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ABSTRACT

Single-cell transcriptomics offers a tool to study the diversity of cell phenotypes through
snapshots of the abundance of mRNA in individual cells. Often there is additional information
available besides the single-cell gene expression counts, such as bulk transcriptome data from
the same tissue, or quantification of surface protein levels from the same cells. In this study, we
propose models based on the Bayesian deep learning approach, where protein quantification,
available as CITE-seq counts, from the same cells is used to constrain the learning process,
thus forming a SemI-SUpervised generative Autoencoder (SISUA) model. The generative
model is based on the deep variational autoencoder (VAE) neural network architecture.
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1. INTRODUCTION

S ingle-cell RNA sequencing (scRNA-seq) (Tang et al., 2009; Hedlund and Deng, 2018; Hwang et al.,

2018) is a powerful tool to analyze cell states based on their gene expression profile with high resolution.

RNA sequencing at single-cell level facilitates uncovering heterogeneous gene expression patterns in

seemingly homogeneous cell populations. However, the current methods for gene expression profiling at

single-cell resolution are prone to experimental errors, in particular, inefficient capture of mRNAs (Hwang

et al., 2018). This capture inefficiency results in a general underestimation of the counts (dropout effect),

which represents a major problem for single-cell analysis pipelines that rely on the mRNA counts.

Generally, the solution to the dropout problem has been posed as an imputation task, where missing

counts are filled with estimated counts. The most recent approach is to model the dropout effect using the

zero-inflated (ZI) model (Lambert, 1992), where a two-component mixture distribution is constructed, such

that the first component models the dropout effect and the second component the observed counts. The

effect of overdispersion is strongly presented in the scRNA-seq counts and the negative binomial (NB)

distribution is seen as an appropriate fit to the observed data (King, 1989). Shallow imputation models that

are based on ZINB or ZI log-normal models have been applied to single-cell data (Pierson and Yau, 2015;
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Risso et al., 2018). However, these models hypothesize a linear relationship between the latent space and

the model parameters, which is quite a strong assumption (Lopez et al., 2018). To overcome the limita-

tions of the linear models, deep neural network architectures have been proposed to resolve missing data

(dropouts) (Eraslan et al., 2019).

An approach to this problem is to assume that there is a latent code that characterizes the cell type (or,

more generally, cell state). Conditioning the ZINB distribution with these latent codes would allow sam-

pling accurate transcriptome profiles. This approach was proposed by models such as single-cell variational

inference (scVI) (Lopez et al., 2018) and single-cell variational autoencoder (scVAE) (Grønbech et al.,

2018). In these techniques and the present article, the goal is to infer the posterior distribution of the latent

code (Kingma and Welling, 2014). However, the sparseness of scRNA-seq data caused by low mRNA

capture efficiency affects the quality of the estimated latent codes. To assess the quality of latent space

representations of cell state, manual cell-type labeling of the obtained clusters based on marker gene

expression has been used.

Before transcriptome profiling, analysis of surface protein markers has been the mainstream method to

decipher cellular identity at single-cell resolution. Recently, Stoeckius et al. (2017) introduced the CITE-seq

method that can combine scRNA-seq with such protein marker characterization from the same cells, thus

providing complementary data on cell identity. Despite being limited to a small subset of expressed genes, the

protein marker count data have the benefit that dropouts are rare. We believed these data could prove useful in

assessing the quality of the latent representation. Moreover, it could be incorporated into model training to

improve the single-cell model from scRNA-seq (Kingma et al., 2014). For the SemI-SUpervised generative

Autoencoder (SISUA)* model presented, we add the protein counts as an additional supervision signal

(biological augmentation) with the goal of obtaining higher quality imputed counts and latent codes.

2. METHODS

The task of unsupervised learning is to discover from the observed data (Bishop, 2006) hidden structure.

