells. The macro that we 

established allowed us to examine those large-scale clustering behaviors taking place between 

those four cell types. Thus, we were able to distinguish directed immune cell clustering from 

random cell movement. Furthermore, this macro can be generalized to be applicable to systems 

consisting of any number of differently labeled species and can be used to track clustering 

behaviors and compare them to randomized simulations.
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1. Introduction

Some experiments involving immune cell interactions focus on at-large analysis of cell 

populations, such as those surrounding a tumor in vivo. Such experiments involve injecting 

one or more types of T cells into a tumor-bearing mouse, measuring the volume of the tumor 

over time and determining which key populations are present. This type of experiment gives 

a binary result: whether a treatment worked or not. While insightful in determining efficacy 

of treatments and understanding the relative compositions of cell populations between 

effective or ineffective treatments, it falls short of characterizing interactions between 

individual cell types.

Other studies have focused on cell clustering behaviors. It has been shown that multiple cell 

types present in suspensions of dissociated retina cells histotypically re-aggregate in clusters 

in vitro [1]. In the initial phase of this process, “random” clustering of cells took place 

without definable organization, followed by histotypic sorting of polarized cells, and finally 

differentiation of the clusters. Specific clusters are also formed by the numerous different 

cell types present in dissociated mouse spleens in vitro, which can re-aggregate into 

functional groups. This functional re-aggregation provided the experimental basis for the 

discovery of the antigen-presenting cell (APC), referred to as the “A cell” and eventually 

named the dendritic cell (DC) [2]. These cells play a central role in the induction of immune 

responses of lymphocytes in vitro [3], and are involved in cell clusters and interactions 

among multiple different types, i.e., with CD4+ and CD8+ T lymphocytes. Such interactions 

also likely play a central part in vivo in the traditional role of CD4+ T cells during the 

induction and effector phases [4, 5] of adoptively transferred (intravenously infused) 

lymphocytes that combat cancer or infections. At least four cell types are involved: CD4+ T 

cells, CD8+ T cells, APCs and cancer cells. While the phenotypes of the transferred 

lymphocytes effective upon adoptive transfer can be carefully defined, their necessary 

interactions with each other and with the APC and the targeted cancer cell remain unclear. 

Therefore, there is a need for an in vitro model that mirrors some of the effects in vivo that 

can quantify interactions between the critical cell types objectively.

Interactions between immune and cancer cells can be studied through tracking of cell 

movements. The migration of individual T lymphocytes can be tracked and quantified in 

experiments in vitro using known physical microscope parameters. It has been shown that T 

cells change directions frequently in their locomotion, and thus require short time intervals 

(~60 s) between image captures for accurate tracking of movements [6]. Other cell tracking 

experiments have analyzed T cell migration and interaction with APCs, and found that CD4+ 

T cells form “long-lived (>15 h) associations,” which often involve the formation of 

immunological synapses, with antigen-bearing APCs before activation [7]. While these 

synapses are stable junctions between two cells, there are also motile junctions, known as 

kinapses, involving ongoing T cell movement, which are interconvertible between synapses 

Diehl et al. Page 2

Exp Cell Res. Author manuscript; available in PMC 2021 August 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



[8]. These junctions can, but do not always, form as a result of adhesion; however, they are 

required for T cell activation [9]. T cell locomotion has also been studied in the investigation 

of killing of virus-infected cells, where CD8+ T cells have been shown to cooperate with one 

another for killing by forming kinapses with the target [10]. Despite these findings, this type 

of study is limited because it requires a high rate of sampling and a narrow focus on small 

numbers of cells, which makes it difficult to quantify high numbers of interactions between 

multiple cell types purely by tracking individual cells, especially when contacts are 

transitory. Furthermore, the conceptual focus of these types of studies has been concentrated 

on dual interaction analyses, and thus ignored potential interactions in the tumor 

microenvironment with its diversity of cell types and niches.

What is missing from the aforementioned experiments is an approach that objectively 

detects and quantifies interactions between multiple cell types, with a focus on clusters 

rather than individual cells. It is known that for an effective immune response in vitro, cell 

clustering is required [3], and that multiple cells need to interact with each other [11]. 

Through our experiments, we found that this clustering effect could be measured and 

compared to a simulation of cells that have no affinity for one another, in order to make a 

direct assessment of the cells’ inclination to cluster. In order to analyze the immune cell 

clusters between T cells, cancer cells, and APCs, we used the UV-induced cancer cell line 

6132A [12] as the cancer model, together with 6132A cancer-specific CD8+ T cells [12], 

6132A cancer-specific CD4+ T cells [13] and CD11b+ cells, all uniquely fluorescently 

labeled. We then designed a computer program to search for clusters of cells containing 

more than one color. Using this computer program, or macro, we were able to examine the 

clustering behavior of immune cells around their targets and quantify the differences 

between immune cells and randomly simulated cells. By basing the analysis objective on the 

cluster rather than on individual cells, we were able to more efficiently quantify complex 

multi-cell-type interactions.

2. Materials and Methods

2.1. Mice

Mice were bred and maintained in a specific pathogen-free barrier facility at The University 

of Chicago according to Institutional Animal Care and Use Committee (IACUC) guidelines. 

C3H/HeN mice were obtained from Envigo (Huntingdon, Cambridgeshire, United 

Kingdom). C3H CD8−/− (C3H.129S2-Cd8atm1Mak) mice were generated in house by 

crossing C3H/HeN mice with C57BL/6 CD8−/− (B6.129S2-Cd8atm1Mak) mice for 20 

generations. C3H CD4−/−(C3H.129S2-Cd4atm1Mak) mice were generated in house by 

crossing C3H/HeN mice with C57BL/6 CD4−/− (B6.129S2-Cd4atm1Mak) mice for 20 

generations. C57BL/6 CD8−/− (B6.129S2-Cd8atm1Mak) and C57BL/6 CD4−/− (B6.129S2-

Cd4atm1Mak) mice were purchased from the Jackson Laboratory (Bar Harbor, ME, USA). 

