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The development of the dendritic arbor in pyramidal neurons
is critical for neural circuit function. Here, we uncovered a path-
way in which §-catenin, a component of the cadherin—catenin
cell adhesion complex, promotes coordination of growth among
individual dendrites and engages the autophagy mechanism to
sculpt the developing dendritic arbor. Using a rat primary neu-
ron model, time-lapse imaging, immunohistochemistry, and
confocal microscopy, we found that apical and basolateral den-
drites are coordinately sculpted during development. Loss or
knockdown of 6-catenin uncoupled this coordination, leading
to retraction of the apical dendrite without altering basolateral
dendrite dynamics. Autophagy is a key cellular pathway that
allows degradation of cellular components. We observed that
the impairment of the dendritic arbor resulting from 8-catenin
knockdown could be reversed by knockdown of autophagy-
related 7 (ATG7), a component of the autophagy machinery.
We propose that 6-catenin regulates the dendritic arbor by
coordinating the dynamics of individual dendrites and that the
autophagy mechanism may be leveraged by 6-catenin and other
effectors to sculpt the developing dendritic arbor. Our findings
have implications for the management of neurological disor-
ders, such as autism and intellectual disability, that are charac-
terized by dendritic aberrations.

In pyramidal neurons of the hippocampus and cortex, den-
drites are the major sites of information input (1, 2). Pyramidal
neurons have a distinct architecture with multiple dendrites
and a single axon. In addition to axon-dendrite polarity, pyram-
idal neurons have dendritic polarity with distinct apical and
basolateral dendrites, a feature that is critical for appropriate
synaptic input (3—6). Dendrites have both active and passive
properties that contribute to neuronal computation (7-14).
The development of the dendritic arbor, with distinct apical
and basolateral dendrites, is tightly orchestrated (1, 15) to allow
the appropriate formation of neuronal circuits and networks.
In primary neurons, apical-basolateral dendritic polarity is
maintained and correlates with dendritic length (16-19), with
the longest dendrite (primary) correlating with the apical and
the second longest (secondary) correlating with the basolateral
dendrite. Our knowledge of the mechanisms that guide the for-
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mation and maintenance of individual dendrites and the overall
dendritic architecture is far from complete.

The dendritic arbor in pyramidal neurons is complex, both
in vitro and in vivo, with multiple dendrites that originate in the
cell body, each bearing multiple higher-order branches with
distinct regions for synaptic input (1, 4,5, 20). For a developing
neuron, it is critical that every single dendrite that originates in
the cell body is correctly sculpted and generates an appropriate
number of higher-order branches while maintaining overall
arbor shape and connectivity (21). Given this, it is likely that
molecular mechanisms exist that allow for interdendritic com-
munication that drive overall dendritic patterning in a coordi-
nated manner. However, the identity of such mechanisms
remains unclear. Determining the mechanisms that regulate
coordinated growth of multiple dendrites within the same neu-
ron has implications for our ability to understand the underpin-
nings of neural circuit wiring in the healthy and diseased brain.

Mutations in CTNND2 have been identified in autism (22,
23), and loss of CTNND?2 is associated with intellectual disabil-
ity (24, 25). CTNND2 encodes 8-catenin, a component of the
cadherin-catenin cell adhesion complex that binds to cadherin
at its juxtamembrane region. Components of the cadherin-cat-
enin cell adhesion complex, including 8-catenin, have been
implicated in a variety of neuronal functions associated with
dendritic and synaptic structure, function, and plasticity, indi-
cating that they are key components of the molecular machin-
ery underlying cognition (5, 26—28). Others and we have previ-
ously demonstrated a critical role for 8-catenin in sculpting the
developing dendritic arbor (29-33). Whereas some molecular
components that cooperate with &-catenin in regulating the
dendritic arbor have been identified, our knowledge of the
mechanisms that allow 8-catenin to sculpt the developing den-
dritic arbor remains far from complete.

Autophagy is a key cellular pathway that allows removal and
degradation of cellular components (34, 35), thus promoting
normal cellular homeostasis (36). Macroautophagy allows for
sequestration of substrates within an autophagosome that ulti-
mately fuses with the lysosome within which protein degrada-
tion occurs. The majority of the autophagy proteins associate
within a macro complex that include kinases and several ATG
proteins that function in an orderly assembly mechanism. Dys-
regulation of autophagy has been identified and characterized
in the context of neurodegenerative disorders (37-43). How-
ever, our understanding of the role of autophagy underlying
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normal neuronal developmental processes is incomplete (44—
48). Autophagy is a critical regulator of synaptic density and
architecture with roles in both presynaptic (49) and postsynap-
tic compartments and axons (50-56). Little is known, however,
about the role of autophagy in dendritic development in pyram-
idal neurons. Here, we provide evidence to demonstrate that
6-catenin promotes coordinated development of the apical and
basolateral dendrites in primary neurons and engages the
autophagy mechanism to sculpt the developing dendritic arbor.

