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Cells have a remarkable ability to synthesize large amounts of
protein in a very short period of time. Under these conditions,
many hydrophobic surfaces on proteins may be transiently
exposed, and the likelihood of deleterious interactions is quite
high. To counter this threat to cell viability, molecular chaper-
ones have evolved to help nascent polypeptides fold correctly
andmultimeric protein complexes assemble productively, while
minimizing the danger of protein aggregation. Heat shock pro-
tein 90 (Hsp90) is an evolutionarily conserved molecular chap-
erone that is involved in the stability and activation of at least
300 proteins, also known as clients, under normal cellular
conditions. The Hsp90 clients participate in the full breadth
of cellular processes, including cell growth and cell cycle con-
trol, signal transduction, DNA repair, transcription, and many
others. Hsp90 chaperone function is coupled to its ability to bind
and hydrolyze ATP, which is tightly regulated both by co-chap-
erone proteins and post-translational modifications (PTMs).
Many reported PTMs of Hsp90 alter chaperone function and
consequently affect myriad cellular processes. Here, we review
the contributions of PTMs, such as phosphorylation, acetylation,
SUMOylation, methylation, O-GlcNAcylation, ubiquitination,
and others, toward regulation of Hsp90 function. We also dis-
cuss how the Hsp90 modification state affects cellular sensitivity
to Hsp90-targeted therapeutics that specifically bind and inhibit
its chaperone activity. The ultimate challenge is to decipher the
comprehensive and combinatorial array of PTMs that modulate
Hsp90 chaperone function, a phenomenon termed the “chaper-
one code.”

Molecular chaperones are necessary for the stability, folding,
and activation of a wide array of “client proteins” (1). One such
molecular chaperone, the 90-kDa heat shock protein 90
(Hsp90), has over 300 clients, including protein kinases, tran-
scription factors, oncoproteins, and tumor suppressors. Tight
regulation of Hsp90 chaperone function and the downstream
activities of its client proteins is essential for the maintenance
of proteostasis, execution of the full spectrum of normal cellu-
lar processes, and preservation of tissue and organismal health
(2, 3). Hsp90 possesses an ATPase activity that is coupled to its
chaperone function along with a series of Hsp90 conforma-
tional changes collectively known as the chaperone cycle (1). A
group of proteins, called co-chaperones, and post-translational
modifications (PTMs) of Hsp90 together regulate Hsp90 chap-

erone activity and fine-tune it to the needs of the client proteins
and the cell (4–7). Cancer cells often use Hsp90 function to
promote tumor growth and metastasis, proffering Hsp90 as an
attractive therapeutic target (8–11). Specific Hsp90-targeted
therapeutics can simultaneously affect a myriad of cellular
processes through chaperone function inhibition. Despite
strong preclinical evidence of Hsp90 inhibitor efficacy, several
drugs have had only limited success in phase 3 clinical trials,
and none has achieved FDA approval. Co-chaperone dynamics
and Hsp90 PTM status contribute to the complex variables
that determine Hsp90 inhibitor sensitivity (12–14). Effort to-
ward elucidating the impact of post-translational modifications
of Hsp90 on its chaperone function has found that these modi-
fication states alter Hsp90 ATPase activity, co-chaperone and
client binding, client maturation, Hsp90 subcellular localiza-
tion and degradation, and Hsp90 inhibitor sensitivity (15–17).
Dozens of modification sites, including phosphorylation, acety-
lation, SUMOylation, methylation, and others, have been func-
tionally and mechanistically studied, as will be reviewed here.
Taken together, the literature suggests that we need to develop
a holistic understanding of the combinatorial array of these
PTMs that target Hsp90 and modulate its chaperone activity.
This phenomenon is also known as the “chaperone code.”

Structure and chaperone function of Hsp90

The two cytosolic isoforms of Hsp90, Hsp90a and Hsp90b,
share 85% sequence identity (18–20). Hsp90b is constitutively
expressed under normal physiological conditions. Hsp90a,
however, is stress-inducible, and increased levels of Hsp90a
have been associated with poor prognosis in cancer (20). The
chaperone function of Hsp90 encompasses an ordered series of
conformational changes coupled to its ATPase activity, collec-
tively known as the “chaperone cycle” (Fig. 1) (6, 21–24). The
functional unit of Hsp90 is a dimer, and each protomer consists
of three structural domains (25–27). The amino-terminal do-
main, or “N-domain,” contains the nucleotide-binding pocket,
which also serves as the binding site for most Hsp90 inhibitors
(28–30). The middle domain is connected to the N-domain by
a flexible and highly charged linker region (31, 32). The middle
domain harbors the catalytic loop that is necessary for ATP hy-
drolysis and also serves as the binding site for the majority of
client proteins and many co-chaperones (1, 33, 34). The car-
boxyl-terminal domain, or “C-domain,” is the site of constitu-
tive dimerization of the Hsp90 protomers (35, 36) and contains
the extreme C-terminal MEEVD sequence that serves as an
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interaction site for tetratricopeptide repeat (TPR)-domain–
containing co-chaperones (1). The Hsp90 chaperone cycle is
considered to begin with an “open” dimer, which is only dimer-
ized at the C-domain. ATP binding to the nucleotide pocket of
the N-domain contributes to the large-scale conformational
rearrangements that lead to transient dimerization of the
Hsp90 N-domains. This transiently N-terminally dimerized
state is referred to as the “closed” conformation. Upon ATP hy-
drolysis, Hsp90 returns to its “open” V-shaped conformation
and is ready to begin another cycle (Fig. 1) (6, 24, 36–39). There
is also a great deal of interdomain connectivity and communi-
cation across the Hsp90 protein (40–42). Progression through
the chaperone cycle is required for client chaperoning and is
tailored to individual client needs. In general, clients require
chaperoning to either achieve a final active conformation,
assemble into multiprotein complexes, or promote and stabi-
lize a ligand-competent state that is awaiting activation (1).
Many factors contribute to Hsp90 chaperone cycle regula-

tion and subsequent client chaperoning, including interacting
co-chaperone proteins and post-translational modifications,
and Hsp90 inhibitors can also affect the cycle. Co-chaperones,
unlike client proteins, are not themselves dependent on
Hsp90 chaperone function for their stability or activity.
Generally, co-chaperones alter the progression of Hsp90
through the chaperone cycle by stabilizing different Hsp90
states and conformational intermediates. The TPR-contain-
ing co-chaperone Hsp70-Hsp90–organizing protein (HOP)
binds to the open conformation of Hsp90, slows down its
ATPase activity, and also helps transfer client proteins to
Hsp90 (43–45). Client scaffolding or loading is another
common attribute of Hsp90 co-chaperones. The co-chaper-
one cell division cycle 37 (Cdc37) specifically recruits kinase
clients to Hsp90. The Cdc37-mediated chaperoning of ki-
nases requires coordinated phosphorylation and subsequent
dephosphorylation of Cdc37 by the phosphatase co-chaper-
one protein phosphatase 5 (PP5) (46–48). The co-chaperone
activator of Hsp90 ATPase (Aha1), on the other hand, dis-
places HOP and helps to mediate Hsp90 N-domain dimeri-

zation and enhances the ATPase activity of Hsp90 (49–52).
The co-chaperone prostaglandin E synthase 3 (p23) prefer-
entially binds to and stabilizes Hsp90 in the closed confor-
mation, slowing ATP hydrolysis and aiding client activation
(26, 53). Co-chaperone dynamics, as well as several other
processes, including Hsp90 ATPase activity, client activa-
tion, and Hsp90 inhibitor binding, are further altered by
Hsp90 PTMs, as will be highlighted and discussed in the
subsequent sections.

