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Abstract
Purpose of Review To summarize recent insights into long non-coding RNAs (lncRNAs) involved in atherosclerosis. Because
atherosclerosis is the main underlying pathology of cardiovascular diseases (CVD), the world’s deadliest disease, finding novel
therapeutic strategies is of high interest.
Recent Findings LncRNAs can bind to proteins, DNA, and RNA regulating disease initiation and plaque growth as well as
plaque stability in different cell types such as endothelial cells (ECs), vascular smooth muscle cells (VSMCs), and macrophages.
A number of lncRNAs have been implicated in cholesterol homeostasis and foam cell formation such as LASER, LeXis, and
CHROME. Among others,MANTIS, lncRNA-CCL2, andMALAT1were shown to be involved in vascular inflammation. Further
regulations include, but are not limited to, DNA damage response in ECs, phenotypic switch of VSMCs, and various cell death
mechanisms. Interestingly, some lncRNAs are closely correlated with response to statin treatment, such asNEXN-AS1 or LASER.
Additionally, some lncRNAs may serve as CVD biomarkers.
Summary LncRNAs are a potential novel therapeutic target to treat CVD, but research of lncRNA in atherosclerosis is still in its
infancy. With increasing knowledge of the complex and diverse regulations of lncRNAs in the heterogeneous environment of
atherosclerotic plaques, lncRNAs hold promise for their clinical translation in the near future.
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Abbreviations
ABCA1 ATP-binding Cassette Transporter A1
ADAM A Disintegrin and Metalloproteinase
ApoE Apolipoprotein E
ASO Antisense Oligonucleotides
BMDM Bone Marrow-derived Macrophages
CCL2 C-C Motif Chemokine Ligand 2
CH Cholesterol

EC Endothelial Cell
EZH Enhancer of Zeste Homologue
HCD High-cholesterol Diet
HDLC High-density Lipoprotein Cholesterol
HFD High-fat Diet
HUVEC Human Umbilical Vein Endothelial Cells
ICAM-1 Intercellular Adhesion Molecule 1
LDL-C Low-density Lipoprotein Cholesterol
LDLR LDL Receptor
LPL Lipoprotein Lipase
LV Lentivirus
MMP MatrixMetallopeptidase
NFIA Nuclear Factor IA
NLRP3 NOD LRR- and Pyrin domain-containing protein 3
PBMC Peripheral Blood Mononuclear Cell
OE Overexpression
oxLDL oxidized LDL
siRNA small interferenceRNA
THP-1 human acute monocytic leukemia cell line
VSMC VascularSmooth Muscle Cells
WD Western Diet
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Introduction

The fate of atherosclerosis is dependent on the phenotype of a
variety of highly plastic cells in atherosclerotic plaques, and
their myriad functions are transcriptionally and post-
transcriptionally regulated in response to environmental stim-
uli. With advances in genomic tools, a new variable for gene
regulation, namely non-coding RNA (ncRNA), has been in-
troduced. This previously considered “evolutionary junk”
makes up the majority of the transcribed human genome with
only 2% being transcribed as RNA encoding proteins [1, 2].
Accumulating evidence shows that ncRNAs contribute to the
regulation of networks in physiological and pathophysiologi-
cal mechanisms, including those of cardiovascular diseases
(CVDs).

CVDs are responsible for the majority of morbidity and
mortality worldwide, and despite developments in scientific
discoveries, clinical cardiology and public health leading to
improved outcomes in patients who suffered CV events, its
prevalence is still expected to rise [3–5]. Thus, novel strategies
to diagnose, prevent, and treat CVD are desperately needed.

Early GWAS gave first insights into the importance of
ncRNA in CVD, defining the most significantly associated
locus with coronary artery diseases (CAD)—Chr9p21—to
contain a stretch of 58 kilobases (kb) of ncRNAs [6–9]. The
locus was shown in subsequent studies to associate with ath-
erosclerosis [10–12] and different atherosclerosis endpoints
such as myocardial infraction, stroke andaneurysms [8,
13–19]. Over the past decade, the number of CAD risk loci
rose from originally 9 [6] to 243 in 2017 [20].

