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Flagellar targeting of an arginine kinase requires a
conserved lipidated protein intraflagellar transport (LIFT)
pathway in Trypanosoma brucei

Received for publication, May 8, 2020, and in revised form, June 18,2020 Published, Papers in Press, June 25, 2020, DOI 10.1074/jbc.RA120.014287

Maneesha Pandey®, Yameng Huang (¥ 1I'1%), Teck Kwang Lim, Qingsong Lin, and Cynthia Y. He*
From the Department of Biological Sciences, National University of Singapore, Singapore

Edited by Enrique M. De La Cruz

Both intraflagellar transport (IFT) and lipidated protein
intraflagellar transport (LIFT) pathways are essential for cilia/
flagella biogenesis, motility, and sensory functions. In the LIFT
pathway, lipidated cargoes are transported into the cilia through
the coordinated actions of cargo carrier proteins such as
Uncl19 or PDE66, as well as small GTPases Arl13b and Arl3 in
the cilium. Our previous studies have revealed a single Arl13b
ortholog in the evolutionarily divergent Trypanosoma brucei,
the causative agent of African sleeping sickness. TbArl13 cata-
lyzes two TbArl3 homologs, TbArl3A and TbArl3C, suggesting
the presence of a conserved LIFT pathway in these protozoan
parasites. Only a single homolog to the cargo carrier protein
Uncl19 has been identified in T. brucei genome, but its function
in lipidated protein transport has not been characterized. In
this study, we exploited the proximity-based biotinylation
approach to identify binding partners of TbUnc119. We showed
that TbUnc119 binds to a flagellar arginine kinase TbAK3 in a
myristoylation-dependent manner and is responsible for its tar-
geting to and enrichment in the flagellum. Interestingly, only
TbArl3A, but not TbArI3C interacted with TbUncl19 in a
GTP-dependent manner, suggesting functional specialization
of Arl3-GTPases in T. brucei. These results establish the func-
tion of TbUnc119 as a myristoylated cargo carrier and support
the presence of a conserved LIFT pathway in 7. brucei.

Cilia or eukaryotic flagella are present in eukaryotic organ-
isms ranging from protists, invertebrates to vertebrates.
Depending on their structure and protein compositions, cilia
and flagella can perform sensory functions or impart motility.
Ciliary mutations and malfunctioning have been implicated in
many diseases collectively known as ciliopathies (1).

Ciliary proteins are synthesized in the cytosol and trafficked
to the ciliary compartment by two main pathways, the intrafla-
gellar transport (IFT) and the lipidated protein intraflagellar
transport (LIFT) (1, 2). IFT has been extensively characterized
with well-documented functions in anterograde and retrograde
transport of ciliary structural components (3-7). LIFT, on the
other hand, has recently emerged as a parallel trafficking path-
way dedicated to lipidated cargoes associated with ciliary mem-
brane (8—11). Only a few lipidated proteins have been identified
as LIFT cargoes, and most of these proteins are important for
ciliary signaling functions (10-12).
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In mammals, LIFT comprises of small GTPases Arl13b and
Arl3, Arl3-GTPase activating protein RP2, as well as carrier
proteins phosphodiesterase 66 (PDE66) and Unc119 paralogs
(2). PDE66 or Unc119 binds to lipidated cargoes synthesized in
the cytosol and facilitates their import into the ciliary lumen.
Arl13bis enriched in the cilia, where it acts as a guanine nucleo-
tide exchange factor (GEF) on Arl3 (8). Activated, GTP-bound
Arl3 can bind to PDE66 or Unc119, and functions as a displace-
ment factor to release lipidated cargoes associated with the car-
rier proteins inside of the ciliary lumen (13-15). Arl3-GTP hy-
drolysis is then catalyzed by RP2 at the base of the cilium,
where Arl3-GDP dissociates from the carrier proteins (16).