Post-translational modifications and Hsp90 function

Phosphorylation

Hsp90 is subject to various PTMs, as will be considered in
the sections to follow. Phosphorylation of serine, threonine,
and tyrosine residues is the most well-studied of these Hsp90
modifications. The earliest functional work demonstrated that
treatment with the nonselective serine/threonine phosphatase
inhibitor okadaic acid resulted in hyperphosphorylated Hsp90
and compromised chaperoning of the classic kinase client v-Src
(54). As will be discussed, much of the functional work focuses
on how different PTMs impact chaperone function via exami-
nation of ATPase activity of Hsp90, co-chaperone binding, and
client stability. Additional works further detail how Hsp90
modification affects downstream cellular processes such as cell
cycle control, DNA repair, and steroid hormone signaling as
well as many others via effects on the stability and activity of
Hsp90 client proteins (Fig. 2). Of note, a large number of poten-
tial Hsp90 modification sites in addition to those discussed
below have been identified by high-throughput screening stud-
ies (RRID:SCR_001837). These studies will not be discussed
here, as these sites have not been validated or linked to func-
tional consequences; however, continued evaluation of these

Figure 1. The Hsp90 chaperone cycle. Hsp90 begins its chaperone cycle in
an open conformation that is dimerized only at the C-domain. ATP binding
and an ordered series of conformational changes allow it to adopt a closed
conformation, which is N-terminally dimerized. Upon ATP hydrolysis, Hsp90
returns back to the open conformation and is ready to begin another chaper-
one cycle. This allows for the activation of client proteins. This cycle is tightly
regulated by co-chaperone proteins as well as PTMs, and Hsp90 inhibitors
can alsomodulate the chaperone cycle.

Figure 2. Modification by varied enzymes regulates Hsp90 function in
biological processes. Enzymes known to modify Hsp90 regulate its PTM
state, and this in turn influences various cellular functions as indicated.
Arrows are color-coded to match the cellular functions. Yellow arrows indicate
cell cycle and proliferation, purple indicates cytoskeleton remodeling and
migration, light blue indicates transcription, red indicates angiogenesis and
tumor formation, and navy blue indicates DNA repair, apoptosis, and metab-
olism. Enzymes that are also Hsp90 clients are shaded in green.
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sites is necessary to further our understanding and application
of the chaperone code.

Serine/threonine phosphorylation

Chaperone cycle—As discussed above, Hsp90 chaperone
function toward client maturation and downstream processes
depends on the dynamics of the chaperone cycle, including
Hsp90 ATPase activity and co-chaperone binding. The Hsp90
chaperone cycle is in part regulated by phosphorylation medi-
ated by casein kinase 2 (CK2), a ubiquitously expressed and
constitutively active protein kinase (55, 56). Phosphorylation of
yeast Hsp90-T22 (human Hsp90a-T36) or Hsp90b-S365 by
CK2 disrupts binding of Hsp90 with the kinase-specific co-
chaperone Cdc37 (Table 1 and Fig. 3) (64, 93). Additionally,
yHsp90-T22 phosphorylation compromises Hsp90 interaction
with the activating co-chaperone Aha1 and subsequently
results in decreased Hsp90 ATPase activity (64). Further, ATP
binding is impacted by CK2 phosphorylation of the Hsp90b
charged linker, which has been suggested to precede Hsp90:
Cdc37 complex dissociation when ATP levels are low (84).
Interestingly, CK2 phosphorylation of Cdc37-S13 promotes its
association with kinases and recruitment of Hsp90 to kinase:
Cdc37:Hsp90 ternary complexes for the chaperoning of kinase
clients (46–48, 152). Furthermore, sequential and ordered
phosphorylation of the co-chaperone folliculin-interacting pro-
tein 1 (FNIP1) on several adjacent serine residues promotes its
binding to Hsp90 and facilitates kinase and nonkinase client
chaperoning (153). CK2-mediated phosphorylation of both
Cdc37 and FNIP1 is specifically reversed by the phosphatase
co-chaperone PP5, highlighting the complex interplay of PTMs
in the chaperonemachinery (47, 153).
Phosphorylation of Hsp90a-T90 by protein kinase A (PKA)

also alters the complement of co-chaperones bound to Hsp90
and decreases Hsp90 affinity for ATP (73). Phosphomimetic
mutation of Hsp90a-T90 amplified binding to the co-chaper-
ones Aha1, p23, PP5, and C terminus of Hsp70-interacting pro-
tein (CHIP) but diminished binding to Hsp70, Cdc37, and
HOP. In contrast, phosphorylation of residues in the Hsp90a
C-domain by the kinases CK2, CK1, and glycogen synthase ki-
nase 3b (GSK3b) increased interaction between Hsp90a and
HOPwhile decreasing interaction with CHIP (104).
Hsp90 phosphorylation also has a consequent impact on cli-

ent binding and activation. Hsp90a-T90 phosphorylation abro-
gated binding to the client kinases Src, Akt, and PKCg likely as
a result of diminished interaction between Hsp90 and Cdc37
(73). Interestingly, phosphorylation of yHsp90-T101 (hHsp90-
T115) by the dual-specificity kinase Mps1 promoted kinase
client activation, whereas the nonphosphorylatable alanine
mutation favored nonkinase clients, possibly due to altered co-
chaperone interactions (78). Furthermore, phosphorylation of
two residues in the charged linker, Hsp90a-S231 and -S263,
was reduced in cells expressing a truncated form of the co-
chaperone p23 (85). Phosphorylation at these residues was im-
portant for telomerase activity through stability of the hTERT
telomerase catalytic subunit, which is anHsp90 client (85).
Phosphatases also play a critical role in modulating Hsp90

phosphorylation status and therefore the chaperone cycle. The

co-chaperone Ppt1 (yeast ortholog of PP5) was shown to
directly dephosphorylate Hsp90 and consequently affected its
chaperone activity (154). Another study found 10 residues of
yHsp90 that are dephosphorylated by Ppt1 (94). The phospho-
rylation status of these residues differentially influencedATPase
activity as well as client activity. Interestingly, Hsp90-S485E
phosphomimetic mutant had the most robustly decreased
ATPase activity despite being distant from the ATP-binding
pocket, suggesting that phosphorylation of this residue may
cause distant structural changes (94).
Taken together, phosphorylation is a dynamic regulatory

mechanism on the Hsp90 chaperone cycle. Of note, when these
sites are modified there is generally a resultant decrease in
Hsp90 ATPase activity. Phosphorylation can additionally allos-
terically affect co-chaperone and client dynamics at binding
sites far from the modified site, suggesting a complex interplay
of communication across the chaperone protein. Furthermore,
these allosteric effects on co-chaperone dynamics often have
further consequences onHsp90ATPase activity, and the details
of these regulatory mechanisms are not yet fully understood.
Cell cycle control—Hsp90 interacts with numerous cell cycle

regulators, including the kinases CDK2, -4, and -6; Mps1 and
Swe1 (yeast ortholog of human Wee1); and cyclin B (78, 106,
155–157). Hsp90a-T90 phosphorylation was found to be more
abundant in actively proliferating cells (73). Phosphorylation
specifically by PKA on Hsp90-T90 also promoted prostate can-
cer cell proliferation (74). Additionally, Hsp90a-T725 and
-S726 and Hsp90b-S718 phosphomimetic mutations decreased
the doubling time of HEK293 cells (104). Furthermore, Hsp90
threonine phosphorylation levels fluctuate throughout the
cell cycle (78). Yeast Hsp90-T101 (hHsp90a-T115) was phos-
phorylated throughout mitosis, but Hsp90-T101 phosphory-
lation was absent in G1 phase. The cell cycle mediators Mps1
and Cdc14 phosphorylate and dephosphorylate Hsp90-T101,
respectively. Together, Mps1 and Cdc14 regulate mitotic
arrest and exit from mitosis, at least in part, via Hsp90 phos-
phorylation (78).
DNA repair and apoptosis—DNA-dependent protein kinase