While early research in the field of ncRNA focused on
principal RNA participants in gene expression, namely mes-
senger, ribosomal, and transfer RNAs, research interest ex-
panded to micro RNAs (miRNA) in early 2000. Novel geno-
mic technologies including the availability of fast and cost-
effective sequencing technologies as well as computational
resources, opened up the field for long ncRNA (lncRNA)
and circular RNA (circRNA) [21]. Multiple lncRNAs have
been described to play a role in atherosclerosis, the main un-
derlying pathology of CVD. Thereby, lncRNAs are implicated
in several atherogenic processes, such as endothelial dysfunc-
tion, lipid deposition, and inflammation, and have been shown
to be expressed in different cell types known to be present in
atherosclerotic lesions (e.g., endothelial cells (ECs), vascular
smooth muscle cells (VSMCs), macrophages).

LncRNAs still lack a clear classification but are generally
defined as ncRNA > 200 nucleotides (nt) long and make up
the largest part of ncRNA [22]. However, up to date, fewer
than 5% have been characterized, partly due to poor conser-
vation among species [23, 24]. While lncRNAs by definition
have no protein coding potential, hence mostly lack functional
initiation and termination codons [25], some lncRNAs have
surprisingly been found to translate into micropeptides [26,

27], complicating the classification of lncRNAs further.
Although the lncRNA classification is still unclear, it became
apparent that this heterogeneous group of ncRNA can bind to
DNA, RNA, proteins, or a combination thereof, likely due
their capacity to fold into various thermodynamically stable
structures [28].

This review aims to summarize recent studies on lncRNAs
in the field of atherosclerosis and is divided into their binding
ability with proteins, DNA, and RNA.

Mechanisms of lncRNAs

LncRNAs are present in the nucleus and in the cytoplasm and
therefore are able repress and activate genes on transcriptional
and post-transcriptional levels. According to their position on
the genome and adjacent genes, lncRNAs can be classified as
sense, antisense, bidirectional, intronic, or intergenic
lncRNAs and act in cis or trans (regulating genes in close
proximity or further away, respectively). According to their
functions, lncRNAs can also be classified as signaling, decoy,
guide, and scaffold lncRNAs, while one lncRNA can have
multiple archetypes [29].

Transcriptional regulatory mechanisms include interaction
with chromatin-modifying complexes, transcriptional regula-
tors, and DNA [30]. These interactions can either repress or
activate gene expression, depending on the nature of enzymes
bound to chromatin complexes and the type of function for
interacting lncRNA. If transcribed in response to stimuli, so-
called signaling lncRNAs serve as molecular signals and reg-
ulate gene expression via one of the mechanisms described
below. Their transcription is time and location specific [31];
and thus, their presence may also reflect cell condition, state,
and transcriptional activity. Decoy lncRNAs can impair the
interaction of transcriptional regulators with their target genes
by, for instance, mimicking DNA-binding sites, and impair
downstream effector functions. Guide lncRNAs on the other
hand can enhance downstream effector functions by aiding
localization of transcriptional regulators to specific regions.
Additionally, lncRNAs can mediate protein-protein interac-
tions resulting in organization of nuclear subdomains, e.g.,
polycomb group proteins (scaffold lncRNAs). By direct
RNA-DNA interaction, lncRNAs can display enhancer-like
activity (enhancer RNA; eRNA) or form RNA-DNA triplex
structures repressing gene expression via blocking the assem-
bly of the pre-initiation complex. Not only the presence of
lncRNAs but also its transcription can modify mRNA expres-
sion. Like mRNAs, lncRNAs are believed to be mainly tran-
scribed by RNA polymerase II (Pol II) [25, 32] and Pol II-
bound chromatin-modifying complexes can deposit histone
modifications while moving along the DNA locus. Further,
lncRNA transcription-dependent chromatin modifications can
also affect binding affinity for regulatory factors.
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Post-transcriptional regulatory mechanisms include the in-
terference with pre-mRNA splicing and both positive and
negative implications on mRNA translation/stability. For in-
stance, antisense lncRNAs can upregulate mRNA translation
through interaction with the 5′region of mRNA, while binding
of Alu-element containing lncRNA tomRNAAlu-elements at
the 3′UTR results in Staufen-mediated decay of the mRNA.
Further, direct or indirect interaction of lncRNAs with
miRNAs has regulatory effects by either masking miRNA
binding sites on target mRNA or by miRNA sequestration
(competitive endogenous RNA).

