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a b s t r a c t 

Hybrid methodologies have become popular in many fields of research as they allow researchers to explore 

various methods, understand their strengths and weaknesses and combine them into new frameworks. Thus, 

the combination of different methods into a hybrid methodology allows to overcome the shortcomings of each 

singular method. This paper presents the methodology for two hybrid methods that can be used for time series 

forecasting. The first combines singular spectrum analysis with linear recurrent formula (SSA-LRF) and neural 

networks (NN), while the second combines the SSA-LRF and weighted fuzzy time series (WFTS). Some of the 

highlights of these proposed methodologies are: 

• The two hybrid methods proposed here are applicable to load data series and other time series data. 
• The two hybrid methods handle the deterministic and the nonlinear stochastic pattern in the data. 
• The two hybrid methods show a significant improvement to the single methods used separately and to other 

hybrid methods. 
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Specifications table 

Subject Area Energy 

More specific subject area Load forecasting 

Method name SSA-LRF-NN and SSA-LRF-WFTS 

Name and reference of 

original method 

Sulandari, W., Subanar, Lee, M.H. and Rodrigues, P.C. (2019). Indonesian Electricity Load 

Forecasting Using Singular Spectrum Analysis, Fuzzy Systems and Neural Networks. Energy. 

Resource availability 

Method details 

The SSA-LRF is a widely used non-parametric method for time series forecasting [1–3] , which is

considered as a deterministic model that can be represented by the sum of product of exponential,

polynomials and harmonics components [4] . SSA-LRF does not accommodate the random (noise) 

behavior in the series as its aim is to separate the signal from the noise components. When the

noise shows nonlinear relationships, other nonlinear models, such as NN and fuzzy systems can be

implemented. In this proposal, the NN and fuzzy systems are used, in combination with the SSA-LRF,

to account for the stochastic nonlinearity in the data that cannot be handled by SSA-LRF. 

The R package RSSA ( http://cran.r-project.org/web/packages/Rssa ) can be used to estimate the 

parameters and calculating the SSA-LRF forecast values. The features of RSSA implementation have 

been discussed in detail by [5] , while further methodological details about SSA can be found in

[4 , 6–7] . After fitting the SSA-LRF and obtaining the residuals of the time series, those residuals are

then modeled by WFTS or NN. 

There are four types of WFTS considered in this hybrid methodology, i.e., Chen’s, Yu’s, Cheng’s,

and Lee’s method. The procedure of Chen’s method was discussed detail in [8] . Yu [9] discussed the

WFTS and how it is able to take into account the recurrence and weighting in fuzzy relationship.

They consider the weight of the fuzzy relationship as a set of chronological linear functions. Cheng

et al. [10] developed an adaptive expectation model where the forecast value at time t is calculated by

adding the observation value at time t −1 with the recent weighted forecasting error (the difference

between the initial forecasting value and the observation value at time t −1 multiplied by the

weighted parameter). Lee’s procedure [11] was developed based on Yu’s algorithm by setting the

weight of fuzzy relationship as an exponential growth function. The source code for these four

procedures can be found in the supplementary material. 

On the other hand, the NN model can be obtained by using, e.g., the ntstool package available

in Matlab. The nonlinear autoregressive were considered with the tansig and purelin functions for 

the hidden and the output layers, respectively. The model parameters are determined based on the

training data by using the Levenberg-Marquardt backpropagation algorithm. 

The steps of SSA-LRF-NN algorithm presented in this paper are shown in Fig. 1 and the detailes

for each step are described as follows ( [12] ): 

tep 1: Implementation of the SSA-LRF algorithm to model fit and model forecast the time series data

Sub-step 1.1: Specify the window length, and map the original time series into a trajectory 

matrix based on the chosen window length. The window length should be close 

to the middle of the time series and proportional to the seasonal period (e.g., 

proportional to 12 for monthly data). 

Sub-step 1.2: Apply the singular value decomposition (SVD) to decompose the trajectory 

matrix. 

Sub-step 1.3: Define the two separable groups of matrices, one associated to the signal and 

the other associated to the noise. The use of the w-correlation matrix can be 

very helpful in this stage. 