(DNA-PK) is both a client and a regulator of Hsp90a that phos-
phorylates Hsp90a on Thr-5 and -7 (57, 58, 63). Phosphoryla-
tion of these residues occurred early in apoptosis and was criti-
cal for histone gH2AX formation at dsDNA breaks, DNA
fragmentation, and apoptotic body formation (57). Further-
more, Thr-7 phosphorylation in the cytosol was a prerequisite
for Hsp90a accumulation at DNA double-strand breaks and
subsequent formation of DNA repair foci. Hsp90a-T7 phos-
phorylation level was also found to correlate with the apoptotic
marker pH2AX in tumors, suggesting that Hsp90a-T7 phos-
phorylation could serve as a potential marker for DNA damage
(63). It is unclear precisely how the role of Hsp90-T7 phospho-
rylation is integrated across the spectrum of DNA damage rec-
ognition and repair to apoptosis or whether these roles are con-
text-dependent. It is noteworthy that nuclear yHsp90 was
recently discovered to be important for chromatin remodeling
through regulation of the Arp2/3-dependent actin filaments
(158), which were found to be clustered at double-strand DNA
breaks (159, 160). Interestingly, levels of pThr-5/7 increase
with age and correlate with a decline in AMPK activity (58).
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Table 1
Hsp90 post-translational modifications, identified modifying enzymes, and functional consequences
Identified modification sites in Hsp90 are shown. Conservation between a and b isoforms is highlighted. Further indication of other species in which residues were found
as well as other modifications that particular sites are subject to is as follows: boldface type, identified in that isoform; *, identified in Hsp82; †, identified in zebrafish
Hsp90a1; §, identified in Candida albicans; a, acetylation; n, nitration; p, phosphorylation; s, SUMOylation; sc, succinylation; u, ubiquitination; g, glycation; o, O-GlcNA-
cylation; m, methylation; c, citrullination; sn, S-nitrosylation; t, thiocarbamlyation; :, binding increased (increased ATPase or increased inhibitor binding or sensitivity);
;, binding decreased (decreased ATPase or decreased inhibitor binding or sensitivity); nc, no change; NA, not applicable/not conserved; no entry provided in the table if
not determined or examined.

PTM
Residue Enzyme

Small-molecule
binding

References
Hsp90a Hsp90b Compound ATP Inhibitors

Serine/threonine phosphorylation T5 NA ATM, DNA-PK 57–62
T7 NA ATM, DNA-PK 57–63
T36 (*,†) T31 CK2 ; : 64–66
S63 S58 CK2 67–69
T65 T60 CK2 68, 70
S68 S63 CK2 68
S72 S67 CK2 68
T88 T83 PKA 69, 71, 72
T90 T85 PKA ; 72–76
S113 S108 (*) HopBF1 ; 77
T115 T110 Mps1, Cdc14, PKCg ; : 78, 79
S164 S159 Cdc7-Dbf4 80, 81
S211 S206 PKA/PKG 82, 83
S231 S226 CK2, PP5 55, 84–89
S263 S255 CK2, B-Raf, PP5 55, 84–92
N373 S365 CK2 83, 93
S399 (*) S391 ; : 67, 94–96
T425 S417 PKCg ; 79
S460 (o) S452 (o) PKA 82
S505 (*) S497 ; : 69, 94
S595 S587 Mitogen-activated protein kinase 12 (p38g) 97–99
T603 T595 PKCg nc 79, 99
S623 (*) S615 ; 94, 100, 101
T624 T616 102, 103
M625 (*) M617 ; 94
T725 A717 CK2, CK1, GSK3b 104, 105
S726 S718 CK2, CK1, GSK3b 104, 105

Tyrosine phosphorylation Y38 (*,n) Y33 (n) Swe1 ; ; 99, 106
Y197 Y192 v-Src, Yes 107–112
Y309 Y301 c-Src 110, 113, 114
Y313 Y305 : 42, 69, 107, 115
Y627 (*) Y619 69, 107, 116, 117

Acetylation K41 (§,u) K36 (u) : 118–120
K69 (u) K64 (u) HAT p300 ; : 101, 121–124
K74 (u,g) K69 (u) 97, 99
K100 (u,g) K95 HAT p300 ; : 121
K292 (u) K284 (u) HAT p300 : 121, 124
K294 (†,§,u) K286 (u) HDAC6 : 65, 118, 119, 125–129
K327 (u) K319 (u) HAT p300 ; : 99, 121
K407 (u) K399 (u) : 124, 130
K419 (u) K411 : 130, 131
K478 (u,g) S470 HAT p300 ; : 121
K546 (u,g,sc) K538 (u,sc) HAT p300 ; : 121, 131
K558 (u) K550 HAT p300 ; : 121

Monomethylation K209 (†,u) K204 SMYD2 65, 132
K539 K531 (a,u) SMYD2 133
K582 K574 (a,u) SMYD2 133
K615 (*,†,a,u) K607 SMYD2 65, 132, 134–136

Thiocarbamylation C529 C521 6-HITC-ME 137
C597 (sn) C589 (sn) STCA 138

S-Nitrosylation C597 (t) C589 (t) Nitric oxide 139, 140
SUMOylation K191 (a,u) K186 SUMO-1 : 141

K559 (u) K551 SUMO peptidase sentrin/SUMO-specific
protease 2 (SENP2)

142

Ubiquitination K112 (g) K107 CHIP 143–145
K209 (m) K204 (a) CHIP 143, 144, 146
K224 (a) K219 (a) CHIP 143, 144, 146
K283 (a,g) K275 (a) CHIP 143, 144, 146
K292 (a) K284 (a) CHIP 143, 144, 146
R355 K347 (a,m,sc) CHIP 144
K407 (a) K399 (a) CHIP 143, 144, 146
K485 (a) K477 (a) CHIP 143, 144
K489 (a,m,sc) K481 (a,sc) CHIP 143, 144, 146
K546 (a,g,sc) K538 (a,sc) CHIP 143–145
K558 (a) K550 CHIP 143, 144
K615 (a,m) K607 (a) CHIP 143, 144, 147
K631 (a,sc) K623 (a,sc) CHIP 143, 144, 148

Nitration Y38 (p) Y33 (p) 149, 150
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There is evidence of a role for Hsp90b in apoptosis as well. Hy-
pophosphorylation of Hsp90b-S226 and -S255 was found to
prevent cytochrome c–induced apoptosome activation (86).
Transcription factor regulation—Numerous transcription

factors have been found to interact with Hsp90, including
vertebrate steroid hormone receptors and PAS domain family
members. It has been shown that Hsp90 phosphorylation
increased glucocorticoid receptor (GR) activity (64, 93). Muta-
tion of yeast Hsp90-T22 to phosphomimetic glutamate
increased GR activity over 4-fold compared with WT Hsp90,
whereas mutation to the phospho-null Hsp90-T22A signifi-
cantly decreased GR activity (64). Interestingly, phosphomi-
metic mutation of Hsp90b-S365E, a residue that is not con-
served in Hsp90a, also significantly increased GR activity when
expressed as the sole Hsp90 in yeast (93). Additionally, Hsp90-
T90 phosphorylation by PKA is important for androgen recep-
tor (AR)-mediated transcription (74). Phosphorylation of
Hsp90-T90 released AR from Hsp90, leading to AR nuclear
localization and subsequent transcription (74). Work by Ogiso
et al. (87) demonstrated phosphorylation of Hsp90 residues in
the charged linker (Hsp90a-S230 and Hsp90b-S226 and -S255)
that impaired Hsp90 binding to the bHLH/PAS family tran-
scription factor arylhydrocarbon receptor. Nonphosphorylat-
able mutation of these residues restored Hsp90 interaction
with arylhydrocarbon receptor, subsequently increasing its
transcriptional activity toward xenobiotic-responsive elements
(87). These works highlight the importance of Hsp90 PTMs for
regulating chaperoning of transcription factors and demon-
strate the need for further investigation into this area.
Cancer development and progression—Consistent with can-