Results
Dendrite dynamics during development

During development, the dendritic arbor is sculpted by
extension and retraction of the individual dendritic arbors. We
took advantage of a primary rat neuronal cell culture system
(57) to examine dendritic arbor dynamics during development.
Rat primary hippocampal neurons were maintained in culture
as described previously (57). Neurons were transfected with
EGEFP and imaged by live time lapse imaging at DIV 11, 14, and
19 to allow visualization of the dendritic tree (Fig. 1A4). For
these studies, we define the primary (apical) dendrite as the lon-
gest and the secondary (basolateral) dendrite as the second lon-
gest dendrite that originate in the cell body (16, 17, 19). We
quantitated dendritic lengths of the primary and secondary
dendrites separately as measures of dendritic extension. During
the period between DIV 11 and DIV 14, both primary and sec-
ondary dendrites predominantly showed extension with little
retraction (Fig. 1B). However, with advancing age, DIV 14-19,
there was more of a balance between extension and retraction
(Fig. 1C). Overall, during the time period between DIV 11 and
19, both primary and secondary dendrites had net extension
(Fig. 1D) and similar levels of average extension (Fig. 1E). These
data suggest that in this model system, DIV 11-14 represents a
period of dynamic dendrite extension, whereas both extension
and retraction are balanced at DIV 14-19, leading to overall
dendrite extension. Further, primary and secondary dendrites
show similar dynamics of extension and retraction, suggesting
that they are coordinately sculpted.

d-Catenin-N-term mice have altered dendrite dynamics

The &-catenin-N-term mouse (also referred to as the §-cate-
nin knockout mouse (58)) retains the N-terminal fragment of
6-catenin and is the only &-catenin mouse model that is
currently available. We have previously demonstrated that
&-catenin-N-term mice have reduced dendritic arbors (32). We
examined the length of primary, secondary, tertiary, and qua-
ternary dendrites in primary neurons from control (WT/WT)
and mutant (8-catenin-N-term/&-catenin-N-term) mice at DIV
8 and DIV 16-17. These dendrites are all dendrites that origi-
nate in the cell body and were classified as primary, secondary,
tertiary, or quaternary based on their lengths with the primary
being the longest. These classifications only refer to the length
of the main dendritic shaft and do not reflect dendritic
branches that arise from the main shaft. At DIV 8, the length of
the primary dendrites in mutant neurons was not significantly
different from the control neurons. Surprisingly, the lengths of
secondary, tertiary, and quaternary dendrites were all increased
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in the mutants compared with the control (Fig. 2, A and B).
However, at DIV 16—17, this scenario was significantly different
in that the length of the primary dendrite was significantly
reduced in the mutant compared with the control, whereas
none of the other dendrites showed any significant alterations
in length (Fig. 2, C and D). Thus, the loss of §-catenin leads to
an uncoupling of the coordination between primary and sec-
ondary dendritic dynamics.

Knockdown of &-catenin leads to retraction of primary but
not secondary dendrites