Finally, several recent publications show that some tran-
scripts annotated as lncRNA actually function as mRNAs and
produce small proteins [27, 33], making the determination of
the exact mechanism by which a lncRNA elicits its effect
complex.

LncRNA-Protein Interactions
in Atherosclerosis

LncRNAs are able to regulate epigenetic changes, transcrip-
tion, alternative splicing, and translation via the modulation of
protein activity, localization, and structure (Fig. 1).

LncRNA LASER (Lipid Associated Single nucleotide
polymorphism gEne Region) binds to LSD1 (lysine-specific
demethylase; member of CoREST/REST complex), leading
to decreased H3K4me demethylation at the promoter region
of the HNF-1α gene and subsequently to increased PCSK9
(Proprotein convertase subtilisin/kexin type 9) expression in
hepatocytes [34]. As PCSK9 directs low-density lipoprotein
receptors (LDLR) towards degradation, LASER expression is
positively correlated with circulating cholesterol levels (total
cholesterol, LDL, apoB100) in vitro and in vivo as well as

Fig. 1 Atheroprotective and atherogenic mechanisms of lncRNAs
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with PCSK9 in statin-free patients. Statin (=HMG-CoA re-
ductase inhibitor) treatment lowers circulating atherogenic
lipids via blocking cholesterol biosynthesis in the liver and
increases LASER expression. Hence, its expression is regulat-
ed by a cholesterol-mediated feedback loop and represents a
potential target to augment the effect of statin treatment. Also
implicated in cholesterol homeostasis is LeXis (Liver-
expressed Liver X Receptor (LXR)–induced sequence) [35],
a lncRNA that binds the ribonucleoprotein RALY in hepato-
cytes, and inhibits its occupancy at cholesterol biosynthetic
gene promoters, such as Srebf2. Using a liver-specific
adeno-associated virus (AAV8)–based gene approach to in-
crease LeXis expression in western diet (WD)–fed Ldlr−/−

mice was associated with a decrease in hepatic and circulating
lipid levels and reduced atherosclerosis [36]. This indicates
that the LeXis-mediated crosstalk between LXR and sterol
regulatory element binding protein (SREBP) transcription fac-
tors could therapeutically be harnessed to maintain cholesterol
homeostasis in CVD risk patients.

While regulating the secretion of atherogenic lipoproteins
from the liver into the circulation is a central step in maintain-
ing cholesterol homeostasis, thus preventing pathogenic depo-
sition of these lipoproteins in the artery wall, another pivotal
process is the removal of excess cholesterol from atheroscle-
rotic plaques. Cholesterol efflux represents the first step of the
reverse cholesterol transport (RCT) and is done to nascent
apolipoprotein A1 via ABCA1 transporter or to mature high-
density lipoprotein (HDL) via ABCG1/SR-B1 transporter
[37], followed by its delivery to the liver and its excretion
via the bile. One lncRNA that amplifies LXR-mediated
Abca1 expression is lncRNA MeXis (Macrophage-expressed
LXR-induced sequence) by guiding the transcriptional coac-
tivator DDX17 to Abca1 enhancer regions [38]. In line, cho-
lesterol efflux was increased in LXR-stimulated MeXis-ex-
pressing RAW cells, while lack of MeXis in bone marrow
(BM) cells of WD-fed Ldlr−/− mice accelerated atherosclero-
sis progression measured as lesion size and lipid content, com-
pared with wild-type BM. LncRNAANRIL (antisense non cod-
ing RNA in the INK4 locus) was reported to promote cholesterol
efflux [39]. Mechanistically, ANRIL can function as scaffold
lncRNA by recruiting DNA methyltransferase 1 (DNMT1) to
the ADAM10 promoter, enhancing its methylation. The sup-
pression of ADAM10 expression through overexpression of
ANRIL in THP1 macrophage-derived foam cells and apolipo-
protein E–deficient (ApoE−/−) mice showed increased cholester-
ol efflux and decreased lesion area. Of note, ANRIL has been
extensively studied and reviewed elsewhere [40]. In contrast to
promoting cholesterol efflux, lncRNA GAS5 inhibited Abca1
expression by binding the enhancer of zeste homologue 2
(EZH2), which in turn promotes triple methylation of lysine 27
(H3K27). Therefore, lncRNA GAS5 reduced cholesterol efflux
in THP-1 macrophage-derived foam cells and its knockdown
decreased atherosclerosis progression in ApoE−/− mice [41].