PDE66 and Unc119 paralogs contain a conserved phosphodi-
esterase domain, which is crucial for interaction with lipidated
cargoes (17). PDE66 binds ciliary farnesylated proteins such as
inositol polyphosphate 5’-phosphatase E (INPP5E) (12) and is
required for its ciliary targeting. PDE64 also interacts with non-
ciliary cargoes such as prenylated RAS-GTPases and affects
their membrane distribution and signalling functions (18).
Unc119 paralogs Unc119A and Uncl19B share 60% sequence
homology and both carry myristoylated proteins into the cilia
(17). Only a few myristoylated cargoes have been identified
(10), and Nephrocystin-3 (NPHP3) is the only ciliary cargo
identified to date that interacts with both Uncl119A and
Uncl19B (11). Like PDE65, Uncl119A has also been shown
to have nonciliary functions via interactions with Src-type
tyrosine kinases Lyn (19), Fyn (20), and Lck as well as Rab11
(21, 22) and Dynamin GTPases (23), all of which have pre-
dicted N-myristoylation sites. Through these interactions,
Uncl19A influences the distribution and signaling func-
tions of these proteins.

The function of Unc119 has also been extensively character-
ized in Caenorhabditis elegans, where it is also a lipid-binding
protein required for G protein trafficking in sensory neurons
(24). Additionally, a recent study has shown that C. elegans
Uncll19 interacts with both Arl3 and Arll3, stabilizing the
interaction between Arl3 and Arl13, and facilitating GTP acti-
vation of Arl3 (25). Importantly, C. elegans Unc119 binds to
Arl3 independent of its GTP-bound state, making Unc119 an
unlikely effector of Arl3-GTP. The C. elegans Uncl19 thus
functions differently to its mammalian counterparts, which
may represent functional differences in evolutionarily diver-
gent ciliated organisms (25).

Trypanosoma brucei, causative agent of human African try-
panosomiasis (sleeping sickness) as well as nagana in domestic
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animals, is a protozoan parasite belonging to the Kinetoplastid
group, which are considered as one of the earliest-divergent eu-
karyotic organisms (26). T. brucei is also emerging as a useful
model to understand flagellar structure, biogenesis, and func-
tions (27). The flagellum of T. brucei has both signaling and
motility functions and is crucial for the viability and pathogene-
sis of this parasite (28). Both IFT and LIFT pathway compo-
nents have been identified in 7. brucei. Although the function
and regulation of the IFT pathway has been extensively charac-
terized (7), the presence of a conserved LIFT pathway in 7. bru-
cei was only recently recognized. A single orthologue of Arl13b
was found in T. brucei genome, with its protein product enriched
in the flagellar axoneme via a Docking and Dimerization domain
(29). Interestingly, T. brucei has three Arl3 homologs, namely
TbArl3A (Tb927.3.3450), TbArl3B (Tb927.10.8580), and
TbArl3C (Th927.6.3650). TbArl13 interacts and catalyzes nucle-
otide exchange on both TbArl3A and TbArI3C, but not TbArl3B.
Consistently, only TbArI3A and TbArl3C exhibit flagellar bio-
genesis effects upon overexpression of the GTP-locked mutants
(29).

A single Unc119 ortholog (TbUnc119, Tb927.2.4580) was
identified in an in silico screen of T. brucei genome (30).
TbUncl19 is present in the flagellum, but depletion of
TbUnc119 via tetracycline-inducible RNAi does not produce
any observable effect on cell growth or motility (30). Thus, the
cellular function of ThUnc119 is not known and its role in lipi-
dated protein transport in 7. brucei has not been studied. In
this study we used BiolD, a proximity-based biotinylation
method (31, 32) to identify interacting partners of TbhUnc119.
Our results identified a flagellar arginine kinase TbAK3 as a
TbUncl19 cargo. We also showed that TbArl3A but not
TbArl3C binds to TbUnc119, emphasizing the functional dif-
ference between different TbArl3-GTPase isoforms in T.
brucei.