The reduction in the dendritic arbor with loss or knockdown
of &-catenin could be mediated by either a reduction in the
extension or an increase in the retraction of dendrites. To
examine which of these mechanisms is responsible, we exam-
ined the development of the dendritic arbor in primary neurons
expressing vector or a previously validated (32, 59) shRNA to
&-catenin by time-lapse analysis (Fig. 3A). These studies were
done in primary neurons from DIV 13 to DIV 17 with neurons
imaged at DIV 13, 15, and 17. We examined the percentage of
neurons with net extension or retraction of primary and sec-
ondary dendrites. Between DIV 13 and 15, the neurons express-
ing vector were balanced in terms of extension and retraction
of primary dendrites (Fig. 3D). However, neurons expressing
shRNA to 6-catenin had an increased level of retraction and
reduced extension (Fig. 3D). Similar results were observed at
DIV 15-17 (Fig. 3E). Consolidation of DIV 13-17 (Fig. 3F) data
indicated that in neurons expressing 8-catenin shRNA, the per-
centage of neurons retracting primary dendrites was higher
than control, whereas the percentage demonstrating extension
was lower than neurons expressing vector (Fig. 3F). In these
neurons, the average length of dendrite extended or retracted
was not significantly different between neurons expressing vec-
tor or shRNA to §-catenin (Fig. 3B). A similar analysis of sec-
ondary dendrites (Fig. 3, C, G, H, and I) indicated that knock-
down of 5-catenin did not alter the extension or retraction of
secondary dendrites compared with neurons expressing vector
only. These studies indicate that the knockdown of §-catenin
leads to an increase in the percentage of neurons that retract
the primary dendrite accompanied by a decrease in the per-
centage of neurons that extend primary dendrites. Interest-
ingly, these effects are confined to primary dendrites, because
secondary dendrites in neurons expressing vector or shRNA
were not significantly different in extension and retraction.
These data are consistent with the data in Fig. 2 (C and D) dem-
onstrating that, at a comparable stage of development, the pri-
mary dendrites in 6-catenin-N-term mice are shorter com-
pared with control, whereas the secondary dendrites are not
affected. Taken together, these results indicate that the loss or
knockdown of 8-catenin predominantly leads to a reduction in
the length of the primary, but not secondary, dendrite by an
active retraction mechanism. Further, these results are in
agreement with data from the 6-catenin-N-term mice and sug-
gest that loss or knockdown of §-catenin uncouples the dynam-
ics between the primary and secondary dendrites in developing
neurons.
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Figure 1. Dendrite dynamics during development in hippocampal neurons. A, representative images from time lapse imaging of rat hippocampal pri-
mary neurons in culture at the indicated time points. The red and blue lines overlay the primary and secondary dendrites, respectively. Bottom panels, magni-
fied regions of the top panels. Scale bar, 12.5 um. B, percentage of neurons with extension or retraction of primary and secondary dendrites (DIV 11-14). C,
percentage of neurons with extension or retraction of primary and secondary dendrites (DIV 14-19). D, percentage of neurons with extension or retraction of
primary and secondary dendrites (DIV 11-19). Data analysis by one-way ANOVA with Tukey’s multiple-comparison test for B-D. *, p < 0.05; **, p < 0.005; ***,
p < 0.0005. Data represent mean = S.D. (error bars). E, average extension in microns of primary and secondary dendrites (DIV 11-19). Data analysis by unpaired
t test assuming equal variances. *, p < 0.05; **, p < 0.005; ***, p < 0.0005 for C and D. Data represent mean = S.D.

Expression of markers for autophagy during development in
the hippocampus and cortex

The autophagy mechanism has been implicated in multiple
aspects of neuronal development; however, little is known
about its role in dendritic development. To begin to evaluate
whether the autophagy pathway might be involved in dendritic
arborization during development, we examined whether major
mediators of the autophagy pathway were expressed in the hip-
pocampus and cortex during development. We examined the
expression of some components of the autophagy pathway,
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namely LC3-I/II, beclin, and ATGS5. In the rat hippocampus,
we could detect expression of LC3-1/1L, beclin, and ATG5 at P5,
P14, and P21 (Fig. 4A) coinciding with the periods of dendritic
and synaptic development. These markers were also expressed
in the adult as expected. We also examined the expression of
these autophagy markers in primary rat hippocampal and corti-
cal neurons in cultures at stages coinciding with dendritic and
spine development. LC3-I was expressed at DIV 7, 14, and 21 in
both cortical and hippocampal neurons (Fig. 4A), whereas the
expression of LC3-II was more robust at DIV 14 and 21 in both

SASBMB
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Figure 2. Loss of 8-catenin in a mouse model leads to dendritic deficits during development. A, representative confocal images from primary hippocam-
pal neurons from WT/WT and &-catenin-N-term/3-catenin-N-term mice at DIV 8 in vitro. Scale bar, 25 um. B, dendrite lengths of primary, secondary, tertiary,
and quarternary dendrites from primary hippocampal neurons from WT/WT and 8-catenin-N-term/8-catenin-N-term mice at DIV 8 in vitro (data analysis by
Student’s t test; *, p < 0.05; **, p < 0.005; ***, p < 0.0005; data represent mean = S.E. (error bars)). C, representative confocal images from primary hippocampal
neurons from WT/WT and §-catenin-N-term mice at DIV 16-17 in vitro. Scale bar, 25 um. D, dendrite lengths of primary, secondary, tertiary, and quarternary
dendrites from primary hippocampal neurons from WT/WT and 8-catenin-N-term/8-catenin-N-term mice at DIV 16-17 in vitro. Data analysis was by Student’s t

test; ¥, p < 0.05; **, p < 0.005; ***, p < 0.0005. Data represent mean = S.E.

groups of neurons. Whereas beclin was expressed at all three
stages examined in both groups of neurons, we could detect
little expression of ATG5 in DIV 7 neurons, but ATG5 was
well-expressed at DIV 14 and 21. We also took advantage of
GFP-LC3 as a marker for autophagosomes (60) to examine
autophagy in primary rat neurons. Primary rat hippocampal
neurons were transfected with GFP-LC3 and examined at DIV
7, 14, and 21 by confocal microscopy. The number of autopha-
gosomes in the cell body was evaluated. Autophagosomes were
detected in the cell body at all stages examined (Fig. 4, B and C).
These data indicate that markers of autophagy are expressed in
hippocampal and cortical neurons at stages coinciding with
dendrite development.