cer cells’ reliance on Hsp90 chaperone machinery, Hsp90 is dif-
ferentially modified in cancer versus normal cells, and Hsp90
phosphorylation has been linked to numerous cancer-driving
processes. In addition to some examples seen above, early work
in the field posited a role for Hsp90 phosphorylation in cellular
transformation. Phosphatase inhibitor treatment led to hyper-
phosphorylation of Hsp90 and decreased complex formation
between Hsp90 and the oncogenic tyrosine kinase client, v-Src,
and suggested that cycling of Hsp90 PTMs could direct v-Src
trafficking and cellular transformation (54). Hsp90 phosphoryl-
ation has been implicated to contribute to many of the hall-
marks of cancer, including processes such as cancer cell migra-
tion (79), proliferation (74, 104), invasion (75), tumor regression
and immunogenicity (90), and therapeutic resistance (86). Fur-
thermore Hsp90a-S164 is hyperphosphorylated in oral cancer
(80), and total phosphorylated Hsp90 was found to be increased
in breast tumor samples compared with normal tissue (104). In
contrast, Hsp90b-S226 and -S255 are hypophosphorylated in
leukemic cells, further demonstrating the regulatory impor-

tance of Hsp90b PTMs (86). The mechanisms that contribute
to these differential degrees of Hsp90 phosphorylation in spe-
cific instances are largely unknown. It is likely that this reflects a
combination of alterations in kinase or phosphatase expression
as well as changes to kinase regulation. Of note, many of the ki-
nases that modify Hsp90 are themselves clients. Mps1, one of
the client kinases, was increased in kidney cancer tissue relative
to adjacent normal tissue, and this correlated withHsp90 inhibi-
tor sensitivity, suggesting that Hsp90 phosphorylation plays a
role in kidney cancer as well (78). The effect of Hsp90 PTMs on
drug sensitivity will be further discussed below.

Tyrosine phosphorylation

Chaperone cycle and kinase maturation—Numerous cellular
pathways are also regulated by Hsp90 tyrosine phosphoryla-
tion. Significant work has been done detailing a series of tyro-
sine phosphorylation events that affect the Hsp90 chaperone
cycle and chaperoning of kinase clients. Nonreceptor tyrosine
kinase Yes plays a prominent role in Hsp90 function through
phosphorylation of both Hsp90a and co-chaperone Cdc37. Yes
first phosphorylates Cdc37-Y298, inducing a conformational
change that primes the client:Cdc37:Yes complex to bind to
Hsp90a (107). Next, Yes phosphorylates Hsp90-Y197, disrupt-
ing the Hsp90:Cdc37 complex (107, 108). This process is essen-
tial to kinase client maturation (108). Perhaps this is due to the
subsequent phosphorylation of Hsp90-Y313 on only one proto-
mer of an Hsp90 dimer (i.e. asymmetric phosphorylation),
which recruits Aha1, thereby stimulating Hsp90 ATP hydroly-
sis and client maturation (42, 107). Interestingly, whereas phos-
phomimetic mutation Hsp90-Y313E enhances Aha1 associa-
tion with Hsp90, it abrogates interaction with the competing
co-chaperone tuberous sclerosis complex protein 1 (Tsc1)
(161). Phosphorylation of Hsp90-Y627 by Yes then triggers dis-
sociation of Aha1 and the mature client, “resetting” Hsp90 for
the next cycle (107). Additionally, Hsp90-Y627 phosphoryla-
tion has been proposed as a mechanism to functionally replace
the evolutionarily lost yeast Aha1-like co-chaperone, Hch1
(88). This series of Hsp90 tyrosine phosphorylation events pro-
foundly affects the dynamics of the chaperone cycle, including
the binding and release of co-chaperone proteins. Determina-
tion of precisely how this translates to client activation, how-
ever, requires further work. One example that has been eluci-
dated is in B-cell antigen receptor (BCR) signaling. Signals
transduced through BCR signaling play a role in a subset of B-
cell lymphomas. Spleen tyrosine kinase (SYK), a key effector of
BCR signaling, is an Hsp90 client and depends on Hsp90a-
Y197 phosphorylation for its function (109). The Hsp90 client
Swe1 also mediates Hsp90 tyrosine phosphorylation that
affects Hsp90:co-chaperone dynamics. Phosphorylation of

Table 1—Continued

PTM
Residue Enzyme

Small-molecule
binding

References
Hsp90a Hsp90b Compound ATP Inhibitors

Y61 (p) Y56 (p) 149
O-GlcNAcylation S442 (p) S434 (p) 151

S460 (p) S452 (p) 151
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Figure 3. Schematic representation of Hsp90a PTM sites. Residues that have been functionally studied and found to contribute to the chaperone code are
shown in red with colored circles indicating effects on cellular function (blue), co-chaperone binding (orange), ATP binding (yellow), and Hsp90 inhibitor bind-
ing/sensitivity (green). Residues in black have been reported to bemodified but have not yet been validated to affect chaperone function.
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yHsp90-Y24 (human Hsp90a-Y38) was important for Hsp90
interaction with the co-chaperones Aha1 and p23; knockout
of Swe1 or mutation of Tyr-24 to the nonphosphorylatable
phenylalanine abolished Hsp90 interaction with Aha1 and
decreased interaction with p23 (106).
Cell cycle control—Phosphorylation of the conserved

yHsp90-Y24 (human Hsp90a-Y38) has diverse implications on
not only Hsp90 chaperone function but also the cell cycle. Swe1
(yeast ortholog of human Wee1) is a key component of the
G2-M cell cycle checkpoint (162). Swe1 phosphorylated
yHsp90-Y24 in a cell cycle–dependent manner, and Hsp90
tyrosine phosphorylation was observed only in S phase–
arrested cells (106). It was also shown that yHsp90-Y24
phosphorylation serves as a prerequisite to Hsp90 ubiquiti-
nation and proteasomal degradation (106). Interestingly,
yHsp90-Y24 phosphorylation is also important for chaper-
oning of Swe1, which is an Hsp90 client. Swe1-mediated
phosphorylation enhanced the association of the kinase
with Hsp90 and its stability and function (163). Expression
of the nonphosphorylatable yHsp90-Y24F mutant caused
yeast to undergo premature nuclear division and made them
insensitive to G2/M checkpoint arrest (163).
Angiogenesis and inflammation—Additionally, Hsp90 tyro-

sine phosphorylation regulates cell proliferation, angiogenesis,
and inflammation through endothelial nitric oxide synthase
(eNOS). eNOS produces nitric oxide (NO), which mediates
angiogenic and vasodilatory effects, and eNOS signaling is
affected by Hsp90 phosphorylation (113). Duval et al. (113)
found that, upon vascular endothelial growth factor receptor 2
(VEGFR2) stimulation, VEGFR2-boundHsp90b is phosphoryl-
ated by the kinase c-Src at Tyr-300. This phosphorylation event
is critical to subsequent Hsp90 interaction with eNOS and
VEGF-stimulated eNOS signaling and angiogenesis. Further-
more, c-Src–mediated phosphorylation of Hsp90a-Y309
(Hsp90b-Y301) in endothelial cells could also be induced by
the inflammation-inducing bacterial wall component lipopoly-
saccharide, and this was needed to mediate the pro-inflamma-
tory actions of Hsp90 in this context (164). Overall, Hsp90
phosphorylation has a spectrum of effects on chaperone func-
tion and cellular processes, but there are roles for the regulatory
functions of other PTMs as well.

