Skip to main content
. 2020 Jul 29;7:101015. doi: 10.1016/j.mex.2020.101015

Table 6.

The p-values obtained from the two-sided Diebold-Mariano test between methods for the five time series discussed in this study.

Method
Data
A B 1 2 3 4 5
SSA-LRF SSA-LRF-Fuzzy* 0.0251b 0.1452⁎⁎ 0.0023b 0.0007b 0.1227⁎⁎
SSA-LRF-NN 0.0029b 0.0026b 0.0028b 0.0005b 0.0569⁎⁎
TLSAR 0.0215⁎⁎ 0.7328⁎⁎ 0.1986⁎⁎ 0.5652⁎⁎ 0.2881⁎⁎
TBATS 0.0115⁎⁎ 0.0185b 0.1172⁎⁎ 0.0637⁎⁎ 0.8041⁎⁎
DSHW 0.0283a 0.0052b 0.0090b 0.8733⁎⁎ -
ARIMA-NN 0.0033a 0.0005a 0.0001a 0.3191⁎⁎ 0.4350⁎⁎
TLSNN 0.0085b 0.0100b 0.2859⁎⁎ 0.0002b 0.2566⁎⁎
SSA-LRF-Fuzzy* SSA-LRF-NN 0.0057⁎⁎ 0.0024b 0.2086⁎⁎ 0.0588⁎⁎ 0.4088⁎⁎
TLSAR 0.3251⁎⁎ 0.3580⁎⁎ 0.0076a 0.0096a 0.0191a
TBATS 0.0715⁎⁎ 0.0271b 0.1383⁎⁎ 0.1169⁎⁎ 0.0070a
DSHW 0.0003a 0.0061b 0.6698⁎⁎ 0.2342⁎⁎ -
ARIMA-NN 0.0006a 0.0004a 0.0000a 0.0080a 0.1643⁎⁎
TLSNN 0.0408b 0.0167a 0.0066a 0.8940a 0.0013a
SSA-LRF-NN TLSAR 0.0057a 0.0088a 0.0087a 0.0039a 0.0083a
TBATS 0.0057a 0.0874⁎⁎ 0.0457a 0.0041a 0.0011a
DSHW 0.0000a 0.5789⁎⁎ 0.1221⁎⁎ 0.1228⁎⁎ -
ARIMA-NN 0.0001a 0.0003a 0.0000a 0.0057a 0.1732⁎⁎
TLSNN 0.0506⁎⁎ 0.0166a 0.0012a 0.0910⁎⁎ 0.0004a
TLSAR TBATS 0.1546⁎⁎ 0.0329⁎⁎ 0.3108⁎⁎ 0.0723⁎⁎ 0.1770⁎⁎
DSHW 0.0000a 0.0083b 0.0257b 0.8620⁎⁎ -
ARIMA-NN 0.0003a 0.0005a 0.0000a 0.0422a 0.7936⁎⁎
TLSNN 0.0590⁎⁎ 0.0202⁎⁎ 0.7965⁎⁎ 0.0163b 0.8003⁎⁎
TBATS DSHW 0.0000a 0.2699⁎⁎ 0.0989⁎⁎ 0.4494⁎⁎ -
ARIMA-NN 0.0002a 0.0004a 0.0000a 0.0103a 0.4640⁎⁎
TLSNN 0.3632⁎⁎ 0.9983⁎⁎ 0.1931⁎⁎ 0.1922⁎⁎ 0.0030a
DSHW ARIMA-NN 0.0203a 0.0003a 0.0000a 0.4425⁎⁎ -
TLSNN 0.0000b 0.1894⁎⁎ 0.0093a 0.1335⁎⁎ -
ARIMA-NN TLSNN 0.0002b 0.0003b 0.0000b 0.01862b 0.7252⁎⁎

Data 1: hourly Java-Bali load series in 2014.

Data 2: hourly Java-Bali load series in 2015.

Data 3: hourly Java-Bali load series in 2016.

Data 4: half hourly Bawen load series.

Data 5: weekly US ending stocks of the total gasoline.

a

means method A is more accurate than method B.

b

means method B is more accurate than method A.

represents the chosen model determined based on the smallest values of MAPE and RMSE in the testing data.

⁎⁎

means method A and method B has no different accuracy.