Knockdown of ATG?7 leads to an increase in dendrite
complexity

We chose to examine whether the autophagy pathway has a
role in dendrite development. To this end, we examined the
effects of knockdown of ATG7 on the dendritic arbor at time
points coinciding with early dendrite development. Primary rat
hippocampal neurons in culture were transfected with GFP-
expressing plasmids encoding vector or ATG7 shRNA that has
been previously validated (60) at DIV 4. The neurons were fixed
at DIV 12, and neuronal morphology was examined by confocal
microscopy (Fig. 54). Neurons expressing ShRNA to ATG7 had
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a significant increase in the total length of dendrites (Fig. 5B).
This was accompanied by no change in the number of primary
dendrites (Fig. 5C). Further, examination of the dendritic arbor
by Sholl analysis (Fig. 5D) indicates a trend toward an increase
in the number of intersections proximal to the cell body, but
not distally, in neurons expressing shRNA to ATG7. Taken to-
gether, these data indicate that knockdown of ATG7 during the
early phases of dendrite development enhances the dendritic
arbor. We used a similar strategy to examine effects of knock-
down of ATG?7 at later time periods of dendrite development.
Similar to the results obtained with knockdown of ATG7 at
early phases of dendrite development, loss of ATG7 at later
time points (DIV 12-18) (Fig. 5E) of development led to an
increase in the total dendritic length (Fig. 5F) with no
change in the number of primary dendrites (Fig. 5G). Sholl
analysis demonstrated significant increases in the number
of intersections at distal sites, likely reflecting reduced prun-
ing at dendritic tips (Fig. 5H). We also examined densities of
spines on primary dendrites within 60 um of the cell body.
In neurons expressing ATG7 shRNA, there was a trend to-
ward increased spine density, although this did not reach
significance (Fig. 5, I and /). Thus, knockdown of ATG7
leads to an increase in the dendritic arbor, both at early and
late stages of dendrite development, with no significant
effects on spine densities.

J. Biol. Chem. (2020) 295(32) 10988-11001 10991
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expressing vector or shRNA to §-catenin. C, average length of extension and retraction of secondary dendrites in neurons expressing vector or shRNA to d-cat-
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Knockdown of ATG16L1 leads to increased dendrite
complexity

We also examined the effects of knockdown of ATG16L1,
another component of the autophagy pathway, on dendrite
arborization. Primary rat neurons in culture were transfected
with plasmids encoding vector or ATG16L1 shRNA (61) at
DIV 12, and their morphology was examined by confocal mi-
croscopy at DIV 18. Similar to the results obtained with knock-
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down of ATG7, knockdown of ATG16L1 (Fig. 6A) led to an
increase in total dendritic length (Fig. 6B), with no change in
the number of primary dendrites (Fig. 6C). Sholl analysis indi-
cates a trend toward increase at more distal dendritic terminals
in neurons expressing the shRNA to Atgl6L1 (Fig. 6D), similar
to the data observed with ATG7 knockdown. We also exam-
ined the densities of spines as above in neurons expressing vec-
tor or shRNA to ATG16L1. In neurons expressing ATG16L1

SASBMB
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shRNA, there was a trend toward a decrease in spine densities,
although this did not reach significance. These results suggest
that loss of ATG16L1 enhances dendrite arborization, similar
to loss of ATG7, without affecting spine densities.

Rescue of &-catenin knockdown phenotype by concomitant
knockdown of ATG7

We examined the ability of ATG7 knockdown to rescue the
dendritic phenotype observed with knockdown of 8-catenin.
Primary rat neurons in culture were transfected with vector or
o-catenin shRNA with or without vector and ATG7 shRNA. In
neurons expressing the 8-catenin shRNA, the total dendritic
length and number of dendritic end points were significantly
lower than in neurons expressing vector (Fig. 7, A—C). Concur-
rent expression of the ATG7 shRNA with the 8-catenin shRNA
significantly restored both the total dendritic length and num-
ber of dendritic end points. Under all of these conditions, the
number of primary dendrites was not significantly affected (Fig.
7D). Similar results are observed by Sholl analysis (Fig. 7E).
These data indicate that the compromise in the dendritic arbor
observed with the knockdown of 5-catenin can be partially res-
cued by concomitant knockdown of ATG7, implicating a role

SASBMB

for 6-catenin in engaging the autophagy pathway to sculpt the
developing dendritic arbor.