Results
Kinetoplastids contain a single Unc119 homolog

T. brucei has a single Unc119 homolog (TbUnc119) encoded
by Tb927.2.4580, which has been shown to be a flagellar protein
in an earlier study (30). Phylogenetic analyses were then per-
formed on TbUnc119 and Unc119/PDE68 homologs identified
in various model organisms (Fig. S14). TbUnc119 formed a
clad with other Unc119 homologs distinct from PDE66 pro-
teins. Uncl19 is highly conserved among kinetoplastids (Fig.
S1B). Notably, PDE66 homologue could not be found despite
extensive searches of the 7. brucei genome. Further BLAST
searches confirmed the absence of PDE66 in all Kinetoplastid
members and most single cellular eukaryotes we have exam-
ined, with the possible exception of Paramecium tetraurelia
(33). Together these results suggest that Unc119 is likely the
only conserved lipidated protein carrier belonging to the
Uncl19 supergene family (33) in 7. brucei and other Kineto-
plastid organisms.

The knockdown of TbUncl19 did not produce detectable
growth defects in the insect-infectious procyclic form (PCF) cells
(Fig. S2A), which corroborates the previous study (30). In the
mammal infectious bloodstream form (BSF) 7. brucei, a mild
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growth delay was consistently observed post TbUnc119-RNAi
induction (Fig. S2B). No significant phenotypic changes were
observed in the PCF or BSF cells. Taken together, these results
confirmed that TbUnc119 is not essential for 7. brucei cell sur-
vival or flagellar biogenesis in culture. These results are also con-
sistent with the nonlethal mutant phenotypes of Uncl119 ortho-
logues previously reported in C. elegans (34) or zebrafish (35).

Identification of TbUnc119-interacting proteins by
proximity-based biotinylation

In both C. elegans and mammals, Unc119 is characterized as
a cargo carrier/chaperone involved in intraflagellar transport of
myristoylated ciliary proteins, and Unc119 association with the
cargo is regulated by the Arl13b-Arl3 pathway (8, 11). The
function of the LIFT pathway and its flagellar cargoes have
never been examined in the evolutionarily divergent 7. brucei.
We therefore decided to revisit the function of TbhUnc119, by
investigating its interacting proteins.

We utilized the proximity-dependent biotinylation ap-
proach, using an improved version of biotin ligase BioID2 (31).
The BiolD2 tag was fused to either the N terminus (3HA-
BioID2-TbUnc119) or the C terminus (TbUnc119-BiolD2-HA)
of TbUnc119 and expressed using a cumate-inducible expres-
sion system in the procyclic cells (36). Both 3HA-BiolD2-
TbUncl19 and TbUnc119-BiolD2-HA cells showed strong
labeling throughout the cytoplasm (Fig. S3), by anti-HA that
stains the ThUnc119 fusions and streptavidin-Alexa Fluor 568
that stains the biotinylated products. Weak signal was also
observed along the flagellum (Fig. S3, B and C, arrowheads).
These results suggest both flagellar and cytoplasmic presence
of TbUnc119 and its biotinylated products. Similar cytoplasmic
presence is also apparent in cells with endogenous expression
of mNeonGreen-tagged TbUnc119, either at the N or C termi-
nus (Tryptag, Th927.2.4580) (37). Biotinylated proteins from
both 3HA-BiolD2-TbUnc119 and TbUnc119-BiolD2-HA cells
were affinity purified (Fig. S3, D and E) and analyzed by LC-
MS/MS. A total of 136 and 39 candidates from 3HA-BioID2-
TbUnc119 and TbUnc119-BioID2-HA cells, respectively, were
identified (Fig. 14, Table S1). Among them, 28 high-confidence
candidates were found in both 3HA-BiolD2-TbUncl19 and
TbUnc119-BioID2-HA cells (Fig. 1B, Table S2). It is not clear
why 3HA-BioIlD2-TbUnc119 had more hits identified than
TbUnc119-BioID2-HA cells. One possibility is that the position
of the BioID2 tag at the C terminus of TbUnc119 may interfere
with its interaction with other proteins.