Acetylation–deacetylation

Hsp90 chaperone function is also affected by acetylation.
Acetylation is a post-translational modification that results
from the addition of acetyl groups generally to lysine residues.
As this modification was first identified and described on histo-
nes in the nucleus, the classes of enzymes responsible were
named histone acetyltransferases (HATs) and histone deacety-
lases (HDACs). These enzymes, however, can modify numer-
ous other cellular proteins, including Hsp90. Treatment with
HDAC inhibitors (HDACi) has been demonstrated to lead to
hyperacetylation of Hsp90 in numerous reports (165, 166). In
general, Hsp90 acetylation alters its ability to bind ATP and
Hsp90 inhibitors and its interaction with both client and co-
chaperone proteins (125, 166). This has particular consequen-
ces for the stability and function of kinases and steroid hor-

mone receptors as well as cell migration. Hsp90 inhibitor
sensitivity and fungal virulence are also impacted and will be
discussed later. Additionally, there are studies examining the
role of Hsp90 acetylation in mediating glucocerebrosidase ac-
tivity in Gaucher disease and tau phosphorylation in Alzhei-
mer’s disease (126, 167).

Oncogenic kinase chaperoning

Kinases are one of the main classes of Hsp90 clients and are
needed to support growth and survival in many cancers. Early
work demonstrated that inhibition of HDAC6 led to the hyper-
acetylation of Hsp90 and reduced the association of Hsp90
with its kinase clients, including Bcr-Abl, Akt, and c-Raf (165).
Destabilization and degradation of kinases as a result of HDACi
and decreased kinase association with Hsp90 has also been
demonstrated for VEGFR1, VEGFR2, erythroblastic oncogene
B (ErbB1), ErbB2, Raf-1, and extracellular signal–regulated pro-
tein kinase (ERK1/2) (168, 169). Hsp90-K294 acetylation spe-
cifically has been shown to affect both kinase and nonkinase cli-
ent binding (125). Acetylated lysine mimic mutations K294A
and K294Q disrupted interaction of Hsp90 with its clients
ErbB2 and v-Src as well as the kinase-specific co-chaperone
Cdc37, whereas nonacetylatable mutation K294R either en-
hanced binding or had no effect (125). Another interesting
study demonstrated that Hsp90 acetylation can also be
increased by inhibition of the transcription factor heat shock
factor 1 (HSF1) as a result of disruption of a cytosolic complex
containing HSF1, p97, Hsp90, and HDAC6 (170). This further
resulted in reduced association of Hsp90 and Cdc37 and conse-
quent depletion of kinase clients, including Bruton’s tyrosine
kinase, c-Raf, and CDK4 (170). Hsp90 function and kinase sta-
bility were also reduced following HSF1-targeted treatment in a
leukemia mouse model, suggesting possible therapeutic benefit
of targeting thismechanism (170).

Steroid hormone receptor stability and activity

Steroid hormone receptors are another well-described class
of Hsp90 clients that are affected by Hsp90 acetylation. Some of
the initial work demonstrating regulation of Hsp90 acetylation
by HDAC6 showed compromised Hsp90-dependent GR matu-
ration in HDAC6-deficient cells (166). GR ligand binding, nu-
clear translocation, and transcriptional activity were impaired
with HDAC6 inhibition or loss (166, 171). This stemmed from
a defect of hyperacetylated Hsp90 in functional heterocomplex
formation with GR and not from an intrinsic change to GR
(172). As a result of HDAC6 inhibition, hyperacetylated Hsp90
also dissociated from the co-chaperone p23 (95). Hsp90 acety-
lation–dependent GR signaling has also been implicated in
stress resilience. Selective depletion of HDAC6 in serotonergic
neurons decreased GR signaling and led to reduced angiogenic
effects of corticosterone and also blocked the expression of
social avoidance behavior in mice exposed to chronic social
defeat (173). Similarly, lower levels of Hsp90 acetylation and
consequent enhanced GR translocation have been seen in the
dorsal raphe nucleus after chronic social defeat stress (127).
Treatment with an HDAC6i, ACY-738, increased relative asso-
ciation of Hsp90 with the co-chaperone FKBP52 and inhibited
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hormone-induced GR translocation in cells and in mice pro-
moted resilience to chronic social defeat stress. The effects of
HDACi on stress resilience could also be replicated with a Lys-
294 acetylation mimetic, suggesting these effects are mediated
through modulation of acetylation on this specific lysine resi-
due (127). In contrast to the effects of Hsp90 acetylation on GR
function, specifically Hsp90-K294 acetylation, another group
demonstrated that acetylation of the equivalent lysine, Lys-295,
in mouse Hsp90a alters the cellular localization of the minera-
locorticoid receptor (MR). Interestingly, it did not alter MR
transcriptional activity and therefore suggests that Hsp90 acet-
ylation could assist in balancing MR and GR activity when both
are expressed (128).
Modulation of Hsp90 acetylation also has effects on the

estrogen and androgen receptors. Hsp90 hyperacetylation as a
result of HDACi decreased binding of Hsp90 to the estrogen re-
ceptor (ERa) leading to its ubiquitination and proteasomal deg-
radation (174). This led to a subsequent decrease in ER-medi-
ated transcription. HDACi in breast cancer cells also decreased
the stability of other prosurvival Hsp90 clients, including Akt
and c-Raf (174). Similarly, AR dissociated from Hsp90 and was
degraded in the proteasome upon treatment with sulforaphane,
a derivative of glucoraphanin that has been shown to mediate
HDAC6 inhibition (175). Sulforaphane increased Hsp90 acety-
lation, leading to AR instability and reduced AR target gene
expression in anHDAC6-specificmanner. HDAC6 knockdown
(KD) similarly impaired AR localization and inhibited prostate-
specific antigen expression in the absence or presence of the
AR ligand dihydrotestosterone (176). The effect on AR localiza-
tion in this study was also mediated by acetylation on Lys-294
of Hsp90 (176), and AR has been seen to dissociate from
K294A or K294Q acetyl mimics (125). Overall, Hsp90 acetyla-
tion, particularly at Lys-294, plays an important role in the
chaperoning and function of steroid hormone receptors. Mod-
ulation of these dynamics may present a therapeutic target in
stress resilience as well as hormone-dependent cancers, such as
breast and prostate cancer.

Cytoskeletal dynamics and cell migration and invasion

Several studies have examined the role of Hsp90 acetylation
in affecting cytoskeletal remodeling dynamics as well as cell
migration. He et al. (65) examined the role of various Hsp90a
PTMs onmyosin thick filament organization in zebrafish skele-
tal muscle. Hsp90 plays a key role in myosin folding and thick
filament assembly, but this role was repressed by acetylation
mimic K287Q (Lys-294 in hHsp90a) mutation, whereas the
nonacetylatable K287Rwas able to rescue thick filament defects
in Hsp90aKD embryos (65).
Hsp90 acetylation also plays a role in actin cytoskeleton dy-

namics. An unexpected finding of HDAC6 localizing to actin-
enriched membrane ruffles led to the identification of Hsp90
recruitment to membrane ruffles and macropinosomes as well
(177). The acetylation-resistant K294Rmutant enhanced dorsal
ruffle formation in HDAC6 knockout mouse embryonic fibro-
blasts, whereas acetyl mimic K294Q did not. Treatment with
the Hsp90 inhibitor geldanamycin also inhibited ruffle forma-
tion as well as cell migration (177). Hsp90 further plays a role in

mediating HDAC1-regulated cell migration through stability of
TAp73, a member of the p53 family (178). HDAC1 KD resulted
in hyperacetylation of Hsp90 and subsequent proteasomal deg-
radation of TAp73, which was required for the enhanced cell
migration seen with HDAC1 KD (178). Hsp90 is also a target of
SIRT2, a tumor suppressor and class III histone deacetylase.
SIRT2was found to deacetylate Hsp90, and this was a necessary
prerequisite to ubiquitination and degradation of Hsp90 (179).
The regulation of Hsp90 by SIRT2 deacetylase activity was
required for SIRT2 inhibition of actin polymerization and cell
migration (179). Additionally, Hsp90 acetylation plays a role in
tumor cell invasiveness. Three acetylation mimics of Hsp90a,
K69Q, K100Q, and K558Q, were found to promote the export
of Hsp90 and increased the amount found extracellularly (121).
These acetyl mimics further facilitated binding to the matrix
metalloproteinase MMP2 and enhanced invasiveness of breast
cancer cells in a Matrigel invasion assay. Treatment with pan-
HDACi promoted cell invasiveness; however, treatment with
an anti-acetylated-K69-Hsp90 antibody inhibited invasiveness
to a greater degree than a polyclonal anti-Hsp90 antibody, sug-
gesting that specifically targeting acetylated Hsp90 in the
extracellular space could decrease tumor invasion and metasta-
sis (121). Further potential therapeutic benefits utilizing Hsp90
acetylation will be discussed below.