Discussion

Our studies provide evidence to make several significant
conclusions on dendrite development including the following:
1) developing dendrites are dynamic; however, these dynamics
are similar for both primary (apical) and secondary (basolateral)
dendrites, suggesting that these two dendrites are coordinately
sculpted; 2) loss or knockdown of 8-catenin leads to an uncou-
pling of the developmental dynamics between the primary and
secondary dendrites; 3) there is a role for the autophagy mecha-
nism in regulating dendrite arborization; and 4) there is a role
for 8-catenin in engaging the autophagy mechanism to sculpt
the developing dendritic arbor.

The development of the appropriate dendritic arbor is a key
requirement for appropriate neural circuit formation and func-
tion. Developing dendrites are dynamic and are sculpted by
both extension and retraction. Our previous studies that sug-
gest that individual dendrites have some level of autonomous
control over their growth (16). Our data suggest that there are
additional cellular mechanisms in place to promote coordina-
tion of growth of individual dendritic arbors, and 8-catenin is a

J. Biol. Chem. (2020) 295(32) 10988-11001 10993
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Figure 6. Knockdown of ATG16L1 during later development enhances the dendritic arbor. A, representative images from primary hippocampal neurons
expressing vector or shRNA to ATG16L1 (DIV 11-18). Scale bar, 25 um. B, total dendritic length from primary hippocampal neurons expressing vector or shRNA
to ATG16L1 (DIV 11-18). C, total number of primary dendrites in primary hippocampal neurons expressing vector or shRNA to ATG16L1 (DIV 11-18). Data anal-
ysis was by unpaired t test assuming equal variances. *, p < 0.05; **, p < 0.005; ***, p < 0.0005 for C and D. Data represent mean = S.D. (error bars). D, Sholl
analysis in primary hippocampal neurons expressing vector or shRNA to ATG16L1 (DIV 11-18). Data analysis by two-way ANOVA with Sidak’s multiple-compar-
ison test. ¥, p < 0.05; **, p < 0.005; ***, p < 0.0005. Data represent mean =+ S.D. E, representative images of dendritic sesgments from primary hippocampal neu-
rons expressing vector or ATG16L1 shRNA. Scale bar, 2 um. F, average spine density in from primary hippocampal neurons expressing vector or ATG16L1
shRNA. Data analysis by unpaired t test assuming equal variances. NS, not significant.

component of the underlying machinery. To our knowledge,
our studies provide the first evidence that the apical (primary)
and basolateral (secondary) dendrites show coordinated dy-
namics that can be uncoupled via a molecular mechanism. We
do note that the significant reduction in the total dendritic
length (Fig. 7) with loss or knockdown of 8-catenin is unlikely
to be mediated solely by an effect of on the primary dendrite

because the overall number of dendritic end points is also
affected by loss or knockdown of 6-catenin. Published data (62,
63) suggest that there are cellular mechanisms that regulate
dendrite branching at different levels, so it is possible that
d-catenin additionally regulates dendrite extension or retrac-
tion of the some of the higher-order dendritic branches during
development. We recognize that the rescue of the 6-catenin

Figure 5. Knockdown of ATG7 enhances the dendritic arbor. A, representative images from primary hippocampal neurons expressing vector or shRNA to
ATG7 (DIV 4-12). Scale bar, 25 um. B, total dendritic length from primary hippocampal neurons expressing vector or shRNA to ATG7 (DIV 4-12). C, total number
of primary dendrites in primary hippocampal neurons expressing vector or shRNA to ATG7 (DIV 4-12). Data analysis by unpaired t test assuming equal varian-
ces. ¥, p < 0.05; **, p < 0.005; ***, p < 0.0005 for C and D. Data represent mean = S.D. (error bars). D, Sholl analysis in primary hippocampal neurons expressing
vector or shRNA to ATG7 (DIV 4-12). Data analysis by two-way ANOVA with Sidak’s multiple-comparison test. *, p < 0.05; **, p < 0.005; ***, p < 0.0005. Data
represent mean = S.D. E, representative images from primary hippocampal neurons expressing vector or shRNA to ATG7 (DIV 11-18). Scale bar, 25 . F, total
dendritic length from primary hippocampal neurons expressing vector or shRNA to ATG7 (DIV 11-18). G, total number of primary dendrites in primary hippo-
campal neurons expressing vector or shRNA to ATG7 (DIV 11-18). Data analysis was by unpaired t test assuming equal variances. *, p < 0.05; **, p < 0.005; **¥,
p < 0.0005 for C and D. Data represent mean = S.D. H, Sholl analysis in primary hippocampal neurons expressing vector or shRNA to ATG7 (DIV 11-18). Data
analysis by two-way ANOVA with Sidak’s multiple-comparison test. *, p < 0.05; **, p < 0.005; ***, p < 0.0005. Data represent mean * S.D. |, representative
images of dendritic segments from primary hippocampal neurons expressing vector or ATG7 shRNA. Scale bar, 2 um. J, average spine density from primary
hippocampal neurons expressing vector or ATG7 shRNA. Data analysis was by unpaired t test assuming equal variances. NS, not significant.
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dendrite phenotype by concurrent knockdown of ATG7 is not
complete. These results are completely expected, because we
anticipate that this is not the sole mechanism engaged by 6-cat-
enin to regulate the dendritic arbor. Published studies indicate
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that 6-catenin also engages the small GTPases and the actin cy-
toskeleton to regulate the dendritic arbor (29, 33, 64), so we
anticipate that there is some cross-talk between these pathways
in sculpting the developing dendritic arbor. We also note that
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the gross levels of LC3 are not altered in the 8-catenin-N-term/
8-catenin-N-term mouse cortical lysates (data not shown), sug-
gesting that loss of 6-catenin does not lead to a global alteration
in the levels of components of the autophagy pathway, but the
impacts are at the functional level.