A group of arginine kinases (TbAKs) and kinetoplastid mem-
brane proteins, ThKMP-11, were found to top the list (Fig. 1B).
Of the three highly similar TbAK proteins identified, only
TbAK3 (encoded by Tb927.9.6210 (38); and named TbAKI1 in
another study (39)) contains a myristoylation consensus
sequence. TbAK3 was also identified as a high-confidence can-
didate in a recent myristoylation proteomics study (40). Small
myristoylated proteins (TbSMP1-1 encoded by Tb927.1.2230
and TbSMP1-2 by Tb927.1.2260), which also possess a consen-
sus myristoylation sequence were identified in the 3HA-
BioID2-TbUncl19 list. These kinetoplastid-specific proteins
resemble calpain-like proteins and are associated with the cell
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Figure 1. Proximity-dependent biotinylation screening for TbUnc119 interacting proteins. A, a Venn diagram summarizing the MS results of two inde-
pendent BiolD experiments, one using cells stably expressing 3HA-BiolD2-TbUnc119 with BiolD2 fused to the N terminus of TbUnc119 and the other
TbUnc119-BiolD2-HA with BiolD2 fused to the C terminus. B, list of selected BiolD candidates. Protein candidates identified are ordered according to calculated
protein content in the BiolD experiment using 3HA-BiolD2-TbUnc119 as the bait. Protein content of the candidates in the TbUnc119-BiolD2-HA experiment is
also shown wherever applicable. The description of the protein was obtained from the Kinetoplastid Genomics resource (www.tritrypdb.org). ND, not
detected.
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Figure 2. Myristoylation of TbAKS3 is critical for its flagellar targeting and its interaction with TbUnc119. A, lysates of cells stably expressing GFP-
TbUnc119 and TbAK1-BB2, TbAK3-BB2, or TbAK3(G2A)-BB2, respectively, were incubated with GFP-nAb beads. Proteins bound to the beads were fractionated
on SDS-PAGE followed by immunoblotting with anti-GFP and anti-BB2 antibodies. Cells co-expressing GFP and TbAK3-BB2 were used as a negative control.
Asterisks indicate possible degradation products of GFP-TbUnc119. Input: 3% of cell lysates. B and C, cells expressing TbAK3-YFP or TbAK3(G2A)-YFP were
viewed after fixation with 4% PFA. Nuclear and kinetoplast DNA were stained with DAPI (blue). Scale bar, 5 um.
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Figure 3. Flagellar targeting of TbAK3 requires TbUnc119. A, procyclic cells stably expressing TbAK3-mNeonGreen from an endogenous allele were
induced for TbUnc119-RNAi. Control and induced cells were fixed with 4% PFA. B, TbAK3-mNeonGreen intensity in the flagellum and in the cytosol was meas-
ured using plot profile function as illustrated here and detailed under “Experimental procedures.” Results are shown as box plots, with the whiskers marking
the minimum and maximum values, the box showing the 25th to 75th percentiles and the bars in the box showing the median. n > 150 cells were measured
for each condition at each time point. Two-tailed Student’s t test was performed, and p values are indicated in the plots. C-E, cells containing tetracycline-in-
ducible TbUnc119-RNAi and cumate-inducible TbAK3-BB2 expression were induced for TbUnc119-RNAi for 0, 24, or 48 h prior to induction of TbAK3-BB2
expression. The induction of TbAK3-BB2 expression was fixed at 1 ug/ml of cumate for 24 h to ensure similar expression levels in different experiments (E).
Cells were then fixed and processed for immunostaining with anti-BB2 (C). Quantitation of the TbAK3-BB2 signal in the flagellum and the cytosol was per-

formed as illustrated in B. n > 100 cells were measured for each condition at each time point (D). Scale bar, 5 um.

membrane (41). TbArl3A and TbArI3C, both components of 7.
brucei flagellum with confirmed flagellar functions (29), were
also identified in 3HA-BiolD2-TbUnc119 BiolD.

The flagellar targeting of TbAK3 requires TbUnc119

Three arginine kinases are found in 7. brucei, sharing 85—
99% sequence identity (39) and thus could not be distinguished
in the BioID MS results. TbAK1 (encoded by Tb927.9.6290) is
localized throughout the cytoplasm; and TbAK2 (encoded by
Tb927.9.6250) is associated with the glycosomes, a peroxi-
some-like organelle in 7. brucei (39). TbAK3 (encoded by
Tb927.9.6210) is present on the flagellar membrane and is the
only TbAK that is myristoylated (39, 40, 42).