Next to lipid deposition, vascular inflammation initiates
and drives atherosclerosis progression and is partly driven
by activation of ECs through the NF-kB pathway [42].
Overexpression of lncRNA NEXN-AS1 (Nexilin F-actin
binding protein antisense RNA 1) suppressed the TLR4/NF-
kB pathway and thereby reduced endothelial activation and
monocyte recruitment in human vascular endothelial cells
(HVEC) [43]. Further, its overexpression inhibited proinflam-
matory pryoptosis-related biomarkers known to drive athero-
sclerosis (NLRP3, caspase-1, IL-1β, IL-18, GSDMD) [44].
Thereby, NEXN-AS1 upregulates the expression of the
NEXN gene by preventing chromatin condensation through
binding the chromatin remodeler BAZ1A [43]. NEXN defi-
ciency promoted atherosclerosis and plaque inflammation in
WD-fed ApoE−/− mice, while NEXN overexpression
prevented these effects [43]. Additionally, the expression of
both—NEXN-AS1 and NEXN—is reduced in atherosclerotic
arteries compared with healthy arteries in humans [43].
Further, atorvastatin significantly induced NEXN-AS1 and
NEXN expression, suggesting a new atheroprotective mecha-
nism for statins non-lipid-lowering effects. lncRNA MANTIS
(LncRNA n342419) alsomediates vascular protection in trans
via its interaction with SWI/SNF chromatin remodeling factor
BRG1. This enables BRG1-promoter binding to angiogenic
genes, such as SOX18 [45], and on the other hand, hinders
BRG1 interaction with the promoter region of monocyte ad-
hesion factor ICAM-1 [46]. As for NEXN-AS1, statins also
increasedMANTIS expression in human umbilical vein endo-
thelial cells (HUVECs) and prevented reduced MANTIS ex-
pression in human artery endarterectomy compared with
healthy vessels [46].

Although the majority of atherosclerotic plaque remain
clinically silent, chronic inflammation and ongoing monocyte
recruitment contribute to plaque growth and can feed into
destabilization, thus, resulting in life-threatening acute events.
One lncRNA found to be increased in unstable symptomatic
compared with asymptomatic human atherosclerotic plaques
was LncRNA-CCL2 [47]. LncRNA-CCL2 is upregulated in
IL1-β-induced inflammatory HUVECs and regulates CCL2
mRNA levels in part through interaction with RNA-binding
proteins in the nucleus, namely IGF2BP2 (insulin growth fac-
tor 2 binding protein 2) and HNRNPU [47]. The CCL2 gene
encodes monocyte chemoattractant protein 1—a key mediator
in inflammatory processes that facilitates monocyte recruit-
ment and correlates with increased lncRNA-CCL2 expression
in symptomatic plaques. VSMCs can also contribute to in-
flammation, monocyte recruitment, and plaque destabilization
via a phenotypic switch from a contractile state to synthetic
macrophage-like cells [48]. This process was shown to be
promoted by lncRNA NEAT1 (nuclear paraspeckle assembly
transcript 1) [49]. NEAT1 interacted with chromatin modifier
WDR5 resulting in inhibited trimethylation at the promoters
of genes encoding SM proteins.
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Independent of the effects on circulating lipid levels or
vessel wall inflammation was the observed accelerated athero-
sclerosis in high cholesterol diet (HCD)–fed Ldlr−/− mice
driven by the knockdown of lncRNA SNHG12 [50].
LncRNA SNHG12 (small nucleolar host gene-12) binds to
DNA protein kinase (DNA-PK) in the vascular endothelium,
which in turn facilitates binding of DNA-PKcs to Ku70/80
and the ability of DNA damage repair. Thus, SNHG12 knock-
down resulted in increased DNA damage and cellular senes-
cence in vitro and in vivo, which exacerbated EC dysfunction
and macrophage efferocytosis. Further, reduced SNHG12 ex-
pression in atherosclerotic specimen of pigs and human was
inversely correlated with DNA damage and senescence.