Sub-step 1.4: Reconstruct the two matrices using the diagonal averaging algorithm, into the 

signal series and the noise time series. 

Sub-step 1.5: Calculate the forecast values for the signal using the linear recurrent formula. 

tep 2: Combination of SSA-LRF and NN 

Sub-step 2.1: Obtain the residuals of the SSA-LRF as described in Step 1. 

http://cran.r-project.org/web/packages/Rssa
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Fig. 1. Procedure of the hybrid SSA-LRF-NN method. 
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Sub-step 2.2: Design the architecture of the network by determine the number of input units,

the number of nodes in the hidden layer, and specify the activation functions

used in the hidden and output layer. For the univariate time series forecasting,

we considered one output unit. Meanwhile, the selection of the activation

function in the hidden layer can be adjusted according to the range of the data.

In this case, we modeled the residuals obtained from SSA-LRF model, which

fluctuate around zero. Since the data has negative and positive values, the tansig

function is the more appropriate for the hidden layer and the purelin function

for the output layer. 

Sub-step 2.3: Obtain the weights connecting each input node to each hidden node, and

those connecting each hidden node to each output node, using the Levenberg-

Marquardt based back-propagation algorithm. 

Sub-step 2.4: Calculate the forecast values for the residual of the SSA-LRF using the NN model

obtained in Sub-step 2.3. 

Sub-step 2.5: Calculate the final forecast values by adding the forecast values obtained by the

SSA-LRF (Sub-step 1.5) and the forecast values obtained by the NN (Sub-step

2.4). 

The fuzzy time series model is represented as the fuzzy relationships among observations

13–15] . A fuzzy time series F ( t ) can be considered as a linguistic variable on a time series Y ( t ), where
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Fig. 2. Procedure of the hybrid SSA-LRF-WFTS method. 



W. Sulandari, S. Subanar and M.H. Lee et al. / MethodsX 7 (2020) 101015 5 

t  

w  

o  

w  

t  

b  

t  

A

 

e

S

S

 

 

 

 

 

 

 

 

 

 

 ∈ T , is a set of time points. In this case, F ( t ) is a collection of some fuzzy sets μi (t)( i = 1 , 2 , . . . ) ,

hich are regarded as the possible linguistic values of F ( t ) defined on Y ( t ), while Y ( t ) is the universe

f discourse on which μi (t)( i = 1 , 2 , . . . ) are define d. The relation b etween F ( t − 1 ) and F ( t ) can be

ritten as F ( t -1) → F ( t ) if F ( t − 1 ) affects F ( t ). This kind of fuzzy time series is named first order fuzzy

ime series and the relation is called fuzzy logical relationship (FLR). Let the linguistic value of F ( t − 1 )

e A i and the linguistic value of F ( t ) be A j , where A i and A j are the fuzzy set for the observation at

he time t − 1 and at the time t , respectively. The FLR between the two fuzzy sets can be denoted by

 i → A j [13–15] . 

The steps of SSA-LRF-Fuzzy model presented in this paper are shown in Fig. 2 and the detailes for

ach step are described as follows ([12]): 

tep 1: Analog to the first step of SSA-LRF-NN procedure. 

tep 2: Combination of the SSA-LRF and the fuzzy time series 

Sub-step 2.1: Obtain the residuals of the SSA-LRF as described in Step 1. 

Sub-step 2.2: Set the universe of discourse, U , and split it into several equal length intervals. 

Let D min and D max be the minimum and maximum residual defined in Sub-

step 2.1, respectively. The universe of discourse, U , can be define as U =
[ D min − D 1 , D max + D 2 ] where D 1 and D 2 are the proper positive numbers. In

the case that U is partitioned into n equal intervals u 1 , u 2 , . . . , u n , the length

of the interval, l, can be defined as l = [( D max + D 2 ) − ( D min − D 1 ) /n . 

Sub-step 2.3: Define the fuzzy sets A 1 , A 2 , . . . , A n , as the linguistic values of the linguistic

variable on the observed time series. Each A i , i = 1 , . . . , n, is defined by the

intervals found in Sub-step 2.2 [13–15] , and can be written as [8] , 

A i = . . . + 0 / u i −2 + 0 . 5 / u i −1 + 1 / u i + 0 . 5 / u i +1 + 0 / u i +2 + ... 

where the maximum membership value of A i occurs in the interval u i . 