In the case of scRNA-seq data, we assume that the true data manifold is of much lower dimension than the

embedded dimensionality of the data. A single batch of cells has a total of N cells and each observation xj, i

is a non-negative integer, where j is the gene index. The representation of one cell in the estimated data

manifold is typically denoted as a latent representation. We use this terminology in the following text.

2.1. Single-cell variational autoencoding

Autoencoders (Rumelhart et al., 1986) are deep neural network models that aim to learn the low-

dimensional representation, based on a structure consisting of an encoder network, which performs the

inference, a bottleneck layer, which constrains the dimensionality, and a decoder network, which performs

the generation. The aim is to reconstruct the input signal with minimal loss, which is typically measured by

the mean squared error function.

The limitations of deep autoencoders are highlighted in Higgins et al. (2016). The enoded vectors may

not be continuous or allow easy interpolation which, coupled with the uncertainty in scRNA-seq data, could

lead to excessive and meaningless variation in the latent space. As a result, the decoder will simply generate

an irrelevant output under the slightest perturbation in input or latent space. Grønbech et al. (2018) and

Lopez et al. (2018) suggest that a better latent representation could be learned using the variational method.

We only observe x, but we would like to infer the characteristics of z, and hence, we compute the posterior

p(zjx) =
p(xjz) � p(z)

p(x)
: (1)

The denominator is the marginal likelihood, which is intractable considering its involvement in all data

points. Therefore, we approximate p(zjx) by another distribution q(zjx) (Kingma and Welling, 2014), and

minimize the ‘‘distance’’ between the two distributions, which could give us a good approximation

argmin
h
KL(qh(zjx)jjp(zjx))‚ (2)

*Code and reproducibility: https://github.com/trungnt13/sisua
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where h is the neural network parameterization. We achieve the above minimization by maximizing the

following (Kingma and Welling, 2014):

Eqh zjxð Þ[ log ph xjzð Þ] -KL(qh zjxð Þjjp zð Þ): (3)

We choose the prior distribution p(z) =N (z; 0‚ I), and using a deep neural network parameterized the

conditional distribution ph(xjz).

2.2. Biological augmentation using semisupervised training (SISUA)

In deep learning, it is possible to have more than one learning target and thereby models that learn a

shared latent representation (i.e., multi-task learning Caruana, 1997). In our case, the protein labels are

supplied for a subset of the input profiles, which are then modeled jointly to reconstruct mRNA and assign

protein marker state, while the rest of the data are modeled only to reconstruct. The design of a multioutput

variational autoencoder (MOVAE) is illustrated in Figure 1.

The label distribution of Y could be NB for count data (i.e., NB(Y j r‚ q)) or Bernoulli(Y j q) for

probability data. The generative procedure of SISUA is as follows:

z*N (0‚ I)

d = fh(z)

x*NB(f (x)
r (d)‚ f (x)

q (d))

p*Bernoulli(f (p)(d))

~x =
x if p = 0

0 otherwise

�

y*NB(f (y)
r (d)‚ f (y)

q (d))‚

where f (x)
r ‚ f (x)

q and f (y)
r ‚ f (y)

q are linear projection function projecting the decoder vector into the corre-

sponding dimension for x (denoised single-cell gene expression) and y (label data such as surface protein

expression). p is the ZI rate modeled by Bernoulli variables.

We propose two design principles for semisupervised architectures that improve single-cell gene ex-

pression modeling:

FIG. 1. scVAE with the semisupervised extension. This is the design for both MOVAE and our proposed system

SISUA. The implementation of Ly(y‚ fh(y)) [Eq. (4)] is a major difference between SISUA and MOVAE. SISUA

leverages probabilistic embedding to regulate the amount of information backpropagated from the supervised objec-

tives, which is discussed in the Section 2.3. MOVAE, multioutput variational autoencoder; scVAE, single-cell vari-

ational autoencoder; SISUA, SemI-SUpervised generative Autoencoder.
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� The use of labeled data should only be implicit, that is, no labeled data should be given as input during

the evaluation process. The expense of labeling will typically preclude exhaustively labeled data. As a

result, an algorithm, which implicitly encapsulates meaningful patterns from multimodal data into its

latent space, would be more robust and practical.
� Unlike conventional semisupervised learning where an unsupervised objective is created to improve

the supervised task (Kingma et al., 2014), semisupervised learning for single-cell data aims for the

opposite. Since multiple losses have been known to compete with each other and hinder the major

objective of the system (Goodfellow et al., 2014), Equation (4) is suggested when incorporating

multiple losses into semisupervised systems.