Mice were 8 – 12 weeks old when spleens were removed.

2.2. Cells

The 6132A cancer cell line originated in our laboratory from a tumor induced in 4 – 5-

month-old C3H/HeN mice, which was generated by shaving their backs and exposing them 
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three times a week to UV-light [14]. 6132A-Cerulean was generated by retroviral 

transduction using pMFG-Cerulean [15]. Phoenix-ampho cells [16] were transfected by 

calcium phosphate precipitation. Repeated rounds of transduction of 6132A with viral 

supernatants followed by fluorescence-based cell sorting (FACS Aria II, BD Biosciences, 

San Jose, CA, USA) derived the highly cerulean fluorescence expressing cell line. Cancer 

and Phoenix-ampho cells were maintained in DMEM supplemented with 10% FBS (Gemini 

Bio-Products). All cell lines were shortly passaged after thawing of the initial frozen stock to 

generate master cell banks. Working batches were passaged no longer than 4 – 6 weeks and 

authenticated by cellular morphology.

2.3. Isolation of CD11b+cells

Spleen cells were removed from normal C3H/HeN mice, red blood cells were lysed with 

TRIS ammonium chloride and CD11b+ cells were enriched by magnetic cell sorting 

(Miltenyi Biotec, Bergisch Gladbach, Germany) as described [17]. The latter were used as 

an APC source and stained with 1 μg/mL DiD (Thermo Fisher Scientific, Waltham, MA, 

USA), a far-red dye for 30 min at 37°C.

2.4. Plasmids

Previously published 6132A cancer-specific CD8+ T cell clones (anti-6132A-A1, [12]) and 

cancer-specific CD4+ T cell clones (anti-mRPL9, [13]) were used for TCR gene isolation. 

TCRs were determined by 5’-RACE-PCR following manufacturer’s instructions (Thermo 

Fisher Scientific, Waltham, MA, USA) and were integrated into pMP71-PRE as described 

[18] (pMP71-anti-6132A-A1, -anti-mRPL9). For selection of TCR-positive T cells, pMP71-

anti-mRPL9-IRES-GFP or pMP71-anti-6132A-A1-IRES-mCherry were generated [19]. In 

brief, pMP71-TCR plasmids were digested with EcoRI (NEB, Ipswich, MA, USA) and NotI 

(NEB), followed by incubation with Klenow (NEB) to create TCR blunt end fragments. The 

pMP71-IRES-GFP or pMP71-IRES-mCherry vectors were digested with PmlI (NEB) 

followed by dephosphorylation with CLIP (NEB). TCR fragments and opened pMP71-

IRES-GFP or pMP71-IRES-mCherry vector were ligated to generate color-linked TCR 

expression vectors pMP71-anti-A1-IRES-mCherry and pMP71-anti-mL9-IRES-GFP.

2.5. TCR gene transfer

TCR gene transfer was conducted as previously described [17]. Plat-E packaging cells were 

transfected with pMP71-anti-6132A-A1-IRES-mCherry or pMP71-anti-mRPL9-IRES-GFP 

by calcium phosphate precipitation. 42 h after transfection, virus supernatant was harvested, 

filtered through a 0.45 μm syringe filter (Thermo Fisher Scientific, Waltham, MA, USA) and 

used for transduction. Spleens were isolated from C3H CD8−/− or C3H CD4−/− mice, and 

erythrocytes were lysed with TRIS ammonium chloride. Cells were incubated in Roswell 

Park Memorial Institute medium (RPMI 1640 (Corning Life Sciences, Tewksbury, MA, 

USA) + 10% FBS (Gemini Bio-Products, West Sacramento, CA, USA), 2 mM L-glutamine, 

50 μM 2-mercaptoethanol, 1 mM sodium pyruvate, 0.1 mM non-essential amino acids, 100 

U/mL penicillin, 100 μg/mL streptomycin and 50 μg/mL gentamycin (all Thermo Fisher 

Scientific, Waltham, MA, USA) supplemented with 40 U/mL recombinant human IL-2 

(Peprotech, Rocky Hill, NJ, USA) and the cell suspension was transferred into a 24-Well 

plate (Greiner Bio-One, Kremsmünster, Austria) coated with 1.4 μg/mL α-CD3 (University 
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of Chicago, Frank W. Fitch Monoclonal Antibody Facility, Clone 145–2C11.1) and 0.2 

μg/mL α-CD28 (Biolegend, San Diego, CA, USA, Clone 37.51) at a concentration of 2.5 × 

106 cells/mL. On the first day after spleen removal, corresponding virus supernatant with 4 

μg/mL protamine sulfate (Millipore Sigma, St. Louis, MO, USA) was added and cells were 

spinoculated (800 × g, 90 min, 32 °C). On the second day a 12-Well plate (Greiner Bio-One) 

was coated with RetroNectin (12.5 μg/mL, TaKaRa, Otsu, Japan) and centrifuged with virus 

supernatant (3000 × g, 90 min, 4 °C). Afterwards 5 × 106 either CD8+ T cells in medium 

containing 50 ng/mL recombinant human IL-15 (Peprotech) or same amounts of CD4+ T 

cells in medium with 40 U/mL IL-2, were transferred to the coated 12-well plate and 

followed by spinoculation (800 × g, 30 min, 32 °C). TCR-transduced CD8+ T cells were 

used after 12 days for in vitro imaging, while TCR-transduced CD4+ T cells were used after 

4 days, respectively.