Our data demonstrate a novel role for the macroautophagy
pathway in regulating the sculpting of the dendritic arbor in
hippocampal pyramidal neurons during development. Compo-
nents of the autophagy pathway are expressed in the hippocam-
pus and cortex at time points coincident with development.
Knockdown of ATG7 or ATG16L1, key components of the
pathway, promote an increase in the dendritic arbor. Taken to-
gether, these data provide the first evidence that the autophagy
pathway is a key mechanism that contributes to the sculpting of
the dendritic arbor during development, thus likely making
critical contributions to neural circuit wiring in the developing
brain. The role of autophagy in neurons has been predomi-
nantly characterized in the context of neurodegeneration (40,
65-68), although its roles in axonal morphogenesis and synap-
tic function are emerging (56, 69, 70). By providing evidence for
a role for autophagy in dendrite sculpting, our data suggest that
autophagy mechanisms in neurons may be highly relevant to
the etiology of neurodevelopmental disorders. Several neurode-
velopmental disorders associated with autism, intellectual
disability, and related disorders are associated with dendritic
aberrations (71), and our studies imply that autophagic mecha-
nisms may be of interest in these devastating disorders.

Several components of the molecular machinery that under-
lie dendrite sculpting during development have been identified.
Our data implicate the autophagy pathway as a novel mecha-
nism for dendrite sculpting during development. We propose
that inhibition of the autophagy pathway inhibits dendrite
pruning rather than promoting dendrite extension. The sculpt-
ing of the dendritic arbor is governed by several extrinsic and
intrinsic cues (15, 72), including growth factors, contact-medi-
ated mechanisms, and neuronal activity—mediated mecha-
nisms. It is tempting to speculate that at least some of these sig-
naling pathways converge on the autophagy pathway to
regulate the dendritic arbor during development. The autoph-
agy pathway regulates multiple aspects of cellular homeostasis.
To allow autophagy to specifically regulate dendrite arboriza-
tion, we propose the existence of specific upstream effectors, in
addition to 8-catenin, which transduce signals that allow the
engagement of the autophagy pathway specifically for dendrite
morphogenesis. Such mechanisms would allow specific control
of dendrite sculpting in response to specific extracellular and
intracellular cues and could be either positive or negative. For
example, we have previously demonstrated that morphine-
mediated regulation of spine and synapse density in the hippo-
campus is mediated via an autophagic mechanism (60) through
a series of intermediate effectors, including reactive oxygen
species and endoplasmic reticulum stress pathways. Future
efforts aimed at identifying upstream effectors might provide
key insights into the key pathways that take advantage of the
autophagy machinery to elicit sculpting of the developing den-
dritic arbor.

In neurons, the autophagy pathway has been predominantly
studied in the context of neurodegeneration (39). Autophagic
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aberrations have been linked to neurodegeneration in a variety
of human disorders, including ALS (73-75), polyglutamine
disorders (38), and Lafora’s disease (76). Further, mutations
in genes with links to autophagy mechanisms have been identi-
fied or implicated in neurodegenerative disorders, including
SENDA (77). Several of these disorders are accompanied by be-
havioral deficits. By identifying a role for autophagy in modu-
lating the dendritic architecture, our studies suggest that some
of the behavioral impairments observed in these disorders may
have their roots in aberrant dendritogenesis and consequently
disrupted neural connectivity.