Sub-step 2.4: Fuzzify the residuals obtained in Sub-step 2.1 by considering the fuzzy sets as

defined in Sub-step 2.3. 

Sub-step 2.5 : Obtain the fuzzy logical relationships (FLRs) according to 

(1) Chen’s method [8] 

(2) Yu’s method [9] 

(3) Cheng’s method [10] 

(4) Lee’s method [11] 

Sub-step 2.6 : Calculate the forecast values for the residuals based on FLRs according to the

related method as determined in Sub-step 2.5. 

Sub-step 2.7 : Calculate the final forecast values by adding the forecast values obtained by the

SSA-LRF (Step 1) and the forecast values obtained by the fuzzy model (Sub-step

2.6). 
Table 1 

RMSEs and MAPEs for all methods considering the training and the testing 

data of the Java-Bali load series in 2014. 

Method RMSE MAPE (%) 

Training Testing Training Testing 

SSA-LRF 816.94 764.50 3.23 2.88 

SSA-LRF-WFTS Chen’s 501.22 512.05 1.97 1.90 

SSA-LRF-WFTS Yu’s 503.27 508.02 1.98 1.92 

SSA-LRF-WFTS Cheng’s 504.50 502.79 1.94 1.85 

SSA-LRF-WFTS Lee’s 507.32 522.27 2.00 1.98 

SSA-LRF-NN (24-9-1) 149.87 161.66 0.57 0.64 

TLSAR ∗ 396.34 430.75 1.53 1.74 

TBATS 241.26 318.12 0.85 1.48 

DSHW 206.37 1013.01 0.74 4.14 

ARIMA(5,0,4)-NN(31-16-1) 94.06 1545.00 0.38 6.76 

TLSNN(29-15-1) 101.61 273.46 0.36 1.04 

∗ period: 168, number of harmonics: 21, ARIMA(4,1,3). 
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Table 2 

RMSEs and MAPEs for all methods considering the training and the testing 

data of the Java-Bali load series in 2015. 

Method RMSE MAPE (%) 

Training Testing Training Testing 

SSA-LRF 473.25 379.31 3.23 1.49 

SSA-LRF = WFTS Chen’s 385.96 334.46 1.47 1.30 

SSA-LRF = WFTS Yu’s 386.67 335.54 1.47 1.30 

SSA-LRF = WFTS Cheng’s 388.28 346.90 1.45 1.34 

SSA-LRF = WFTS Lee’s 391.77 354.15 1.48 1.37 

SSA-LRF-NN (18-10-1) 155.68 142.82 0.59 0.56 

TLSAR ∗ 398.79 408.76 1.48 1.55 

TBATS 239.22 206.02 0.82 0.85 

DSHW 162.31 159.28 0.53 0.59 

ARIMA(3,0,2)-NN(30-16-1) 85.68 1656.00 0.30 5.95 

TLSNN(30-16-1) 83.32 205.93 0.30 0.77 

∗ period: 168, number of harmonics: 21, ARIMA(5,0,3) with zero mean. 

Table 3 

RMSEs and MAPEs for all methods considering the training and the testing 

data of the Java-Bali load series in 2016. 

Method RMSE MAPE (%) 

Training Testing Training Testing 

SSA-LRF 703.72 447.30 2.83 1.74 

SSA-LRF-WFTS Chen’s 247.55 179.44 0.96 0.69 

SSA-LRF-WFTS Yu’s 255.27 189.57 1.02 0.75 

SSA-LRF-WFTS Cheng’s 226.94 172.03 0.87 0.63 

SSA-LRF-WFTS Lee’s 266.94 211.28 1.08 0.81 

SSA-LRF- NN 18-10-1 152.71 129.90 0.55 0.50 

TLSAR ∗ 343.83 385.98 1.29 1.41 

TBATS 225.29 293.72 0.77 0.96 

DSHW 151.85 191.00 0.53 0.69 

ARIMA(5,0,4)-NN(31,16-1) 81.22 1770.05 0.28 6.61 

TLSNN(31-16-1) 93.13 366.06 032 1.43 

∗ period: 168, number of harmonics: 21, ARIMA(4,1,4). 