2.6. Imaging

6132A cancer cells and CD11b+ cells were cultured overnight in a 35 mm glass-bottom dish 

(MatTek, Ashland, MA, USA), containing 2.5 mL culture medium, consisting of RPMI 

1640 w/o riboflavin (US Biological, Salem, MA, USA) with 10 % FBS (Gemini Bio-

Products, West Sacramento, CA, USA), 2 mM glutamine, 50 μM 2-mercaptoethanol, 1 mM 

sodium pyruvate, 0.1 mM non-essential amino acids, 100 U/mL penicillin, 100 μg/mL 

streptomycin and 50 μg/mL gentamycin (all purchased from Invitrogen, Carlsbad, CA, 

USA). The dish was then transferred under the microscope the following morning. Imaging 

was performed with an Olympus VivaView incubator-based, epifluorescence microscope 

(Olympus Corporation of the Americas, Center Valley, PA, USA) and run by MetaMorph 

software (Molecular Devices LLC, Sunnyvale, CA, USA). Incubator settings were kept at 37 

°C and 5 % CO2. Upon placing the dish under the microscope, positions with appropriate 

numbers of cancer cells (between 3 and 10) were recorded, and 500 μL T cells resuspended 

in the same culture medium were added afterwards. The montage was set up to proceed from 

left to right, top to bottom for eight rows and eight columns (8 × 8, Fig. S1). This sequence 

of images corresponds to Fiji’s built-in montage feature. Each 8 × 8 montage time-point 

took 25 minutes to image. Following this, four 2 × 2 montages were chosen (433 × 330 μm), 

equally spaced from one another, from within the 8 × 8 montage. The 2 × 2 montages were 

imaged one at a time every 90 seconds for 5.5 hours, with the 8 × 8 montage recorded in 

between (Fig. S1). An infrared differential interference contrast (DIC) channel and 4 color 

channels were used (CFP, Cy5, GFP, RFP). The CFP channel used excitation at 436/20 

(center/bandpass; nm) with a 480/40 filter to capture the Cerulean emission at 458 nm (Fig. 

1A). The Cy5 channel used a 700/75 filter, with excitation at 620/60, to capture the DiD, 

which emits at 665 nm (Fig. 1B). The GFP channel used excitation at 470–495 nm with a 

515/25 filter to capture the EGFP emission at 510 nm (Fig 1C). The RFP channel used 

excitation at 530–550 nm with a 593/46 filter to capture the mCherry emission at 610 nm 

(Fig. 1D).

2.7. Image Analysis

Images were analyzed using the Fiji distribution of ImageJ [20], and were gathered in sets of 

adjacent acquisition tiles, at multiple “z” planes (initially), where z position relates to the 

focus of the microscope, and sorted by color channel, x-y position, z-position and time point 
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in separated files and analyzed using Fiji software [20]. The first step to the analysis 

involved processing the raw image data to decrease background noise and to remove bright 

outliers (e.g., large debris) from the background. Subsequently, the separate images were 

merged together into montages to display the whole imaged area. Each dataset was analyzed 

twice, once with “watershed” and once without. “Watershed” refers to a watershed 

segmentation algorithm that automatically separates objects in an image based on treating 

pixel intensity values as topography, and thus segments images according to the local 

minima between adjacent peaks.

2.7.1. Simulation—The simulation was based upon the cells in the real channels of each 

experiment. For each channel to be simulated, average cell counts, and sizes were tabulated 

for each cell. These data are summarized in Table S1 and were used to draw corresponding 

ovals in each of the channels of the desired dimensions using random number generators, 

such that each cell was placed randomly, and then moved randomly based on empirical data. 

Note that CD4+ T cells and CD8+ T cells appear to have different sizes due to differences in 

fluorescence of their fluorescent proteins, and that these discrepancies were mimicked in the 

simulation for best accuracy. The standard deviation of the velocity was calculated by 

tracking 10 cells of each type over 100 time points (sometimes fewer if the cells 

disappeared) for a total of 800–1000 measurements of step size between frames. The 

resulting distribution was highly concentrated at 0, with a long tail extending towards high 

values. In order to approximate this distribution, the data points were duplicated, and the 

second copy was multiplied by negative 1. This made the distribution appear much closer to 

a Gaussian distribution. Thus, the average velocity was 0, and the standard deviation could 

be calculated with its center at 0 and used in the simulation. The simulation macro 

decomposed the standard deviation into x and y by multiplying by the square root of 2. This 

value was then multiplied by a Gaussian-distributed random number with standard deviation 

of 1, centered at 0, such that the simulated cells were given a positive or negative movement 

in x and y, and had approximately the same velocity distribution as the real cells. These x 

and y movement values were then added to the prior (x, y) coordinates of the cell.

The simulation utilizes periodic boundary conditions, wherein each cell that leaves the 

bounds of the simulation is replaced by a cell entering on the other side of the montage. This 

approximation is typical in particle simulations and relies on assuming relatively constant 

density of particles and the approximation of the imaged area to be very small compared to 

the total area. Each 2 × 2 field of view is 1.431 × 10−7 m2 (433.31 μm × 330.14 μm). The 

total area covered by cells is 1.539 × 10−5 m2 ((7 mm)2 * π). Thus, each 2 × 2 area 

corresponds to 0.09293 % of the total dish, or approximately 1/1076 of the dish, validating 

the approximation that the dish’s total area was much larger than the imaged area, allowing 

for the usage of periodic boundary conditions.