Other reported PTMs

As seen above, the literature examining the effects of phos-
phorylation and acetylation on Hsp90 function is quite robust.
Many other types of PTMs, however, have also been reported
to impact Hsp90 function. Here we summarize those studies,
and of note, these sections are not further subdivided by func-
tional consequence because the reports are less numerous than
those examined above.

Methylation

Protein methylation has most notably been studied in nu-
clear histone proteins, where the so-called “histone code” regu-
lates gene expression (180). Despite this focus, proteinmethyla-
tion is also a common cytosolic modification. Catalyzed by
methyltransferases, this enzymatic process frequently targets
lysine and arginine side chains. SET and MYND domain–con-
taining 2 (SMYD2) is one such lysine methyltransferase,
reported to methylate Hsp90a at Lys-209 and conserved Lys-
615 (Hsp90b-K607, yHsp90-K594) (132, 134). Methylation of
yHsp90-K594 causes allosteric conformational changes that
impact Hsp90 ATP hydrolysis, Aha1 and p23 binding, and cli-
ent activity (134). Specifically, monomethylated yHsp90-K594
was generated via amber suppression and demonstrated im-
paired N-terminal dimerization kinetics compared with WT
Hsp90 (134). Additionally, SMYD2 is also reported to interact
with p23 and HOP co-chaperones, suggesting varied roles for
methylation in the regulation of Hsp90 function (132). Hsp90-
K615 methylation in skeletal and cardiac muscle has been
shown to promote the stability of the sarcomeric protein titin
and myofibril organization, providing a mechanistic explana-
tion for the role of Hsp90 in skeletal and cardiac muscle func-
tion (135, 181). SMYD2 also methylated Hsp90b at the
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conserved residues Lys-531 and -574. These methylation
events promoted Hsp90 chaperone function and served to
increase the growth of bladder cancer cell lines (133). In sum-
mary, lysine methylation serves to enhance Hsp90 function
through a wide array of modification sites and can act as a
switch point to allosterically regulate distant regions of
Hsp90.

Thiocarbamylation and S-nitrosylation

Thiocarbamylation of Hsp90 results from binding of the
small molecules sulfoxylthiocarbamate alkyne (STCA) and
6-methylsulfinylhexyl isothiocyanate-b-mercaptoethanol (6-
HITC-ME) to Hsp90 after the exogenous addition of these
compounds. Treatment with these small molecules has been
reported to inhibit Hsp90 function by modification of the mid-
dle domain residues Cys-597 in Hsp90a (Cys-589 in Hsp90b;
STCA) (138) as well as Cys-521 in Hsp90b (6-HITC-ME) (137).
Both small molecules were found to inhibit Hsp90 activity and
induce degradation of client proteins. This was accompanied
by the induction and nuclear translocation of the prosurvival
transcription factor HSF-1, potentially blunting the cytotoxic
effects of these compounds (137, 138).
Similarly to thiocarbamylation, S-nitrosylation results from

chemical modification of cysteine residues. NO induces revers-
ible S-nitrosylation by forming stable thionitrite groups on cys-
teine residues (139). NO is produced by the Hsp90 client eNOS
in cells and is an important signal transduction molecule (182).
Hsp90a-C597 was subject to nitrosylation as a result of eNOS
activity, which decreasedHsp90 chaperone activity, providing a
reciprocal mechanism for the regulation of eNOS in cells. It has
been posited that this contributes to the anti-cancer effects of
nitric oxide (139, 140).

SUMOylation and citrullination

SUMOylation is the addition of a small ubiquitin-like modi-
fier (SUMO) protein to lysine residues. Asymmetric SUMOyla-
tion of Hsp90a-K191 by SUMO-1 recruited Aha1 to the chap-
erone complex and sensitized Hsp90 to its inhibitors (141).
SUMOylated Hsp90 was enriched in cells that had undergone
malignant transformation, providing one potential explanation
for the preferential accumulation of Hsp90 inhibitors in cancer
cells (141). In vitro cross-linking of SUMO to an introduced
cysteine at the target site in yeast Hsp90 (yHsp90-K178) dem-
onstrated an ATPase activity similar to that of the unmodified
Hsp90 (183). Chemically SUMOylated Hsp90 displayed
enhanced interaction with Aha1. Additionally, Sba1 (yeast
p23 ortholog) was less able to compete Aha1 off and slow
down Hsp90 ATPase activity (183). Interestingly, SUMOy-
lated Hsp90a-K559 was shown to serve as an immunogen
and biomarker in monoclonal gammopathies of undeter-
mined significance, multiple myelomas, and Waldenstrom’s
macroglobulinemias (142). This SUMOylation state is the
result of a heritable defect in sentrin/SUMO-specific prote-
ase 2 (SENP2) that renders it unable to deSUMOylate Hsp90
(142). This specific modification event may contribute to
the relative success of Hsp90 inhibition in multiple myelo-
mas (184–187).

Citrullination of Hsp90 has also been implicated in immuno-
genicity. Examination of sera from rheumatoid arthritis–asso-
ciated interstitial lung disease patients identified citrullinated
Hsp90a/b as autoantigens (188). Citrullination results from the
deamination of arginine into citrulline. Numerous residues in
Hsp90b have been reported as citrullinated, including the
“minimum citrullination set” of Arg-392, -604, -612, and -679
(189). In the context of Hsp90, citrullination induced local
unfolding, exposing cryptic epitopes that contributed to its im-
munogenicity (189). This almost certainly results in decreased
chaperone function, although no specific impact on Hsp90 has
been reported.

Ubiquitination

One of themany quality control mechanisms in cells involves
the ubiquitination and proteasomal degradation of proteins.
Indeed, post-translational cross-talk between phosphorylation
and ubiquitination has been previously shown to induce Hsp90
turnover (66, 106).
HECT domain E3 ubiquitin protein ligase (Hectd1) partici-

pates in the ubiquitination and degradation of Hsp90 (190). Func-
tionally, Hectd1 mutation increased Hsp90a secretion and
Hsp90-dependent migration of cranial mesenchyme cells (190).
Indeed, ubiquitination ofHsp90was recently identified at numer-
ous lysine residues using a novel detection technique (143). Inter-
estingly, the Hsp90 co-chaperone CHIP is also an E3 ubiquitin
ligase. CHIP was shown to ubiquitinate Hsp90b on 13 lysine resi-
dues, leading to Hsp90b degradation (Table 1) (144). It is note-
worthy that phosphorylation of Hsp90a-T725 and -S726 and
Hsp90b-S718 diminished interaction with CHIP, further demon-
strating the cross-talk between Hsp90 phosphorylation and ubiq-
uitination (104). These data point to Hsp90 ubiquitination as a
critical cellular regulatory control module.