Table 4 

RMSEs and MAPEs for all methods considering the training and the testing 

data of Bawen load time series. 

Method RMSE MAPE (%) 

Training Testing Training Testing 

SSA-LRF 0.39 0.58 2.61 2.86 

SSA-LRF-WFTS Chen’s 0.30 0.27 0.97 0.66 

SSA-LRF-WFTS Yu’s 0.30 0.28 1.02 0.78 

SSA-LRF-WFTS Cheng’s 0.30 0.27 1.00 0.70 

SSA-LRF-WFTS Lee’s 0.30 0.29 1.10 0.95 

SSA-LRF-NN(48-10-1) 0.10 0.10 0.37 0.32 

TLSAR ∗ 0.35 0.32 1.12 1.20 

TBATS 0.27 0.39 0.79 1.71 

DSHW 0.30 0.48 0.68 2.09 

ARIMA(2,1,2)-NN(30-16-1) 0.07 0.73 0.19 3.07 

TLSNN(20-10-1) 0.18 0.26 0.57 0.86 

∗ period: 336, number of harmonics: 14, ARIMA(3,0,4) with zero mean. 
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Table 5 

RMSEs and MAPEs for all methods considering the training and the 

testing data the weekly US ending stocks of the total gasoline. 

Method RMSE MAPE (%) 

Training Testing Training Testing 

SSA-LRF 6486.3 5215.7 2.43 1.93 

SSA-LRF-WFTS Chen’s 2478.9 3315.2 0.87 1.04 

SSA-LRF-WFTS Yu’s 2299.9 3372.8 0.85 1.05 

SSA-LRF-WFTS Cheng’s 2281.9 3410.8 0.85 1.05 

SSA-LRF-WFTS Lee’s 2275.2 3324.8 0.85 1.05 

SSA-LRF-NN (9-8-1) 2047.7 2450.1 0.76 0.76 

SSA-LRF-NN (10-9-1) 2008.3 2254.0 0.75 0.86 

TLSAR ∗ 2282.4 7023.8 0.85 2.85 

TBATS 2236.47 5423.4 0.83 2.24 

DSHW - - - - 

ARIMA(2,1,2)-NN(1-1-1) 2345.1 7746.0 0.88 2.10 

TLSNN(3-2-1) 2239.9 6649.5 0.84 2.73 

∗ period: 52, number of harmonics: 3, ARIMA(0,1,2). 

Fig. 3. Actual data and forecast values for the different models, considering the test data of the Java-Bali load time series in 

2014. 
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Further details about the results of the application to electricity load forecasting that validate the

sefulness of the proposed methods can be found in [12] . In [12] , all the results obtained from the

wo proposed hybrid methodologies, SSA-LRF-NN and SSA-LRF-WFTS, were compared with the results

rom the standard SSA-LRF framework. In order to provide more objective evaluation to the accuracy

erformance of the forecasting results using the two proposed methods, we provide comparisons with

tandard methods for time series forecasting and other two hybrid methods, the ARIMA-NN [16] and

he TLSNN (two levels seasonal neural network) model [17] . In the ARIMA-NN model [16] , ARIMA

as proposed to handle the linear relationship in the data, while the NN captures the nonlinearity

attern in the data. In this study, the model parameters of the ARIMA model were estimated with

he auto.arima function of the R package forecast [18] , while the parameters of NN are estimated

y nnetar function from the same R package. As stated in [19] , NN do not only work well for

andling the nonlinearity relationship in the data, but also linear relationships in the time series data.
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Fig. 4. Actual data and forecast values for the different models, considering the test data of the Java-Bali load time series in 

2015. 

Fig. 5. Actual data and forecast values for the different models, considering the test data of the Java-Bali load time series in 

2016. 

 

 

 

 

Recently, [17] proposed the TLSNN model, which consists of two parts to estimate the deterministic

and the stochastic components. The deterministic component, including the trend and the oscillatory 

component, is estimated by the SSA, while the stochastic component, including the residuals of the

deterministic model, is modeled by a NN. 