Each simulation was repeated five times and run through the cluster macro. The average 

count of each cluster type at each time point was averaged and graphed as an analog to the 

real data.
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2.8. Graphical Analysis

Spline fits were conducted using RStudio’s ggplot2 package [21–23]. The default settings 

for geom_spline were used for all plots: mapping = NULL, data = NULL, stat = “spline”, 

position = “identity”, na.rm = FALSE, show.legend = NA, inherit.aes = TRUE, weight = 

NULL, df = NULL, spar = NULL, cv = FALSE, all.knots = FALSE, nknots = 

stats::.nknots.smspl, df.offset = 0, penalty = 1, control.spar = list(), tol = NULL.

2.9. Statistical Analysis

Statistical analysis was performed with RStudio [22]. Students t-tests were used to 

determine significant differences between means of cluster counts over 220 time points per 

position. P-values were then determined from the test statistic. Each test used data from two 

positions, with watershed-applied and watershed-absent data, such that the degree of 

freedom was 3 each time.

3. Results

3.1. In vitro time-lapse imaging reveals local four cell type cluster formation.

We started out by recording an 8 × 8 adjacent acquisition tile montage every 6 hours for 24 

hours. We expected that a large number of cells would be involved in cell cluster formation, 

surrounding many cancer cells at once, and that clusters would be visible on a macroscopic 

scale throughout the entire 8 × 8 montage for the first 24 hours. Surprisingly, we found that 

cells were evenly distributed and seemed to not associate with each other (Fig. 1). Therefore, 

we proceeded with an 8 × 8 montage setup that surrounded various 2 × 2 positions (Fig. S1), 

which were imaged much more frequently to capture shorter-term cell clustering behavior. 

We relied upon these 2 × 2 subsample montages in order to capture a reasonably wide area 

without sacrificing the short-term imaging intervals necessary for analyzing the 

unexpectedly fast-moving cells. Each 2 × 2 position was switched to another within the 8 × 

8 boundary every six hours, so as to minimize any phototoxic effects that light exposure 

might have on the cells, and multiple positions were recorded. The 8 × 8 montages were 

used as a checkup method to ensure that each 2 × 2 position was representative of the larger 

environment. When examining initial images from the 2 × 2 montage, we saw that cancer 

cells were rather evenly distributed and appeared to come into contact with up to three cells 

of other types, but with no obvious agglomeration that was evident to the naked eye (Fig. 2). 

This lack of aggregation suggested that a more sophisticated cluster analysis tool would be 

necessary to quantify clustering patterns.

3.2. Automated cell cluster analysis detects multi-cell associations around cancer cells.

We wanted to understand whether these clusters were occurring randomly due to the density 

of the cells, or whether the clusters occurred due to the cells’ own proclivity to cluster with 

one another around or on cancer cells. To quantify the interactions that occurred around the 

cancer cells, we used Fiji, an open-source platform for biological-image analysis [20], to 

develop a computer algorithm, or macro, to automatically find and classify cell clusters. This 

macro consists of seven steps, operates on one time point at a time, and requires 

preprocessed image data without background to avoid miscounts (Fig. 3). In Step 1, 
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brightness/contrast levels are manually chosen based on the first montaged image and used 

to determine a signal threshold for reference and consistency throughout all time points. In 

Step 2, the macro then displays a binary mask, or black and white image, of the cancer cell 

channel, and records the size, location, and shape of each cell. It then creates binary masks 

of the other channels and compares the locations of cells in each of these channels to the 

cancer cell channel, annotating (Step 3) which cancer cells overlap with which other 

channels. This process can be visualized as an overlay of the cancer channel, (CFP channel) 

with other channels, such as GFP (Fig. 3). The macro selects the cancer cells that have more 

than 10 contiguous pixels overlapping with cells from other channels, an arbitrary threshold 

chosen to correspond to 0.26 μm2, which corresponds to approximately 1% of an average T 

cell’s area. This adjustable threshold minimizes inclusion of trivial contacts (a “touch”). 

Given a non-trivial contact, the macro records the target cancer cell as having an overlap, 

and repeats this process for each cancer cell and channel. This procedure iterates for every 

channel, but always considers cancer cells as the prerequisite for cluster determination, such 

that only overlaps between the CFP channel with each of the other channels are analyzed 

(Step 4). The macro then creates a “mask output”, which represents the overlaps between 

CFP and one of the other channels, for each channel (CFP-GFP, CFP-RFP, and CFP-Cy5).

The macro then uses Fiji’s “AND” image calculator to perform a series of Boolean “AND” 

operations for each cell in each of the “mask outputs” (Fig. 3, Step 5). This works by 

determining whether each cell in a given “mask output” matches up with the corresponding 

cell in the other “mask outputs.” The macro then selects cancer cells with overlaps that occur 

doubly or triply, before outlining and labeling these accordingly (Fig. 3, Steps 5 to 6) in the 

output stack. If the CFP channel overlaps with all other channels (GFP, RFP, Cy5) the macro 

outputs a white “Four-Cell” cluster label next to the cancer cell, outlined in white (Fig. 3, 

Step 7), and also records the occurrence in a numerical output. This marker indicates that 

the cancer cell overlaps with CD11b+ cells, CD4+ and CD8+ T cells. An overlap of CFP 

with RFP and GFP is marked as a “C+4+8” cluster, showing that cancer cells interact with 

CD4+ and CD8+ T cells. The “C+4+11” cluster represents an overlap of cancer cells with 

CD11b+ cells and CD4+ T cells (here CFP overlap with Cy5 and GFP). Likewise, the “C

+8+11” cluster shows overlapping cancer cells with CD11b+ cells and CD8+ T cells (CFP 

with Cy5 and RFP). In addition, the macro outputs information about the number of cancer 

cells, the number of overlaps of each of the other cell types, as well as the counts of each 

cell cluster at every time point. The final image output contains all time points and seven 

channels: the four different color cell channels, an infrared DIC channel, a sixth channel of 

white four-cell type cluster outlines and corresponding “Four-Cell” labels, and a seventh 

channel containing the three categories of three-cell type clusters with yellow outlines and 

labels (Fig. 3, Step 7). This display facilitates visual verification of cell detections, cluster 

classifications, and of accuracy of event scoring. The overlaps of cancer cells with only one 

other cell type are not marked in the final output, but are counted.