LncRNA-DNA Interactions in Atherosclerosis

LncRNA-DNA interactions are diverse, and several mecha-
nisms for how lncRNAs recognize specific target sites have
been proposed including polymerase tethering, hybridization,
and DNA-binding protein–mediated recruitment [51] (Fig. 1).
The binding of lncRNA to specific DNA regions can lead to
the recruitment of proteins regulating epigenetic modulations
(described above) as well as to positive or negative gene ex-
pression. In the context of atherosclerosis, lncRNA FA2H-2
regulates autophagy and inflammation via binding the pro-
moter of mixed lineage kinase domain-like protein (MLKL)
gene. The subsequently suppressed MLKL expression in-
creased autophagy flux and alleviated inflammatory damage
induced by oxLDL in SMC and ECs [52]. Increased autoph-
agy has been reported to be atheroprotective by preventing
macrophages and smooth muscle cells to become foam cells
and by alleviating inflammation [53–56], suggesting an
atheroprotective role for lncRNA FA2H-2. Indeed, knock-
down of lncRNA FA2H-2 in HFD-fed ApoE−/− mice showed
increased MLKL expression, reduced autophagy flux, and
enhanced inflammation and lesion area [52].

LncRNA-RNA Interactions in Atherosclerosis

LncRNAs can be shuttled to the cytoplasm and modulate pre-
mRNA splicing, mRNA stability, miRNA availability, and/or
protein translation [57] (Fig. 1). One example for lncRNA-
mRNA interaction is lncRNA SMILR (smooth muscle–
induced lncRNA). SMILR did directly bind the mRNA of
the mitotic protein CENPF (centromere protein F) and pro-
moted the proliferation of VSMCs [58]. In agreement with
VSMC proliferation conferring with plaque stability, in-
creased SMILR levels were detected in unstable compared
with stable human atherosclerotic plaques [59]. Thereby,
SMILR may represent a valuable target to prevent adverse

vascular remodeling after balloon angioplasty and vessel
stenting.

The LXR-mediated lncRNA CHROME negatively regu-
lates a number of miRNAs (miRNA miR-27b, miR-33a,
miR-33b, miR-128) in human hepatocytes and macrophages
[60]. One of the genes being post-transcriptional repressed by
these miRNAs upon CHROME deficiency is Abca1. Thus,
CHROME upregulates cholesterol efflux and HDL biogene-
sis, manifesting atheroprotective effects. Atherogenic out-
comes via affecting cholesterol metabolism have been shown
for lncRNAs RP5-833A20.1 [61], DAPK1-IT1 [62], and
GAS5 [63–66]. RP5-833A20.1 induced hsa-miR-382-5p ex-
pression and in turn inhibited nuclear factor IA (NFIA) ex-
pression in macrophage-derived foam cells [61]. In vivo ex-
periments using ApoE−/− mice fed a high-fat/high-cholesterol
diet confirmed the RP5-833A20.1/hsa-miR-382-5p/NFIA
pathway and additional showed that overexpressing NFIA
results in atheroprotective circulating lipoprotein changes, en-
hanced RCT, decreased circulating cytokine levels, and sup-
pressed lesion formation. LncRNA DAPK1-IT1 decreased
miR-590-3p expression and led to increased LPL expression
and reduced cholesterol efflux in THP-1 macrophage-derived
foam cells [62]. Elevated GAS5 (growth arrest-specific 5)
levels are present in atherosclerotic plaque of human [66],
rat [66], and mice [63] and promote inflammation, foam cell
formation, and apoptosis as well as lipid disorders by
interacting with miR-135a [63, 64] and miR-221 [65].