Our data indicate that knockdown of ATG7 (DIV 12-18)
does not significantly alter spine densities, although there is a
trend toward an increase in spine densities that does not reach
statistical significance. These results are in contrast to pub-
lished reports that indicate a role for ATG7 in spine pruning in
the cortex and hippocampus (78). Specifically, in vivo data indi-
cated that synaptic densities are higher in the cortex of the
ATG7 null animals at P29-30 and in primary hippocampal
neurons (DIV 21). However, our studies are in agreement with
our previous studies that demonstrate that knockdown of
ATG7 at DIV 7-21 does not alter excitatory synaptic density
significantly but does show a trend toward increase in neurons
expressing ATG7 shRNA (60). The basis of these differences is
not entirely clear; however, there are several possibilities. One
possibility is that there is a small window during which spine
pruning is highly regulated and our time points of analysis
encompass a much larger window. Another possibility is that
there may be non-cell-autonomous roles for autophagy in spine
pruning. Our studies induce knockdown of ATG?7 in individual
neurons that network with WT neurons, whereas published
studies were performed in neurons from the ATG7 flox/
CamK2 Cre or in ATG7 floxed neurons in which Cre was
expressed using a lentivirus, allowing for significantly higher
levels of infection than our technique. In this case, the ATG7
knockdown neurons are in a network with other ATG7 knock-
down neurons. A third possibility is that, because shRNA
knockdowns are rarely complete, there is sufficient ATG7 in
the knockdown neurons to function in spine morphogenesis.
Further studies are necessary to tease apart these possibilities.
Our data also indicate that knockdown of ATG16L1 does not
alter spine density, but in contrast to the ATG7 knockdown,
knockdown of ATG16L1 shows a trend toward decrease in
spine density that does not reach statistical significance. These
results suggest that perhaps different components of the
autophagy pathway may function differently in spine morpho-
genesis in the developing hippocampus. We have previously
observed that loss or knockdown of &-catenin leads to an
increase in the density of spines (79, 80). Based on the data
demonstrating that knockdown of ATG7 or 16L1 does not alter
the spine density, it is unlikely that 8-catenin cooperates with
the autophagy pathway to regulate the density of spines.

Our results support the idea that 5-catenin and autophagy
are critical components of the molecular machinery that regu-
lates the dendritic arbor during development. Several neurode-
velopmental disorders are associated with aberrations in den-
dritic and spine architecture (32, 81, 82). In addition to
d-catenin, we anticipate that other upstream factors that
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engage autophagy to promote dendrite development are likely
to be of significance to neurodevelopmental disorders. Identify-
ing these upstream factors and elucidating the mechanisms by
which they link to the autophagy pathway to regulate dendrite
development in the developing hippocampus will have major
implications for our understanding of neural circuit develop-
ment in health and disease.

Several questions remain, including the molecular mecha-
nisms by which 8-catenin engages the autophagy mechanism
to sculpt dendrites and whether the autophagy mechanism is
engaged by other known effectors of dendrite development to
sculpt the dendritic arbor, making it a more universal mecha-
nism. Whereas answering these questions will require consid-
erable effort and will form the focus of our future investigation,
we anticipate that our studies can more acutely lead to clinical
translational studies that examine the beneficial effects of
knockdown of autophagy components on restoring the dendri-
tic arbor in mouse models of disease that have a compromise in
the dendritic arbor. Given the toxicity associated with complete
loss of autophagy, these studies need to be performed during a
short developmental time window in a neuron type—specific
manner. If such studies are successful, they hold great promise
for our ability to target neurological disorders with dendritic
aberrations.

Experimental procedures
Rat tissue collection and primary rat neuron cultures

Hippocampal tissue was collected from rats at indicated
ages. Primary rat hippocampal and cortical neurons were iso-
lated from embryonic day 18 rats and maintained in culture as
described previously (57, 83). All manipulations were per-
formed in accordance with animal protocols approved by the
institutional animal care and use committee at the University
of Nebraska Medical Center. Primary neurons were maintained
in media without araC treatment for the indicated times as
described previously. Transfections were performed at DIV
indicated using Lipofectamine 2000 (Thermo Fisher Scientific).
Embryos obtained from a single mother (8—12 embryos) were
pooled to obtain neurons for one experiment (n = 1).

Plasmids

Vector and shRNA to ATG7 (60) and ATG 16L1 have been
described and validated previously. The hairpin sequence for
the ATGI16L1 is CCGGCAATGTGTAATGAGTGGACAT-
CTCGAGATGTCCACTCATTACACATTGTTTTTTG. The
plasmids were kind gifts from Dr. Ana Maria Cuervo (Albert
Einstein College of Medicine). GFP LC3 plasmid was a kind gift
from Dr. Howard Fox (University of Nebraska Medical Center).

Antibodies

The following primary antibodies were used: LC3 (1:3000),
beclin (1:1000), ATG5 (1:2000), and B-tubulin (1:100).

Time lapse imaging

These studies were performed at the Eppley Cancer Center
Molecular Biology Core/High-throughput screening facility
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at the University of Nebraska Medical Center using a X20
objective.