In order to concisely represent each of the clusters and show which cells are present in each 

imaging dish, a logo schematic was developed, in which the cyan-colored cancer cell forms 

the basis of each cluster. In Table 1, a black circle is used to represent any given immune 

cell. The filled in circle indicates that the cell is present in both the dish and the cluster. The 
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empty circle not overlapping the cancer cell represents a cell that is present in the dish but is 

absent from the cluster. The empty circle overlapping the cancer cell represents a cell that is 

present in the dish, and possibly part of a cluster, but is ignored for the analysis. If a cell’s 

color is not present in the logo, that means that cell is not present in the dish being imaged. 

All of the studied cluster types are summarized in Table 2. Each studied cluster’s logo, code, 

cells involved, and cluster macro outline type are displayed.

For a non-diagrammatic, realistic view of the cluster macro outputs from the software, Fig. 4 

shows the specific steps representing imaged cell data. In Step 1, the user-determined 

thresholding occurs. Steps 2–6 are then conducted in the back-end of the software, which 

eventually outputs the 3 and 4 cell-type cluster outlines. Finally, Step 7, the overlaying of 

these outlines over the initial image, is shown. Furthermore, representations of each of the 

important cell cluster types are shown in Fig. 5. When looking at these macro outputs, it is 

important to note that the classification of the cluster does not depend on the number of cells 

of a given type. In addition, two-cell interactions are counted regardless of whether they also 

can be classified as three or four-cell interactions, i.e. C+11 clusters pertain to any cluster 

composition in addition to those with just cancer and CD11b+ cells, e.g. “C+4+11”, “C

+8+11”, and “Four-Cell” clusters (other two-cell clusters are counted in this same manner in 

Fig. S3). These nuances are also outlined in Table 1 and Table 2. Through this sequence of 

steps, the automated cell cluster-finding macro can detect cell associations around cancer 

cells.

3.3. Automated cell cluster-finding macro identifies directed immune cluster formation.

The established automated cluster-finding macro allowed us to analyze the dynamics of cell 

cluster formation and compare these dynamics to simulated situations. The Fiji simulation 

macro, outlined in Materials and Methods, utilized the cancer cell images from the in vitro 
experiments, but with simulated immune cells instead of the imaged immune cells. We 

compared two different in vitro situations to the Fiji simulations: a three cell type situation 

with cancer cells, CD11b+ cells and CD8+ T cells; and a four cell type situation with cancer 

cells, CD11b+ cells, CD4+ and CD8+ T cells. These comparisons allowed us to get a sense 

of the capacity of the cluster-finding macro to differentiate situations involving “biased” and 

“unbiased” cells, where the bias is the proclivity to appear in clusters versus random motion. 

Each Fiji simulation was repeated five times with the same average cell count as the 

corresponding in vitro experiment, and these repeated simulations were averaged in order to 

account for variability between simulations. When comparing real (in vitro) and simulated 

videos after clustering, it can be seen that it is difficult to visually discriminate real and 

simulated cell movement (Videos 1–8). However, it is still possible to use the cluster-finding 

macro to find significant statistical evidence of differences in cell clustering behavior.

Looking first at the three cell type situation, we can clearly see a difference in the number of 

CD11b+ cells in clusters, with the “C+11” clusters appearing in far greater numbers in the 

real experiment (Fig. 6A and B, upper panels). In order to account for difficulties in 

splitting apart cancer cells, we are presenting the same data in Fig. 6A and 6B, but with 

alternative analyses (without and with watershed, respectively. See Materials and Methods 

section 2.7). In Fig. 6A, touching cancer cells were counted as a single “cluster” by the 
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macro, while in Fig. 6B the macro attempted to split apart distinct cancer cells through 

automated watershed segmentation. Applying watershed to the cancer cells seemed to have 

minimal effect in terms of trends or numbers of clusters, though the watershed data has 

slightly more variability between frames. This variability could be due to inconsistency in 

the watershed algorithm, which might split the same cell differently from frame to frame due 

to minor variations in brightness. Representative videos of each of these clustering 

approaches are shown for real (Videos 1–2) and simulated cells (Videos 3–4). The numbers 

of both “C+11” and “C+8+11” clusters in the real experiment show quite a bit of variability 

in terms of overall numbers and in the scale of their oscillations, while in the simulation they 

stay relatively constant for two positions (Fig. 6, lower panel), with some minor 

oscillations. These distinctions suggest that there are stark differences in clustering behavior 

between the real immune cells and the simulated cells, and the macro is able to quantify 

these differences. Furthermore, a t-test confirms that the difference in the means of each of 

these clusters in the real vs the simulation is indeed significant (Table 3).

Moving on to the four cell type situation, a more detailed look at the differences in 

clustering behavior is possible (Fig. 7). Like before, Fig. 7A shows the unsplit data, and Fig. 