E = - (Lx(x‚ fh(x)) + c � Ly(y‚ fh(y)) -KL(qh(z j x)jjph(z))) (4)

where c is a hyperparameter representing the importance of the supervised tasks. Different c are tested

and fine-tuned in Section 5. Lx and Ly are likelihood functions for the corresponding distributions of the

unsupervised and supervised variables.

Figure 2 illustrates the probabilistic graphical model of SISUA, which satisfies the above design prin-

ciples. The inference process (Fig. 2a) parallels the biological relationship between mRNA and protein

synthesis. The generative process (Fig. 2b) enables the sampling of both gene expression and protein

marker levels from a biologically motivated latent space.

2.3. Probabilistic embedding for biological data

Inspired by Reynolds (2009), we propose a generalized approach for incorporating multimodal biological

data into the unsupervised algorithm. A Gaussian mixture model (GMM) is used to represent general, cell-

independent feature characteristics. In our case, the GMM is used to capture different modes of protein

activation based on the surface protein levels. Two considerations motivate the application of the GMM in

biological data:

� The data often come from sources (e.g., different measurements) with different characteristic scales

and technical variability.
� The distribution of the data is often skewed and imbalanced. For example, Figure 3c indicates ab-

normally high abundance of ‘‘CD45RA.’’ This could trigger the false perception that ‘‘everything is

CD45RA’’ during the optimization of the deep neural network (Dalyac et al., 2014; Hensman and

Masko, 2015).

For each protein, a two-component GMM is trained,

p(x) =
X2

k = 1

pkN (xjlk‚Sk) (5)

where x is a single-dimension protein level. x could be the raw value in Figure 3a or the log-normalized

value in Figure 3b. lk and Sk are the mean and covariance vectors of the Gaussians, and pk is the mixture

weight. Those parameters are the maximum likelihood estimates (Reynolds, 2009).

We utilize a set of GMMs associated with each protein. These GMMs are used to generate the response

of the protein to each individual cell, ‘‘probability’’ protein expression. They can be thresholded, as in

Figure 3, to yield binary variables indicating the presence or absence of protein in each cell.

FIG. 2. The design of the semisupervised

systems and their probabilistic graphical mod-

els. The graph (a), Q, is the inference model and

the graph (b), P, is the generative model.
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3. EXPERIMENTAL SETUPS

3.1. Data sets

The experiments were run on two data sets. The first data set, peripheral blood mononuclear cells

(PBMC), consists of 12,039 human peripheral blood mononuclear cells, generated using the 10x Genomics

platform. This data set includes cell-type labels assigned by manual examination of clusters (Zheng et al.,

2017). The second data set, peripheral blood CITE-seq data, was downloaded from 10x Genomics{. Protein

FIG. 3. The process of probabilistic protein embedding using data for protein CD14 as an example. (a) and (b)

illustrate a 2-component GMM filled on raw count and log-normalized data. The comparison between the distribution

of protein markers before and after the process is shown at the bottom figure (c), which shows that the binarized and

probabilized values are more balanced than the original distribution.

{pbmc_10k_protein_v3_filtered_feature_bc_matrix.tar.gz
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marker levels were available for a total of 14 specific antibodies and 3 control (IgG) antibodies. Here, we

utilized the subset of lymphoid cell populations (Ly) (4697 cells, 2000 most variable genes). In addition

to raw counts for mRNA, centered log-ratio-normalized (CLR-normalized) antibody derived tag (ADT)

counts were used for model evaluation and training.