To test if TbAK3 interacted with TbUnc119, TbAK3 was
fused to a small BB2 tag (43) at the C terminus and co-
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expressed with GFP-TbUncl19. Immunoprecipitation was
then performed using GFP nAb-conjugated beads. ThAK3-BB2
co-immunoprecipitated with GFP-TbUnc119, but not GFP
only (Fig. 24). As another control, TbAK1-BB2 did not co-
immunoprecipitate with GFP-TbUnc119, suggesting a specific
interaction between TbAK3 and TbUncl19. The TbAK3-
TbUnc119 interaction is myristoylation-dependent, as ThAK3
(G2A)-BB2 failed to co-immunoprecipitate with GFP-TbUnc119.
The myristoylation mutation also disrupted the flagellar localiza-
tion of TbAK3 (Fig. 2, B and C). Together these results indicate
that the flagellar localization of TbAK3 and its interaction with
TbUnc119 are both myristoylation-dependent.

Next we asked whether TbAK3 flagellar targeting required
TbUncl19. We tagged one endogenous allele of TbAK3 with
the fluorescent reporter mNeonGreen in the TbUnc119-RNAi
cell line. In control cells, ThbAK3-mNeonGreen was enriched in
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the flagella with a weak signal in the cytosol (Fig. 34). Upon
TbUnc119-RNAI induction, the flagellum enrichment of ThAK3
diminished and an increased cytosolic signal was observed (Fig. 3,
A, quantitated in B). To further establish the flagellar targeting
dynamics of TbAK3, we generated a stable cell line with tetracy-
cline-inducible TbUnc119-RNAi and cumate-inducible expres-
sion of TbAK3-BB2. The expression of ThAK3-BB2 was induced
for a fixed period of 24 h, at different times post TbUnc119-RNAi
induction. A gradual reduction in flagellar TbAK3 and an
increase in the cytoplasmic ThAK3 was observed over the course
of TbUnc119-RNAi (Fig. 3, C, quantitated D), despite similar
expression levels of TbAK3 at different time points (Fig. 3E).
These results suggested that the loss of TbhUnc119 inhibited the
entry of TbAK3 into the flagellum.

TbUnc119 binds to TbSMP1-1, but is not required for
TbSMP1-1 intracellular distribution

To address whether TbUnc119 may have nonciliary func-
tions as observed with animal Unc119 orthologs, we examined
TbUnc119-BiolD candidates for nonciliary myristoylated pro-
teins. The small myristoylated protein ThbSMP1-1 (encoded by
Tb927.1.2230) contains an N-terminal myristoylation site (G2)
and is enriched at the cell membrane of T. brucei (41). The
interaction between ThbSMP1-1 and TbUnc119 was confirmed
by co-immunoprecipitation (Fig. 44). Although TbSMP1-1-
GFP was enriched in the cell periphery consistent with plasma
membrane association, TbSMP1-1(G2A)-GFP mutant lost cell
membrane enrichment and was found throughout the cytosol
(Fig. 4, B and C). This observation was further confirmed by
profiling the fluorescent intensity across randomly selected
TbSMP1-1-GFP and TbSMP1-1(G2A)-GFP expressing cells (Fig.
4, B and C). Silencing of TbUnc119, however, had no detectable
effects on TbSMP1-1-GFP distribution in the cell (Fig. 4D).

TbUnc119 interacts specifically with TbAri3A in a
GTP-dependent manner

The best characterized function of Unc119 is in the context
of the LIFT pathway as a carrier for myristoylated cargoes.
Once the cargo-Uncl119 complex is inside of the ciliary lumen,
Arl3-GTP acts as a displacement factor, binds to Unc119, and
releases the cargo (9, 11). Unlike vertebrates that contain only a
single Arl3 protein, T. brucei has two Arl3 homologues,
TbArI3A and TbArlI3C, which are both associated with the flag-
ellum and exhibit flagellar phenotypes when overexpressed as
GTP-locked forms (29). Interestingly, both TbArl3A and
TbArl3C were found in the TbUnc119 BiolD screen, albeit only
in the 3HA-BiolD2-TbUnc119 cells.