The other methods that were used for comparison in this paper are: the two-level seasonal

autoregressive (TLSAR) model [20] , the double seasonal Holt-Winter (DSHW) model [21] , and the

TBATS (Trigonometric, Box-Cox transform, ARMA errors, Trend, and Seasonal components) model [22] . 



W. Sulandari, S. Subanar and M.H. Lee et al. / MethodsX 7 (2020) 101015 9 

Fig. 6. Actual data and forecast values for the different models, considering the test data of the Bawen load time series in 2014. 

Fig. 7. Actual data and forecast values for the different models, considering the test data of the total gasoline. 
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he success of TLSAR, TBATS, DSHW, and TLSNN in modeling the load electricity time series in

ndonesia can be seen in [12 , 23] . The results for the comparisons, based on the root mean square

rror (RMSE) and on the mean absolute percentage error (MAPE), between the two proposed hybrid

lgorithms and the competing models can be seen in Tables 1–5 . Further details can be found in [12] .

Table 5 does not include the results for the DSHW model because this model, proposed by [21] ,

ntends to handle double seasonal patterns in the series and the weekly gasoline data does not show

wo seasonal patterns. It should be noted that a particular model that provides better performance in

ne case may not necessarily give the same results in another case. Further, [12] have not taken into

ccount the effect of holidays or special days as in [20] . 
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Table 6 

The p-values obtained from the two-sided Diebold-Mariano test between methods for the five time 

series discussed in this study. 