Oxidation

Tubocapsenolide A (TA) is a bioactive compound isolated
from Tubocapsicum anomalum that demonstrates toxicity
against a variety of cancer cell lines. TA induces degradation of
Hsp90 client proteins, suggesting an Hsp90-inhibitory func-
tion. Mechanistically, TA treatment perturbed redox homeo-
stasis, promoting reactive oxygen species generation and oxida-
tion-induced aggregation of the chaperone proteins Hsp90 and
Hsp70 (191). Similarly, 4-hydroxy-2-nonenal was shown to in-
hibit Hsp90 activity by forming thiol-adducts with Hsp90-C572
(192), further confirming redox homeostasis as a crucial factor
of proteomemaintenance.

Nitration

Hsp90 activity can also be inhibited by peroxynitrite, through
the process of nitration (149). Nitration of two conservedN-do-
main tyrosine residues (Hsp90a-Y38/Y61; Hsp90b-Y33/Y56)
induced apoptosis in neuronal models and was also found in
spinal cord sections of ALS patients (149). These residues are in
close proximity to the N-domain ATP-binding pocket of
Hsp90, providing a potential mechanism for the inhibition of
Hsp90 activity. Interestingly, Tyr-33–nitrated Hsp90b has also
been shown to preferentially associate with mitochondria,
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exerting a detrimental effect on mitochondrial metabolism
(150). Taken together, the down-regulation of mitochondrial
function provides an explanation for the association between
nitrated Hsp90 and neurodegenerative disease.

Glycosylation

O-GlcNAcylation of Hsp90 has been reported at several sites
in both Hsp90a and b using a novel biotin-cystamine approach
(151). Although no functional assays were performed, O-
GlcNAc antagonizes phosphorylation of serine residues (88),
suggesting specific redundant regulatory modules for the iden-
tified modification sites. O-GlcNAcylation of Hsp90 was later
found to preferentially occur under hyperglycemic conditions.
This modification decreased the ability of Hsp90 to support
developmental competence in mouse oocytes in an in vitro
maturation assay. Interestingly, this phenotype was reversed by
17-AAG treatment, suggesting a detrimental function for O-
GlcNAcylatedHsp90, although the precisemechanism remains

unknown (193). Notably, O-GlcNAc of the Hsp90 co-chaper-
one FNIP1 was recently reported, demonstrating multiple
layers of Hsp90 regulation by one type of modification (153).
Other forms of glycosylation are distinct fromO-GlcNAcyla-

tion in that they are typically irreversible. Nonenzymatic glyco-
sylation, or glycation, involves the modification of lysine and
arginine side chains with reactive sugar moieties such as meth-
ylglyoxal (Fig. 3). Several Hsp90 residues spanning all domains
are reported to be glycated, inducing degradation of the Hsp90
client LATS1 and functionally inhibiting Hsp90 activity, while
supporting the tumorigenesis of breast cancer cell lines (194).

Hsp90 post-translational modification and drug
sensitivity

Sensitivity to Hsp90 inhibitors

As mentioned above, Hsp90 is an attractive therapeutic target,
particularly in cancer, due to the reliance of key processes such as
cell proliferation and survival as well as cell migration on Hsp90

Figure 4. PTM sites known to alter Hsp90 inhibitor sensitivity. Shown is the Hsp90 dimer structure in the closed (A; Protein Data Bank entry 5FWP) and
open (B; Protein Data Bank entry 2IOQ) conformation with PTM sites known to alter sensitivity to Hsp90 inhibitors highlighted (green), demonstrating that
modifications throughout Hsp90 can profoundly influence the efficacy of N-domain inhibition. Of note, some of these residues are subject to various PTMs,
only one of which has been shown to impact drug binding as detailed in Table 1.
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chaperone function. Inhibiting Hsp90 therefore provides a unique
way to simultaneously target divergent signaling pathways, includ-
ing those mutated or up-regulated in cancers, such as oncogenic
kinase pathways (195). Multiple studies have demonstrated
increased sensitivity of cancer cells to Hsp90 inhibition relative to
normal cells (196). It has also been shown that Hsp90 inhibitors
preferentially accumulate in tumor tissue compared with normal
tissue; however, the mechanism for this selectivity is not yet fully
understood (197–199). Post-translational modification of Hsp90
is one modulatory mechanism that has been explored for Hsp90
inhibitor sensitivity and selectivity (Fig. 4,A andB).
As mentioned earlier, SUMOylation of Hsp90-K191 increased

binding to and enhanced cell sensitivity to Hsp90 inhibitors
(141). Additionally, cells expressing transforming oncogenic ki-
nases exhibited an increase in Hsp90 SUMOylation and concom-
itant increase inHsp90 inhibitor sensitivity.
Hsp90 phosphorylation status is often altered in cancer and

has also been shown to affect sensitivity to Hsp90 inhibitors, as
seen by growth inhibition or arrest or induction of apoptosis
(66, 78, 80, 86, 104, 106). Phosphorylation of yHsp90-T22
increased sensitivity to various Hsp90 inhibitors, particularly at
higher concentrations (66). Effects of phosphorylation on
Hsp90 inhibitor binding can also vary depending on the inhibi-
tor in question and the Hsp90 isoform. Beebe et al. (110)
showed that PU-H71 bound Hsp90 phosphorylated on various
tyrosine residues better than geldanamycin (GA). Furthermore,
whereas phosphomimetic mutations on conserved Hsp90a-
Y197E and Hsp90b-Y192E both disrupted binding to GA, only
Hsp90b-Y301E and not Hsp90a-Y309E decreased binding to
GA (110). Our group also demonstrated that Mps1-mediated
phosphorylation of Hsp90a-T115 conferred sensitivity to
Hsp90 inhibitors SNX-2112 and ganetespib. Additionally,
Mps1 levels were elevated in renal cell carcinoma tissue, and
ganetespib selectively accumulated in renal cell carcinoma tu-
mor tissue with elevated levels of Mps1 as compared with adja-
cent normal renal tissue (78). Phosphorylation of Hsp90a-Y38
(yHsp90-Y24), on the other hand, decreased sensitivity to
Hsp90 inhibitors, and nonphosphorylatable yHsp90-Y24F
boundmore inhibitor (106). Knockdown or inhibition ofWee1,
the kinase responsible for Tyr-38 phosphorylation, sensitized
cancer cells to Hsp90 inhibition. Dual pharmacologic treat-
ment caused induction of the intrinsic apoptotic pathway and
led to down-regulation of an inhibitor of apoptosis, Survivin, as
well as Wee1 (200). Taken together, residue-specific Hsp90
phosphorylation may serve as a biomarker for the efficacy of
Hsp90 inhibitors, and combination therapies may be of benefit
in some cases. It is noteworthy that Tyr-38 phosphorylation is
the only PTM reported to decrease Hsp90 inhibitor sensitivity
(Table 1).
The potential role for combination treatments is further

highlighted when examining how Hsp90 acetylation impacts
Hsp90 binding to its inhibitors and inhibitor sensitivity. Overall,
acetylation of Hsp90 appears to largely decrease the ATP-binding
and chaperone function of Hsp90 but increases Hsp90 binding to
its inhibitors (121, 201). Acetylation mimic mutations at several
specific residues (Lys-69, -100, -292, -327, -478, -546, and -558)
have also been shown to enhance binding of Hsp90 to biotinyl-
ated geldanamycin (121). Furthermore, co-treatment of leukemic