7B shows the watershed data, and Videos 5–8 show the cluster outlines from these. The most 

readily apparent differences are the cancer and CD11b+ cell clusters (“C+11”), which appear 

twice as frequently in the real data, and the Four-Cell clusters, which rise distinctly after 4 

hours in the real experiment and remain constant in the simulation. This trend is present in 

both Fig. 7A and 7B, indicating that while the watershed has some effect on counts of 

clusters, the overall trends are similar. The “C+11” clusters in Fig. 7B seem to be higher in 

count, and more variable, than in Fig. 7A. This could be due to the high contact frequency of 

CD11b+ and cancer cells resulting in increased numbers of “C+11” clusters when the cancer 

cells are split apart. The difference between “C+11” and “Four-Cell” clusters’ means in the 

real experiment and in the simulations are each highly statistically significant (Table 3). The 

three types of “Three-Cell” clusters (“C+4+8”, “C+8+11”, and “C+4+11”) have means that 

are less significantly different between the real experiment and simulation.

These less statistically significant results are likely because the immune cells seem highly 

prone to interact as “Four-Cell” clusters instead of as “Three-Cell” clusters. When a fourth 

cell type joins a “Three-Cell” cluster, its classification becomes “Four-Cell”. However, 

because the three-way interactions that take place in “Three-Cell” clusters are still important 

evidence of clustering behavior, it is necessary to determine whether they are, in fact, 

significantly different from randomly moving cells. Therefore, in order to count these 

instances of clusters that contain at least three specific cell types, regardless of the fourth cell 

type, it is necessary to add together the counts of the “Three-Cell” and “Four-Cell” clusters. 

When combining each of the “Three-Cell” cluster counts with the “Four-Cell” cluster 

counts, the data shows that the mean of each of the clusters is significantly different between 

the real and simulated data (Table 3). This high number of multi-cell clusters is much less 

common in the simulation than in the real experiment, because the probability of cancer 

cells having random encounters with two or three cell types at a time is lower than the 

probability of having random encounters with only one. However, given that we often see 

higher counts of “Four-Cell” clusters than “Three-Cell” clusters with real immune cells in 
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vitro, it is likely that these cells are not randomly encountering one another, but are engaging 

with their target by design.

4. Discussion

The automated cluster-finding macro allows us to identify trends over long time periods that 

we would otherwise have difficulty seeing. It allows us to sort out differences between 

situations that look very similar to the naked eye, by revealing clusters in defined categories 

with significant biological meaning. It can easily be generalized and applied to any situation 

where clustering behavior is prevalent between differently colored elements. In our 

immunological application, we are able to gain an enhanced understanding of the 

interactions taking place between different cell types, including when different cells enter 

and exit clusters and how long different types of clusters are prominent. We were able to 

compare the dynamics across time, position, and experiment, by using a standardized and 

repeatable automated process. The macro we developed can be adapted and improved for a 

diversity of future studies of complex multi-cell-type interactions.

One limitation of using automated software to count and encircle cells is that it occasionally 

flags background noise or other disturbances in the image as a cell. Even with background 

subtraction techniques and selective thresholding, miscounts occur. To account for this 

problem, it is necessary to look at the relative counts/changes as opposed to the absolute 

counts, given that these problems will be systemic and not likely to vary as a function of 

time points. A second issue is the scoring of multiple touching cancer cells as a single unit. 

The shape of these cells is difficult to correctly split by watershed routines, resulting in 

under- and over-counting cells due to incorrect splitting of touching or of single cells, 

respectively. Over-splitting decreases the chance of detecting multi-cell-type clusters. Not 

splitting increases the cluster counts, across both groups of cancer cells and groups of single 

cancer cells. In addition, the probability of multi-cell-type clustering is far higher for non-

split groups than for single cells simply because when the area of the target cell is larger, and 

results in high target-cell density situations, it would be more difficult to distinguish between 

simulations and experiments without splitting cells. It should be noted that cell cultures here 

contained only a single layer of cells, and that cells within tumors are mostly touching. For 

these reasons, we chose to show both approaches, with and without splitting, and used the 

same real cell data for our interaction simulations to account for single versus touching 

cancer cell detections.

In the beginning we used 3 × 3 montages, imaged with two z-positions every 5 minutes for 

48 hours. Over this time, the level of light exposure was enough to destroy cancer cells and 

CD11b+ cells (Fig. S2). Cancer cells began to die in the center frame of the 3 × 3 within 6 

hours due to frequent light exposure from surrounding frames (Video S1), and because two z 

positions were used. The wide illumination from the microscope could be to blame for the 

intense phototoxicity in the center and cytotoxic effects even outside of the imaged area, as 

the radius of the circular illumination is wider than the imaged field of view to ensure lack of 

dark corners in squared images. Because of the premature cancer cell death, we were unable 

to analyze clusters occurring around cancer cells. In order to account for this problem, we 

switched to our current method of imaging multiple 2 × 2 positions every 90 seconds for 6 
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hours at a time, with only one z-position. In addition, an 8 × 8 montage was imaged once 

every 6 hours for 24 hours. This 8 × 8 montage was the easiest point of comparison between 

experiments, to verify that all the different 2 × 2 sub-fields of view have similar outcomes. 

Furthermore, the 8 × 8 montage allowed us to see that phototoxicity was not having a 

noticeable effect on the survival of the cells, by comparing cancer cell fate in imaged areas 

to areas that were not imaged.

The phenomenon of cell clustering has been studied for over 50 years, but the initial 

methods relied on indirect measurements of cell responses and adherence at end-point [11]. 

Our methodology offers a significant improvement. Rather than an indirect measurement of 

the overall composition of a population of multiple cell-types, we are able to quantify 

individual clusters of cells and study their formation and disassociation dynamics, which 

presents a much more fine-tuned and sensitive analysis. In addition, the focus on live cell 

imaging has the benefit of capturing nuanced behaviors that might not show up in an 

experiment that only analyzes the end-point.