Another interesting lncRNA in atherosclerosis is MALAT1
(metastasis-associated lung adenocarcinoma transcript 1).
MALAT1 regulates proliferation of ECs [67] and VSMCs
[68] in vitro. Additional in vitro analyses revealed the interac-
tions of MALAT1 with miR-216-5p [69] or miR-22 [70] to
promote autophagy and pryoptosis, respectively. A recently
published study elucidated the in vivo role of MALAT1 in
atherosclerosis and demonstrated that MALAT1 exhibits
anti-inflammatory properties in part by binding to miR-503
[71]. In detail, deficiency of lncRNAMALAT1 in hematopoi-
etic cells leads to enhanced atherosclerotic lesion formation
and inflammation in HFD-fed ApoE−/− mice [71]. The accel-
eration of lesion formation was driven by an increase in in-
flammatory BM cell number and enhanced adhesion to ECs
in vitro and atherosclerotic vessel wall in vivo. Further, en-
hanced adhesion of BM cells was rescued by inhibition of
miR-503. In line, MALAT1 expression in human atheroscle-
rotic plaque was downregulated in comparison to healthy ves-
sel and, moreover, was decreased in symptomatic versus
asymptomatic patients.

LncRNAs can also function as competitive endogenous
RNA (ceRNA) regulating gene expression by sequestering
miRNAs [72]. Although this concept has been questioned as
computational analyses indicated the shortcoming of
lncRNAs compared with the in excess expressed miRNA
[73], several studies reported on lncRNA-miRNA interactions
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in the context of atherosclerosis. For example, lncRNAMEG3
functions as sponge of miR-361-5p, regulating ABCA1 ex-
pression in VSMC [74] or the expression of ICAM-1 by
sponging miR-147 [75]. Further, CERNA1 (Competing
Endogenous lncRNA 1 For MiR-4707-5p And MiR-4767,
previously LOC100129973) inhibited apoptosis of VSMC
and anti-inflammatory macrophages through increasing the
apoptosis inhibitor API5 via sponging miR-4707-5p [76,
77]. Thereby, CERNA1 overexpression in HFD-fed ApoE−/−

mice led to features of stable plaques, such as an increase in
VSMCs and a decrease in MMP-2/9 activity, necrotic core
area, and apoptotic cells. Another regulator of plaque vulner-
ability is lncRNA MIAT (Myocardial infarction associated
transcript), which is upregulated in symptomatic human ath-
erosclerotic specimen as well as in serum and plaques of
HFD-fed ApoE−/− mice [78]. Deficiency of MIAT in athero-
sclerotic ApoE−/− mice improved efferocytosis, decreased ap-
optosis, and attenuated plaque growth. Mechanistically,MIAT
acts as a sponge of miR-149-5p, subsequently inhibiting the
mRNA degradation of the anti-phagocytic molecule CD47 in
oxLDL-stimulated Raw264.7 cells. Moreover, lncRNA
TUG1 (taurine-up-regulated gene 1) acts as sponge for miR-
148b in oxLDL-stimulated VSMC and HUVECs and regulat-
ed their proliferation and apoptosis via TUG1/miR-148b-pro-
moted insulin growth-like factor 2 (IGF2) expression [79].
Another TUG1 target is miR-133a [80]. Sponging miR-133a
in oxLDL-simulated Raw264.7 upregulated fibroblast growth
factor 1 (FGF1) expression, in turn leading to increased pro-
liferation, inflammation, and inhibited apoptosis. In line with
the in vitro data, TUG1 knockdown in HFD-fed ApoE−/− im-
proved circulating lipid levels and inflammatory markers and
reduced lesion size [80].