To evaluate the generalizability, we split each data set into disjoint training (90%) and testing 10% subsets.

For imputation benchmarking, we measure the robustness of the algorithm by corrupting the original training

data and then using the learned algorithm to provide denoised gene expression. Binomial data corruption was

applied as in Lopez et al. (2018). Twenty-five percent of the matrix entries are randomly selected and

replaced with a Bin(n‚ 0‚ 2) random variable, where n is the original count of the given entry.

3.2. Learning algorithms

Three state-of-the-art unsupervised baselines were selected for comparison with MOVAE and SISUA:

� Deep count autoencoder (DCA) is a denoising autoencoder that takes the count distribution (Eraslan

et al., 2019).
� scVI is a framework using deep probabilistic inference to model observed expression values, ac-

counting for the technical variability of the measurements (Lopez et al., 2018).
� scVAE (Grønbech et al., 2018) also utilizes deep generative modeling. This approach was arguably the

least sophisticated because the cell size (or library size) is implicitly modeled via parameterization of

NB distribution.

We configured all frameworks, in terms of number of hidden layers, hidden units, and latent units,

similar to the design as in Figure 1. In addition, the same optimization algorithm (ADAM; Kingma and Ba,

2015) and training parameters were used for all models. The choice of these hyperparameters is the result of

a tuning process illustrated in Figure 4. It indicates a design balancing among the number of hidden layers

(i.e., 2 layers), and the number of units (128 hidden and 32 latent units) could give the best results for

FIG. 4. Tuning the deep neural network architecture using grid search. We varied the number of latent units (16, 32,

64), together with three different configurations for the number of hidden layers (1, 2, 3) and the number of hidden units

(32, 128, 512). For evaluation, we use combined correlation scores of Pearson and Spearman’s correlation calculated

using all marker gene and protein pairs on the test set. Darker blue color represents better performance.

SEMISUPERVISED AUTOENCODER FOR SINGLE-CELL DATA 1195



most of the models. Notably, the color pattern is matching between scVAE and SISUA; hence, intro-

ducing semisupervised learning does not significantly alternate the tuned hyperparameters. As a result,

semisupervised extension could be rapidly incorporated into existing models.

4. EXPERIMENTS AND RESULTS

In the following experiments, we focused on three major functions of an autoencoding model:

� The output space, the imputed gene expression profile, is evaluated using (1) per-cell marker protein

levels (PBMC CITE-seq), or (2) per-cell assigned labels from the manual examination of data (PBMC

RNA-seq).
� The latent space, as a low-dimensional representation of the data, is evaluated for biological tasks.
� The semisupervised space, expressing the supervised labels, is a unique feature of SISUA. We evaluate

the soundness of this space by its connection to the output and latent space and utilizing the ground

truth labels.

4.1. Correlation of marker mRNA gene expression and surface protein levels

Because assaying marker protein levels is less prone (for technical reasons) to the dropout issues that

plague mRNA levels for the corresponding genes, cell surface marker protein expression can be used as

‘‘ground truth’’ for evaluating known cell states and cell types. Thus, the denoised corresponding mRNA

levels for the same markers can be evaluated in an unbiased manner (Stoeckius et al., 2017; Eraslan et al.,

2019) (Fig. 5).

As exemplified by the T cell marker CD8, nonzero counts are observed when protein levels are high.

This correlation is poorly modeled by DCA and scVI that impute counts also to cells with low surface

protein levels, while scVAE preserves the correlation. Semisupervised learning consistently improved the

correlation across all marker gene and protein levels (Fig. 6). In all cases, SISUA was able to restore

missing gene expression that is biologically plausible.

4.2. Structural integrity of denoised space

The experiment evaluates whether the imputed gene expression spaces still maintain the same essential

variability model as the original data. To confirm that relevant biological information was preserved during

the denoising processing, we inspected two properties:

� First, by coloring the cell types (first row) we could confirm whether similar cells still form clusters

that reside in the same position in the total variability space.
� Second, the cell size (colored in second row) was compared with that in the original data.