Because the immune system involves a great degree of cooperation between cell types, our 

approach can be generalized to include any combination of immune cells that might interact 

in a cluster, which presents other applications where this macro would be useful. We believe 

that the immune cell clusters involve immune synapses and kinapses [8], and by using the 

macro, it is possible to further investigate situations involving these interactions. Future 

experiments could be performed to determine differences between linear effects of adhesion 

and determine effects that might be enhanced by multi-cell type interaction. One possibility 

is that the CD4+ T cell would activate the CD8+ T cell, causing it to become more involved 

in clustering or changing its movement. This could be investigated, i.e. through the 

comparison of cancer and CD11b+ cell clusters with cancer-specific CD4+ and CD8+ T cells 

with clusters of CD4+ and/or CD8+ T cells which are not specific for cancer antigens. 

Through comparison of a given cell’s behavior in each situation, it would be possible to map 

out the effects that each cell has on another, that are not accounted for by simple cell-cell 

adhesion. A simulation could also be used to supplement these experiments, whereby a 

single cell type could be swapped out for a statistical comparison with a simulation, thus 

answering questions such as whether a non-cancer specific T cell behaves like a randomly-

moving one. The study focus could also be switched to a different immunological topic, 

such as in the case of virology, where a virus infects a host cell, and the host cell is then 

destroyed by host immune cells [10]. Any cell or protein that can be distinctly labeled can be 

included in this type of analysis.

In certain situations, a single cell type may not be the only target of interest for clustering. A 

generalized version of this macro is suitable for this situation as well. The user can rearrange 

the channels such that any given cell type is the “target” and can run the macro iteratively, 

with each cell type as the target. The distinct combinations can be graphed in the same 

manner as we showed previously. For example, we decided to look at clusters based around 

CD4+ T cells in the four cell type experiment (Fig. S3, Video S2). We compared these 

clusters to analogous ones that had cancer cells as the target. We changed the code 

accordingly to account for the different channel as the target (i.e. “4+C” means a CD4+ T 

cell with a cancer cell overlap). This switch of target reveals new levels of complexity about 
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the interactions; for instance, the counts of “4+C” can be compared to counts of “C+4” to 

give an indication of how many CD4+ T cells come into contact with each cancer cell 

cluster. Furthermore, looking at Video S2, it is easier to spot certain instances in which 

CD4+ T cells come into contact with CD8+ T cells or CD11b+ cells within a cancer cluster. 

This example shows that the macro can be generalized to be applicable to clusters with 

alternative targets as the basis, aside from just cancer cells, or even to situations with more 

than one target cell of interest.

The cell cluster-finding macro could also allow for new types of studies in developmental 

biology, where cellular imaging plays an important role. Studying cell to cell interactions 

and their intercellular signaling continues to be of pivotal importance and the cluster macro 

could be applied to situations in which multiple cell types are interacting at once, during 

developmental stages. For example, tracing oligodendrocyte development and migration 

involves keeping track of filopodium-like processes that are involved in local surveillance, 

which organize themselves based on contact with neighboring cells [24]. Through genetic 

fate mapping techniques and time-lapse imaging, the cell cluster macro could quantify how 

specific perturbations of oligodendrocyte progenitor cells would affect contact rate with 

neighboring cells and make it possible to measure how the rate of contacts between cells 

relates to their distribution. The cell cluster macro could be applied to similar situations 

involving dynamic population-level operations of a number of differently labeled cells, 

where the at-large behavior is of more interest than single cell to cell interactions. Another 

example is neural crest or notochord [25] morphogenesis in a developing zebrafish embryo, 

where certain differentially expressed proteins can be fluorescently labeled. When specific 

cells differentiate and express new proteins, such as Isl-1 [26], and Tfap2 [27], these labels 

can be used by the cluster macro to identify which cell types are present in certain clusters at 

various stages of development. The macro can also be used to identify migration patterns of 

these cells, with accurate timing for when they move from one type of cluster to another.

The cluster macro could also be applied to studies where tissue organization and 

mechanotransduction are of interest. Stem cell research, in particular, due to its inherent 

focus on multiple cell types and the cell-to-cell interactions that govern their behaviors, 

could be advanced by using a cell cluster-finding tool. For instance, in the mammary gland, 

where cell-to-cell interactions are mediated by cell adhesion molecules such as integrin 

heterodimers [28], it is possible to trace the lineage of stem cells as they clonally expand or 

differentiate during pregnancy [29, 30]. Using the cell cluster tool, and some modification to 

existing protocols to allow for time-lapse imaging, it would be possible to track the dynamic 

interactions between differently labeled stem and progenitor cells, perhaps with labels for 

integrins as well, that govern cell fate specification. This type of study could foreseeably be 

applied to any number of similar situations involving mechanotransduction, such as in 

collective invasion, wherein an entire group of cells moves from one location to another, 

while maintaining cell-to-cell adhesion [31, 32].

Rather than focusing on individual phenomena that might occur randomly, the cluster-

finding macro instead finds persistent and quantifiable differences between biased and 

unbiased cells, where the bias refers to the cells’ tendency to adhere to other cells, including 

target cells. Given the ubiquity of cell to cell interactions involving multiple cell types, the 
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cluster-finding macro could be applied to and advance various different research areas. 