To confirm the interaction of TbUncll9 with TbArl3-
GTPases, co-immunoprecipitation assays were performed on
cells stably expressing GFP-TbUnc119 and epitope-tagged
TbArI3A or TbArl3C from an endogenous allele. TbArI3A-
mNeonGreen-BB2 specifically co-precipitated with GFP-
TbUnc119, but not with GFP only (Fig. 54); TbArl3C-mNeon-
Green-BB2 did not co-precipitate with either GFP-TbUnc119
or GFP alone (Fig. 5B). Specific interaction between TbArI3A
and TbUnc119 was further confirmed by pulldown assays using
purified His-TbUnc119 and GST-TbArl3A (Fig. 5, C and D).
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Importantly, TbUnc119 did not interact with TbArl13 in the co-
immunoprecipitation assays (Fig. 44, also see Fig. 6C). This is dis-
tinct to the Arl13-Arl3-Uncl19 mutual interactions observed in
C. elegans (25). Additionally, TbUnc119 did not interact with
TbArl2 (encoded by Tb927.10.4250) (Fig. S4), which exhibits
high sequence similarities to TbArl3A and TbArI3C (29, 44).
These interaction results are summarized in Fig. 5E.

GTP-locked GST-TbArl3A-Q70L mutant, but not GDP-
locked GST-TbArI3A-T30N could pull down His-TbUnc119
(Fig. 6A), suggesting that the TbUnc119-TbArl3A interaction
is GTP-dependent. This was further validated using nucleotide
exchange assays (Fig. 6B). Alkaline phosphatase-treated GST-
TbArI3A loaded with or without GDP did not interact with
His-TbUnc119. GTP-loaded TbArI3A, however, exhibited a
strong and specific interaction with TbUnc119.

Our previous studies have shown that TbArl13 acts as a GEF
on TbArlI3A, as has been reported in mammals (8, 29). We
hypothesized that in cells depleted of TbArll13, the level of
TbArI3A-GTP in T. brucei should decrease, which in turn will
affect the interaction between TbUnc119 and TbArI3A. To test
this, cells expressing tetracycline-inducible TbArl13-RNAi and
cumate-inducible TbUnc119-YFP and TbArl3A-BB2 were gen-
erated. Although TbArl3A-BB2 co-immunoprecipitated with
TbUnc119-YFP in control cells, their interaction was abolished
upon induction of TbArl13-RNAi (Fig. 6C). Together, these
results demonstrate specific interactions of TbUnc119 with
only one of the TbArl3 homologs, TbArl3A, in a GTP-depen-
dent manner, suggesting that TbUncl19 is an effector of
TbArl3A that is regulated by TbArl13.

Discussion

In this study, we revisited the functions of TbUnc119 in light
of recent understanding of the LIFT pathway in ciliary biogene-
sis. Overall our results supported a function of TbUnc119 in
flagellar targeting of myristoylated TbAK3. This is consistent
with the cargo carrier function of Unc119 observed in mam-
mals and C. elegans (11, 24). There are, however, some differen-
ces between TbUnc119 and its other eukaryotic counterparts.
In C. elegans, Uncl119 forms mutual interactions with both Arl3
and Arl13, facilitating GTP loading to Arl3. As the interaction
between Uncl19 and Arl3 is GTP-independent, Uncl19 is
unlikely an Arl3 effector in C. elegans (25). In T. brucei, no de-
tectable interaction was observed between TbUncl19 and
TbArl13. TbUncl119 interacts with TbArI3A in a GTP-depen-
dent fashion, similar to mammalian Unc119-Arl3 interaction
(10, 11). Thus C. elegans Unc119 may represent a case of func-
tional divergence, although it appeared more conserved with
mammalian Uncl19 in the phylogenetic analyses (Fig. S14).
One important difference between T. brucei and mammalian
Unc119 is the lack of TbUnc119-TbArl2 interaction in 7. bru-
cei. In mammals, Arl2 is shown to interact with Unc119 and
displace low-affinity cargoes in the cytosol (10). TbArl2 is
essential for cytokinesis in 7. brucei (44) but this effect is
unlikely mediated by TbUnc119 as the depletion of TbUnc119
had no detrimental effects on cell division and viability.