In Figure 7, we observed that DCA is altering both the cell types and cell size (blue circle), yet keeps a

high amount of variability. scVI has very low variability, but performs good on cell-type clustering and

FIG. 5. Correlation between CD8A gene mRNA count data and protein surface marker levels in PBMC lymphoid

cells. Semisupervised models are highlighted by red dashed box.
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preserving cell sizes. scVAE provides better variability but slightly worse cell size. SISUA improves the

variability compared with scVAE and also improved the cell-type model (red circles). In addition, SISUA

slightly increased the cell size compared with scVAE although this was not explicitly modeled.

4.3. Separation of cell types in latent space

A biologically informative latent space should have a clear separation between different cell types. To

evaluate this, the points on the t-SNE maps are colored by their ‘‘ground truth’’ labels (manual labels in

Fig. 8 and protein marker state in Fig. 9).

FIG. 6. The average Pearson and Spearman’s correlation for all marker gene/protein pairs.

FIG. 7. A PCA model trained using original gene expression (the data before corruption) of the PBMC 10x data set

was used to project the denoised gene expression from different models into its space. The top row is colored by cell

type, and the bottom row by denoised cell size (red color indicates large, white color midrange, and blue small cell size).
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In Figure 8, many outliers are present in the DCA, scVI, and scVAE results. scVI shows extra confusion

among cells by grouping many clusters close together. Notably, most of the outliers were classified as

‘‘Other’’ cells. SISUA yields a cleaner cluster structure with fewer outliers. Moreover, there is a subtle

group of ‘‘NK cells’’ placed adjacent to the ‘‘CD8 T cells’’ (SISUA figure panel). This rightly calls into

question the mutually exclusive labeling of cells because there, in fact, exist ‘‘NK cells,’’ which are also ‘‘T

cells.’’ Immunologists recognize an entity called NKT cells as a separate cell type. Among the models, only

the latent space representation of SISUA clearly indicates the prominent characteristics of the ‘‘T cells’’

within this small group of ‘‘NK cells.’’ Notably, this similarity is learned without extra information about

the ‘‘T cells.’’

FIG. 8. t-SNE visualization of the latent space for PBMC 10x data set, and binary cell-type labels are used for

coloring.

FIG. 9. t-SNE visualization of the latent space for PBMC Ly data set, and the activation levels of protein CD8a (dark

red tones) and CD4 (dark blue tones) are shown as heatmap.
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In PBMC Ly, each cell is characterized by multiple protein levels, which include markers for similar cell

types (such as CD4- or CD8-positive T cells) that often get tangled up in the latent representation of mRNA

data. Compared with all unsupervised representations, SISUA achieves a strong separation between

‘‘CD8’’ protein and ‘‘CD4’’ protein in its latent space (Fig. 9). This division is biologically plausible and

the algorithm is able to learn this pattern independently without explicit indicators.

In addition, we evaluate the learned latent spaces quantitatively using two different approaches. First, we

feed the learned latent to a secondary classifier that is trained to classify protein markers or cell labels. The

results are shown in Figure 10. We notice that in terms of the classification F1-score, SISUA is clearly

the best model. The testing performance of the semisupervised models is degraded when compared with the

training portion, but still clearly win over the fully unsupervised variants. As a second method, we pool the

external validity indices used to assess clustering quality; these results are shown in the second row of

Figure 10. The results indicate that the information encapsulated in the semisupervised latent space is

higher than the other models.

4.4. Predictive protein distribution

Figure 11 illustrates how the SISUA model has learned to predict protein marker levels, visible as a high

correlation of the predicted level and the ‘‘ground truth’’ protein expression. However, there are many

unexpected peaks mismatching with the ‘‘ground truth.’’