cells withHsp90 inhibitor 17-AAG and anHDAC6i led to greater
cell death than treatment with either agent alone (201). Addition-
ally, leukemic cells resistant to pan-HDAC inhibitors have been
shown to have increased expression of HDAC1, -2, and -4, with
loss of HDAC6 expression but hyperacetylation of Hsp90 (122).
These cells retain sensitivity to Hsp90 inhibition (122). Recent
work by our group has also demonstrated that Hsp90 acetylation
affects bladder cancer cell sensitivity to Hsp90 inhibitors (130).
Loss of the tumor suppressor and co-chaperone Tsc1 was associ-
ated with decreased binding to and uptake of Hsp90 inhibitors
andwith a decrease ofHsp90 acetylation but not phosphorylation
(130, 161). Hsp90 was found to be acetylated on Lys-407 and
-419, and HDACi treatment rescued Hsp90 acetylation in Tsc1
knockout cells. Ultimately, Tsc1-null bladder cancer cells were
more sensitive to HDACi, and treatment with HDACi resensi-
tized the cells and synergized with Hsp90 inhibitor treatment
(130). Overall, there is a growing body of evidence that acetylation
of Hsp90 diminishes its chaperone function and increases sensi-
tivity to Hsp90 inhibitors. As a result, there may be a therapeutic
advantage to combination treatment with HDAC and Hsp90
inhibitors.
As can be seen in the above examples, reported PTMs in gen-

eral tend to increase Hsp90 inhibitor sensitivity (Table 1). This
must, however, be taken into context. Whereas some modifica-
tions, such as Hsp90-T115 phosphorylation, are elevated in can-
cer and confer sensitivity, elevation of others likeHsp90-Y38 con-
fers resistance. Similarly, whereas Hsp90 acetylation may serve as
a marker for sensitivity, its absence provides the opportunity for
co-treatment with an HDACi to restore sensitivity in an other-
wise resistant cell. Collectively, these results paint a complex
landscape that requires further study formechanistic insight.

Resistance to other therapeutics

In addition to affecting sensitivity to Hsp90 inhibitors,
Hsp90 modifications have also been demonstrated to affect
sensitivity to other drugs and therapies. In one example, rifam-
pin-induced CK2-mediated phosphorylation of Hsp90b-S226/
255 in the charged linker led to the induction of P-glycoprotein,
a drug-exporting transporter involved in multidrug resistance
(89). In contrast, hypophosphorylation of the same residues con-
ferred resistance to imatinib (Gleevec) in leukemic cells (86). This
may be due to inhibition of cytochrome c–induced apoptosome
formation through Hsp90-mediated Apaf-1 sequestration, but

Figure 5. The Hsp90 chaperone code. Collectively, the landscape of Hsp90
PTMs, or the “chaperone code,” affects Hsp90 chaperone function as defined
by Hsp90 ATPase activity, co-chaperone binding, drug sensitivity, and client
function.
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the exact mechanism of imatinib resistance is unknown (86).
Reduced phosphorylation at the conserved Hsp90a-S231 and
-S263 also correlated with a down-regulation of telomerase activ-
ity and subsequent sensitization to cisplatin (85). These examples
highlight the complexity of identifying the impact of Hsp90
PTMs, as the same sites can lead to very different consequences,
depending on the context. There are also instances where Hsp90
phosphorylation is exploitable. ATM-mediated phosphorylation
of Hsp90a-T5 and -T7 sensitized cells to ionizing radiation (59).
Furthermore, point mutation to phosphomimetic Hsp90-S370E
and -S640E increased susceptibility of cells to UV irradiation (94).
Finally, Hsp90 acetylation has also been identified in fungal

species and was found to play a role in fungal virulence and
drug resistance (202). In fungi, particularly in pathogenic spe-
cies, fungal Hsp90 mediates resistance to anti-fungals, such as
azoles, by enabling resistance mutations and stabilizing resist-
ance-mediating protein products (203, 204). Lysine deacetylase
(KDAC) inhibition blocked the emergence of Hsp90-depend-
ent resistance to azoles inCandida albicans and Saccharomyces
cerevisiae (118, 205). KDAC inhibition compromised the stabil-
ity and interaction with clients, including calcineurin, which
has been shown to be important for drug resistance (205).
Knockdown and inhibition of KDACs also increased sensitivity
to Hsp90 inhibitors or phenocopied Hsp90 inhibition in modu-
lating resistance to azoles (118, 205). Hsp90 was found to be
acetylated on Lys-27 and -270 in baker’s yeast (Lys-30 and -271
in C. albicans), and there was functional redundancy between
the KDACs Hda1, Rpd3, Hos2, and Rpd31 (118, 205). Acetyla-
tion status at Lys-27 has also been shown to be important for
azole and echinocandin resistance in Aspergillus fumigatus
(119). Acetyl mimic mutations at Lys-27 increased susceptibil-
ity to antifungals, and nonacetylatable K27R attenuated these
effects (119). Ultimately, targeting Hsp90 acetylation may rep-
resent a target for antifungal resistance and understanding the
role of Hsp90 acetylation may assist in the development of new
antifungal therapeutics. In summary, there is strong evidence
that a complete understanding of the effects of Hsp90 PTMs
may allow us to better utilize a variety of therapeutics in addi-
tion to Hsp90 inhibitors.

Concluding remarks and future perspectives

Post-translational modification often impacts intracellular
localization of Hsp90 and its ability to bind clients, nucleotide,
co-chaperones, and also inhibitors. Collectively, these PTMs
are critical for regulating Hsp90 chaperone activity and, ulti-
mately, cellular functions mediated by affected client proteins.
It has been demonstrated that these cellular effects are far-
reaching and impact processes including but not limited to cell
cycle control, DNA repair, cell signaling, and cell migration.
Despite the vast number of reports available with regard to
Hsp90 PTMs, there are still several gaps in our knowledge.
First, the vast majority of PTMs have only been explored in

the context of cytosolic Hsp90. Translating these findings to or-
ganelle- and compartment-specific Hsp90 regulation will pro-
mote a more complete understanding of chaperone-mediated
signaling pathways. Further, the growing appreciation for
extracellular Hsp90 necessitates further research into the

mechanisms regulating its secretion activity and how PTMs
affect Hsp90 function extracellularly. Additionally, it is well-
established that whereas Hsp90 functions as a dimer, there is a
great deal of asymmetry between the protomers, and this is
essential for its function. This is highlighted by one Aha1 mole-
cule interacting asymmetrically with a dimer and being influ-
enced by asymmetric modifications, such as Hsp90-K191
SUMOylation and Hsp90-Y313 phosphorylation (42, 141, 161).
We therefore need to consider whether both protomers are
modified concurrently and how modification conservation
between the a and b isoforms affects chaperone function. Fur-
thermore, outside of some reports of cross-talk between Hsp90
phosphorylation and ubiquitination, there is a void in under-
standing the relationships between different modifications and
how they influence one another and work in concert or opposi-
tion. Last, methods for detecting Hsp90 PTMs have recently
been reviewed by our group (206), but more specific methods,
such as the development of phosphospecific antibodies, are
warranted and likely necessary to fully unravel the chaperone
code.
Ultimately, however, we need to use several orthogonal

approaches to fully decipher the chaperone code (Fig. 5).
Knowledge obtained from the tools used in this field to date
leaves us with information on how a limited number of modifi-
cations affect consequences in specific settings. We are also
lacking robust mechanistic detail of how PTMs lead to the
observed changes in client chaperoning. Looking forward, we
must gain an appreciation for the many different populations of
Hsp90 with respect to their modification states and how they
function together or independently to ultimately influence the
protein landscape within cells. Understanding the cross-talk
between different modifications is paramount to unraveling the
regulation of chaperone function. Implementation of methods
such as artificial intelligence, bioinformatics, andmolecular mod-
eling allows data processing on amuch larger scale. Synthesis of a
detailed, mechanistic understanding of Hsp90modifications with
population-wide analysis will allow us to fully decipher the chap-
erone code and translate it to therapeutic benefit.
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