Uncharacterized Interactions

The mechanisms for two recently described lncRNAs—
HOXA-AS2 and PELATON—implicated in atherosclerosis
are yet to be defined. For example, transcriptomic profiling
of HUVECs with and without the expression of lncRNA
HOXA-AS2 showed that HOXA-AS2 mediates expression of
inflammatory factors [81]. Further experiments confirmed that
HOXA-AS2 regulated endothelium inflammation by
repressing NF-κB signaling. At the same time, NF-κB activity
upregulated HOXA-AS2, which is likely the reason for the
highly increased expression of HOXA-AS2 in human athero-
sclerotic plaques [81]. However, how exactly lncRNA
HOXA-AS2 regulates inflammatory marker and especially
the feedback loop with NF-κB is not yet known. LncRNA
PELATON (Plaque enriched lncRNA in atherosclerotic and
inflammatory bowel macrophage regulation) was found to
be implicated in plaque instability and is enriched in unstable
compared with stable atherosclerotic plaques [82]. With its

high nuclear expression in monocytes and macrophages, it
was shown to regulate phagocytosis, oxLDL uptake, and
ROS production in differentiated primary human monocytes,
in part due to changes in CD36 expression. However, the
underlying mechanism is yet to be elucidated.

LncRNAs as Biomarkers in Atherosclerosis

Finally, abundance of circulating lncRNAs or the occurrence
of single nucleotide polymorphisms (SNPs) represents novel
biomarkers for CVDs. Increased levels of lncRNAs H19 and
LIPCAR were found in plasma and serum samples in a
Chinese population with atherosclerotic disease [83, 84].
Further, lncRNA MIAT were detected to be elevated in the
blood of ischemic stroke patients [85]. LncRNA SMILR
seems to play a role in plaque stability [58], and its plasma
levels positively correlate with C-reactive protein [59].

SNPs in the lncRNAMIAT promoter correlated with acute
myocardial infarction in a Chinese Han population [86], while
a specific polymorphism in MALAT1 (rs619586AG/GG)
might be CVD protective [87].

Conclusion

Collectively, cited studies in this review (Table 1) show that
dysregulated lncRNAs are becoming a hallmark of atheroscle-
rosis and play a role in several atherosclerosis processes as
well as cell types. It has thus become clear that lncRNAs with
their ability to interact with protein, DNA, and RNA can dy-
namically regulate the numerous functions of a variety of
plastic cells and thereby impact atherosclerotic plaque growth,
inflammation, and stability. However, understanding the com-
plex regulation of lncRNAs in atherosclerosis is still in its
infancy. Despite a number of lncRNAs being described in
atherosclerosis, these mainly entail in vitro functions and less
is known in respect to their roles in vivo. The scope of eluci-
dating its functions in vivo is limited by the low conservation
between species and impedes the investigation of the most
interesting primate-specific lncRNAs in the widely used ath-
erosclerotic mouse models. Further, there is also a big discrep-
ancy between the number of discovered and functionally char-
acterized lncRNAs. Notably, lncRNAs are not limited to the
discussed binding properties in this review and likely have dif-
ferent roles depending on cell type and localization in subcel-
lular compartments that may yet have to be defined. LncRNAs
may also exhibit stage-specific roles, but, up to date, research
has focused on atherosclerosis progression and information on
lncRNAs in resolution of atherosclerosis is scant.

RNA-centered therapeutics in CVDs are already used in
the clinics; for example, an RNA interfering agent to treat
hypercholesterolemia [88]. Additional clinical trials are
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ongoing, but these do not yet involve lncRNAs [89, 90], as the
relative lack of knowledge in the diverse and complex mech-
anisms of lncRNAs in atherosclerosis hinders its clinical trans-
lation. Nonetheless, the rapidly evolving advancements in ge-
nomic tools and increasing accomplishments to understand
the biology of atherosclerotic lncRNAs hold promise for their
clinical translation in the near future.
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