In Figure 12, the model learns to calibrate many faulty points in the given protein labels itself. The

figures colored by the predicted protein level indicate a more relevant structure, where many outliers for

FIG. 10. Latent spaces are evaluated by two benchmarks. First, the average of F1 scores from a streamline protein/

cell-type classifiers; Second, the pooled clustering metric calculated by averaging four measurements: ARI—adjusted

rand index, ASW—silhouette score, NMI—normalized mutual information and UCA—unsupervised clustering accu-

racy. The results are reported for PBMC Ly and PBMC 10x data sets. The train results are shown in blue dots, and the

test results in orange dot. Semisupervised models are highlighted by red dashed boxes.
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‘‘CD4’’ protein levels are cleaned and grouped into neat clusters (highlighted by green circles). Notably,

these are observed in both latent and denoised spaces, and hence, SISUA has been able to capture relevant

biological connections at multiple levels.

5. EFFICIENCY AND SCALABILITY

In this section, we focus on two different aspects of efficiency for semisupervised learning:

� Quantitative: the amount of supervised data that has to be gathered until significant improvement.
� Qualitative: the contribution of the supervised objective for the overall learning process.

Consequently, we evaluate the scalability of semisupervised training to large data sets. The experiments

assess the potential of deploying SISUA for real-world application.

5.1. Quantitative efficiency

In Figure 13, we noticed in the PBMC Ly subset that adding only 1% of labels degraded the performance

in all cases, while the addition of 10% gave a clear boost in all three metrics. As expected, the addition of

labeled examples systematically improved the model in the PBMC Ly. In the case of PBMC 10x, the

situation is not as clear, since the average F1 improved until 80% of the training examples are labeled.

However, the marginal log-likelihood does not show systematic behavior. One reason for this nonsys-

tematic behavior could be errors in PBMC 10x binary cell-type labels.

FIG. 12. Both latent space and imputed space

are transformed into 2D scatter visualization us-

ing t-SNE. The two figures in the left column are

colored by the ‘‘ground truth’’ protein and the

right column is colored by the predicted protein

level.

FIG. 11. Comparing the original protein level and predicted protein response on PBMC Ly data set.
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5.2. Qualitative efficiency

Figure 14 emphasizes the important role of semisupervised learning. The algorithm must balance the

benefit of supervised learning via c. We notice in all cases that c of more than 20 gives clear improvement

over the unsupervised case. However, when c is increased more, the model starts to favor more the proteins

than gene expression in the reconstruction.

5.3. Scalability

Finally, the training algorithm running time as a function of number of cells is shown in Figure 15. We

observed that the semisupervised extension added a very minor increment to the running time when

FIG. 13. The performance on two data sets (PBMC Ly and PBMC 10x) is shown for different amount of labels

utilized in training. The X-axis represents seven systems with an increasing amount of labeled data available for the

semisupervised objective (Note: no marker gene/protein pair is available for PBMC 10x). We measured three different

metrics: the marginal log-likelihood, average F1 of protein/cell-type classifier in the latent space, and average corre-

lation between marker gene and the protein.

FIG. 14. Performance of SISUA when c (i.e., the weight of semisupervised objective) is varied.
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compared with the unsupervised variant. It is at most 8% longer compared with the unsupervised for

100,000 cells. Notably, SISUA introduces no extra running time during the evaluation phase, since no extra

data are needed. Instead, we get the extra benefit of obtaining protein-level predictions.

6. CONCLUSION

In this article, our task is to use weak supervision to improve unsupervised analysis of single-cell gene

expression profiles. We design a new model, SISUA, which leverages a small amount of labeled data to

produce more biologically meaningful latent representations. Our results support the merits of this semi-

supervised extension. In addition to more interpretable latent representations, the method improves im-

putation of mRNA sequence counts. SISUA is also capable of predicting cell types or surface protein levels

from transcriptomic data, which extends its utility to diagnostic contexts. Finally, we propose general

guidelines for implementing efficient and practical semisupervised systems that can leverage the variety of

data types available for single-cell modeling.
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