Method Data 

A B 1 2 3 4 5 

SSA-LRF SSA-LRF-Fuzzy ∗ 0.0251 b 0.1452 ∗∗ 0.0023 b 0.0 0 07 b 0.1227 ∗∗

SSA-LRF-NN 0.0029 b 0.0026 b 0.0028 b 0.0 0 05 b 0.0569 ∗∗

TLSAR 0.0215 ∗∗ 0.7328 ∗∗ 0.1986 ∗∗ 0.5652 ∗∗ 0.2881 ∗∗

TBATS 0.0115 ∗∗ 0.0185 b 0.1172 ∗∗ 0.0637 ∗∗ 0.8041 ∗∗

DSHW 0.0283 a 0.0052 b 0.0090 b 0.8733 ∗∗ - 

ARIMA-NN 0.0033 a 0.0 0 05 a 0.0 0 01 a 0.3191 ∗∗ 0.4350 ∗∗

TLSNN 0.0085 b 0.0100 b 0.2859 ∗∗ 0.0 0 02 b 0.2566 ∗∗

SSA-LRF-Fuzzy ∗ SSA-LRF-NN 0.0057 ∗∗ 0.0024 b 0.2086 ∗∗ 0.0588 ∗∗ 0.4088 ∗∗

TLSAR 0.3251 ∗∗ 0.3580 ∗∗ 0.0076 a 0.0096 a 0.0191 a 

TBATS 0.0715 ∗∗ 0.0271 b 0.1383 ∗∗ 0.1169 ∗∗ 0.0070 a 

DSHW 0.0 0 03 a 0.0061 b 0.6698 ∗∗ 0.2342 ∗∗ - 

ARIMA-NN 0.0 0 06 a 0.0 0 04 a 0.0 0 0 0 a 0.0080 a 0.1643 ∗∗

TLSNN 0.0408 b 0.0167 a 0.0066 a 0.8940 a 0.0013 a 

SSA-LRF-NN TLSAR 0.0057 a 0.0088 a 0.0087 a 0.0039 a 0.0083 a 

TBATS 0.0057 a 0.0874 ∗∗ 0.0457 a 0.0041 a 0.0011 a 

DSHW 0.0 0 0 0 a 0.5789 ∗∗ 0.1221 ∗∗ 0.1228 ∗∗ - 

ARIMA-NN 0.0 0 01 a 0.0 0 03 a 0.0 0 0 0 a 0.0057 a 0.1732 ∗∗

TLSNN 0.0506 ∗∗ 0.0166 a 0.0012 a 0.0910 ∗∗ 0.0 0 04 a 

TLSAR TBATS 0.1546 ∗∗ 0.0329 ∗∗ 0.3108 ∗∗ 0.0723 ∗∗ 0.1770 ∗∗

DSHW 0.0 0 0 0 a 0.0083 b 0.0257 b 0.8620 ∗∗ - 

ARIMA-NN 0.0 0 03 a 0.0 0 05 a 0.0 0 0 0 a 0.0422 a 0.7936 ∗∗

TLSNN 0.0590 ∗∗ 0.0202 ∗∗ 0.7965 ∗∗ 0.0163 b 0.8003 ∗∗

TBATS DSHW 0.0 0 0 0 a 0.2699 ∗∗ 0.0989 ∗∗ 0.4494 ∗∗ - 

ARIMA-NN 0.0 0 02 a 0.0 0 04 a 0.0 0 0 0 a 0.0103 a 0.4640 ∗∗

TLSNN 0.3632 ∗∗ 0.9983 ∗∗ 0.1931 ∗∗ 0.1922 ∗∗ 0.0030 a 

DSHW ARIMA-NN 0.0203 a 0.0 0 03 a 0.0 0 0 0 a 0.4425 ∗∗ - 

TLSNN 0.0 0 0 0 b 0.1894 ∗∗ 0.0093 a 0.1335 ∗∗ - 

ARIMA-NN TLSNN 0.0 0 02 b 0.0 0 03 b 0.0 0 0 0 b 0.01862 b 0.7252 ∗∗

Data 1: hourly Java-Bali load series in 2014. 

Data 2: hourly Java-Bali load series in 2015. 

Data 3: hourly Java-Bali load series in 2016. 

Data 4: half hourly Bawen load series. 

Data 5: weekly US ending stocks of the total gasoline. 
a means method A is more accurate than method B. 
b means method B is more accurate than method A. 
∗ represents the chosen model determined based on the smallest values of MAPE and RMSE in the 

testing data. 
∗∗ means method A and method B has no different accuracy. 

 

 

 

 

 

 

 

 

Comparison plots to show the closeness between the actual and forecast values for the different

models, considering all data sets under study, are depicted in Figs. 3–7 . Moreover, the two-sided

Diebold-Mariano test was used to determine whether the forecast values are significantly different 

from each other are presented in Table 6 . We considered a significance level of 0.05, being the p-

values above that threshold associated to no significant difference between the forecasts obtained 

by method A and method B. When the p-values are lower than 0.05, one-side hypothesis tests are

conducted to determine which forecast method provides more accurate results. The results for the 

one-sided Diebold-Mariano tests [37] are also included in Table 6 under the form of superscript close

to the p-values. All calculations were done by using the dm.test function from the R package forecast.

The results presented in Tables 1–6 and in Figs. 3 –7 give a clear picture on the overall better

performance, in terms of forecasting ability, of the two methods presented in this paper, when

compared with standard individual and hybrid methods available in the literature. Moreover, since 

the proposed two hybrid approaches SSA-LRF-NN and SSA-LRF-WFTS outperform the SSA-LRF, they 

are also expected to outperform other methods that SSA-LRF outperforms, e.g. [23–24] . 
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The forecasting results of the SSA-LRF-WFTS hybrid model may be further improved by applying

he higher order fuzzy time series as discussed in [26–28] . The performance of the fuzzy model is

nfluenced by the universe of discourse selection, length of interval, FLR, and defuzzification. Related

iterature can be found in [29–31] . In the case of data contamination with outlying observations,

urther improvement related to the SSA part of the model can be obtained by considering a robust

SA algorithm [25 , 32] . A more parsimonious adaptation of the recurrent forecast algorithm [33] or of

he vector forecast algorithm [34] can also be considered to improve the forecasting ability of the SSA

art of the model. Based on the M4 competition, the hybrid statistical and machine learning approach

roduces more accurate forecasts and more precise prediction intervals than the combination of

tatistical approaches [35] . However, it should be noted that more complex models do not guarantee

ore accurate forecasts than the simpler models [36] . Therefore, caution should be taken when

electing the forecasting algorithm, depending on the kind of data and parsimony required for the

odel. 
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