Shifting the focus away from single cell contacts to at large spatial analysis allows for the 

possibility of finding significant differences in proclivity to interact over time among 

multiple cells.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights:

• Automated analysis of multi-cell clusters

• Quantifiable differences between directed and simulated cell clustering

• Complex interactions between immune cells and their targets
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Fig. 1. Example of the distribution of the four cell types as seen through the microscope.
(A – D) Examples of images of the four cell types are shown: (A) 6132A cerulean positive 

cancer cells (blue), (B) DiD stained CD11b+ cells (magenta) isolated from spleen of 

C3H/HeN mice together, (C) 6132A-specific, TCR-transduced CD4+ T cells (GFP, green) 

and (D) 6132A-specific, TCR-transduced CD8+ T cells (mCherry, red). (E) shows an 

example of the even distribution of the four cell types throughout the entire area of an 8 × 8 

montage. This 8 × 8 image is used to ensure that the four 2 × 2 time-lapsed positions are 

representative of the broader area of the 8 × 8 montage. See Materials and Methods for 

details.
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Fig. 2. Four cell type cluster formation is not efficiently detectable by eye, even in a 2 × 2 
montage.
Representative 2 × 2 montage using time-lapse Olympus VivaView microscopy. The image 

shows 6132A cerulean-positive cancer cells (blue) with DiD-stained CD11b+ cells 

(magenta) together with 6132A-specific, TCR-transduced CD8+ T cells (mCherry, red) and 

6132A-specific, TCR-transduced CD4+ T cells (GFP, green). See Materials and Methods for 

details.
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Fig. 3. Computational steps involved in the cell cluster-finding macro.
In the first row, the macro begins with background-subtraction, thresholding the image, and 

creating a binary mask, followed by combining mask overlays of different channels and 

selecting pairwise overlaps with cancer cells. After this, the overlap of cancer cells with the 

GFP channels is marked as “hasG” and repeated for the other channels accordingly to form 

the “mask output.” In the next row, the various “mask outputs” from the GFP, RFP, and Cy5 

channels are combined via Boolean “AND” operations, which distinguish each cancer cell 

by which other cells are present at overlapping spatial coordinates. This is used to form 

double and triple overlaps, which correspond to different cluster types. The clusters are 

combined with the original cancer cell image to create a final image output with labels and 

outlines. These images are representations for easier understanding, and do not correspond 

directly to actual images produced by the software.

Diehl et al. Page 20

Exp Cell Res. Author manuscript; available in PMC 2021 August 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 4. Image-processing using the established cell cluster-finding macro.
An example with imaged data files of Step 1 from Fig. 3 is shown, along with before and 

after images of Step 7. The other diagrammed steps from Fig. 3 occur in the background and 

are not represented on the computer screen.
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Fig. 5. Examples of cell clusters detected by the macro.
(A) The C+11 clusters are automatically counted by the macro but not labeled or outlined. 

They have therefore been manually encircled (dashed line) and labeled. Note that any other 

cluster that contains cancer and CD11b+ is also a C+11 cluster. (B – E) Examples of clusters 

that are automatically counted, outlined, and labeled by the macro, which only outlines the 

target cell of the cluster. The immune cells detected by the macro as part of the cluster are 

manually encircled to highlight the entire cluster. The labels have also been enhanced for 

legibility. (B) A “C+4+8” cluster. (C) A “C+8+11” cluster. (D) A “C+4+11” cluster. (E) A 

“Four-Cell” cluster. See Materials and Methods for details.
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Fig. 6. Comparison of cell cluster formation between real and simulated immune cells in three 
cell type culture.
(A) The upper panel shows cell cluster analyses of the first 2 × 2 position from 0 – 6 h and 

the second 2 × 2 position from 6 – 12 h. The lower panel shows the simulation controls, 

using the real cancer cells with simulated immune cells. Statistical analysis shows 

significant differences between both measured cell clusters in the real and simulated 

experiments (Table 3). (B) Same data as A, but with watershed segmentation applied to 

automatically split touching cancer cells. The significant differences remain. See Materials 

and Methods for details.
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Fig. 7. Comparison of cell cluster formation comparison between real and simulated immune 
cells in four cell type culture.
Analogous to Fig. 6, but with four cell types. (A – B) There are significant differences 

between “Four-Cell”, “C+4+11”, and “C+11” clusters between the experimental and 

simulated data, and insignificant differences among the other clusters (Table 3). The “Four-

Cell” clusters line was enhanced for viewability. See Materials and Methods for details.
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Table 1:

Key to understanding cluster logos.

Logo Cell in cluster

Yes

No

Ignored
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Table 2:

Cluster types recognized by the automated cluster-finding macro.

Logo Code Cells Involved Outline

C 6132A Cancer None

C+11 Cancer, CD11b+ None

C+4+8 Cancer, CD4+ T, CD8+ T Yellow

C+8+11 Cancer, CD8+ T, CD11b+ Yellow

C+4+11 Cancer, CD4+ T, CD11b+ Yellow

Four-Cell Cancer, CD4+ T, CD8+ T, CD11b+ White
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Table 3:

Difference of means t statistic for cluster counts.

Experiment Cluster Type Mean Count of Real (SE) Mean Count of Simulation (SE) t-statistic* p-value Significance

Three cell type C+11 11.298 (2.096) 6.388 (0.958) 7.322 0.00526 **

C+8+11 7.185 (1.954) 3.277 (1.049) 4.651 0.0187 *

Four cell type C+11 9.977 (1.909) 4.930 (1.023) 7.08 0.00579 **

C+4+8 1.153 (0.283) 0.824 (0.097) 2.507 0.0872 ns

C+4+11 1.123 (0.392) 0.315 (0.084) 3.981 0.0284 *

C+8+11 2.268 (0.877) 1.734 (1.049) 1.082 0.358 ns

Four-Cell 1.975 (0.641) 0.653 (0.381) 7.946 0.00416 **

With C, 4, 8 3.128 (0.419) 1.477 (0.406) 30.1 0.0000806 ***

With C, 4, 11 3.098 (0.615) 0.969 (0.375) 8.498 0.00342 **

With C, 8, 11 4.243 (0.348) 2.387 (0.591) 4.167 0.0251 *

*
All t-tests conducted with d.f. of 3
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