Immunocytochemistry

Primary neurons in culture on coverslips were transfected as
above and fixed in 4% paraformaldehyde, 4% sucrose. Neurons
were permeabilized in a 0.1% Triton X-100/PBS solution for 10
min, washed, blocked with 10% BSA in PBS, incubated with
primary antibody overnight, washed, incubated with fluoro-
phore-conjugated secondary antibody for 1-2 h at room tem-
perature, washed, treated with 4',6-diamidino-2-phenylindole,
and mounted using AntiFade.

Western blotting

Tissue samples were collected and placed in radioimmune
precipitation assay buffer containing 1% Triton X-100, 1% SDS,
50 mm Tris, pH 7.4, 100 mm NaCl, 5 mm EDTA, 5 mm EGTA, 5
mM protease inhibitors, and 5 mm phosphatase inhibitors. Tis-
sue samples were sonicated for 5 s until solid matter was disso-
ciated. Insoluble material was pelleted at 15,000 rpm for 15 min
at 4°C in a tabletop centrifuge. The supernatant was collected
and boiled at 95 °C for 5 min in Laemmli buffer.

Cells were collected by adding the radioimmune precipita-
tion assay lysis buffer solution and by using a cell scraper and
syringe to dissociate whole cells. Lysates were spun at 15,000
rpm for 15 min at 4 °C in a tabletop centrifuge. The supernatant
was collected, and Laemmli buffer was added.

The samples were run on a 15% SDS-polyacrylamide gel and
transferred to a polyvinylidene difluoride membrane for 2.5 h
at 100 V. The membrane was blocked with 5% milk with TBS
and incubated with primary antibody overnight at 4 °C. After
washing, the membrane was incubated with secondary anti-
body conjugated with horseradish peroxidase for 1 h at room
temperature. The blots were washed again and then imaged
using ECL or Dura substrates.

Confocal microscopy

Confocal images were obtained using a Zeiss LSM 700
inverted scope. Z-stacks of neurons were used to create two-
dimensional maximum projection images used to visualize
GFP-LC3 puncta within the cell body. Images were taken using
the X40 objective at X3 zoom. Neurons imaged to measure
dendritic length were taken using the X40 objective.

Data collection/analysis

Quantitative data were gathered on the LC3 puncta counts
by visually observing max projections of Z-stacks taken from
the confocal X40 objective with X3 zoom and counting only
within the region of the cell body. 10 neurons per coverslip
were counted for each time point: DIV 7, DIV 15, and DIV 21
from three independent cultures.

Data on dendritic length for transfected neurons was meas-
ured using Image] and tracing branching. Axons were
excluded. 10-15 neurons per coverslip were analyzed from 3-5
independent experiments. Statistical analysis was performed as
indicated in the figure legends.
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Sholl analysis

Sholl analysis was performed using an Image] plugin to
obtain parameters described in the figures.

Spine analysis

Images were taken on an inverted Zeiss LSM 700 confocal
microscope. Z-stacks were obtained using the X63 objective at
X3 zoom, 1024 X 1024 pixels. Dendrite length was measured
using Image] line tool. Spines were counted manually by a non-
blinded observer. Spine density was calculated as spines/um.

Numbers for experimental analysis

All data were obtained from three or more independent
experiments unless otherwise indicated: Fig. 1, total of 12-13
neurons from three independent experiments (for B-D, data
from an individual experiment were averaged to obtain n = 1,
and averaged data from three independent experiments are
shown); Fig. 2, 145-150 total neurons for each condition from
three animals of each genotype; Fig. 3, 19—26 neurons for each
condition (for D, G, E, H, F, and I, data from an individual
experiment were averaged to obtain # = 1, and averaged data
from three independent experiments are shown); Fig. 4 (for A,
tissue from three animals for each time point/age and primary
neurons from 3—-4 independent cultures for each DIV; for B
and C, n = 31-34 neurons for each condition); Fig. 5 (for A-D,
39-42 neurons for each condition; E-H, 44—45 neurons for
each condition; /and J, 31-38 neurons); Fig. 6 (for A—D, 31 neu-
rons for each condition; for E and F, 37—41 neurons for each
condition); Fig. 7 (for A, B, D, and E, 48-56 neurons; for C, 36—
44 neurons for each condition).

Statistical analysis

For two-group comparisons, Student’s ¢ test was used, and
p < 0.05 was considered significant. For multiple groups, data
were analyzed using one-way or two-way ANOVA as indicated
in the figure legends. No statistical method was used to prede-
termine sample size. Sample size was based on the literature.

Data availability

All data are contained within the article. Original data sets
are available upon request to Jyothi Arikkath (Jyothi.arikkath@
howard.edu).
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