In T. brucei, we showed that the binding between TbUnc119
and TbAK3 depended on the myristoylation state of TbAK3.
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TbUnc119 is able to bind to other myristoylated proteins such  types in cultured PCF and BSF cells, depletion of TbUnc119 is
as TbSMP1-1, although the function of this binding remained  unlikely to cause gross perturbation in myristoylated protein
unclear. Depletion of TbUnc119 had no obvious effects on distribution or functions, unlike those observed in cells with
TbSMP1-1 distribution. Considering the lack of growth pheno-  the myristoylation pathway inhibited (45-47). Depletion of
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TbAKS, a flagellar protein identified as TbUnc119 cargo in this
study, is also shown to be dispensable for cell growth in culture
(38). However, TbAK3-depletion impairs cell motility and par-
asite infectivity in the tsetse flies (38). TbhUncl19 is thus
expected to be important for parasite survival in hosts, which
remains to be tested. Furthermore, TbUnc119 has many cyto-
plasmic BiolD candidates without predicted myristoylation
modification. During the bioinformatic analyses, we could not
identify a canonical homologue of PDE6§, a prenylated cargo
carrier, in 7. brucei and most other single-cellular organisms.
Yet protein prenylation and the molecular machinery are
clearly present in T. brucei (48—50) and several other protists
(51). This raised an interesting possibility that TbUnc119 and
other protist Unc119 orthologs may be able to carry other lipi-
dated cargoes, particularly prenylated proteins. This possibility
should be examined in the future as little is currently known
about prenylated targets in T. brucei.

A single Arl3 homolog is present in mammals and C. elegans,
and it is known to interact with and regulate IFT components
in addition to its function in displacing cargoes associated with
Uncll19 (52, 53). T. brucei contains three Arl3 homologs.
TbArl3A and TbArl3C are highly conserved and syntenic
among kinetoplastids, and TbArlI3B is diverse with unknown
functions (29). Although both TbArI3A and TbArl3C have flag-
ellar functions, only TbArI3A interacted with ThUnc119 and
this interaction was regulated by TbArl13. Although it remains
to be explored if TbArl3A may have effectors other than
TbUnc119, the results support the presence of a conserved LIFT
pathway in 7. brucei that involves TbArl13, TbArl3A, and
TbUnc119. Our results also suggest functional diversification and
specialization of Arl3-GTPases in T. brucei. TbArlI3A is localized
in the flagellum and the cytoplasm, whereas TbArl3C is restricted
to the basal bodies (29). They may function at different subcellu-
lar locations on different effectors, which together contribute to
the essential phenotypes observed for TbArl13.

Experimental procedures
Bioinformatic analyses

The amino acid sequences of Unc119 and PDE66 from vari-
ous model organisms were obtained from UniProt, Tritrypdb,
and NCBI protein database. Multisequence alignments were per-
formed using MUSCLE (54). The output of multisequence align-
ments was formatted using Multiple Align Show of the Sequence
Manipulation Suite (JavaScript application) (55). For phyloge-
netic analyses, the Unc119 and PDE66 sequences were aligned
using MAFFT (LINSI). ProtTest (version 3.4.2) (56) was used for
model selection. Maximum likelihood tree was generated using
RAXML (version 8.2.10) and Multiparametric bootstrapping was
done using automatic bootstrapping option (autoMRE).

Expression constructs, cell culture, and transfections

All T. brucei sequences used in this study were retrieved
from the Tritryp database (RRID:SCR_007043). RNAI target
sequences were selected using RNAit (57). The details of plas-
mid constructs used in this study are summarized in Table S3.

The insect proliferative, PCF of T. brucei cells were cultured
in Cunningham medium supplemented with 10% heat-inacti-
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vated fetal bovine serum (FBS; HyClone) at 28 °C. Stable trans-
fection conditions for PCF cells were performed according to
previously published protocol (58). 29.13 T. brucei cells geneti-
cally modified to express T7 RNA polymerase and tetracycline
repressor (59) were used to generate the TbUnc119-RNAi cell
line. DIpAnt, a PCF T. brucei cell line engineered for tetracy-
cline-inducible and cumate-inducible expressions (36) was
used to generate stable cell lines for cumate-inducible overex-
pression and/or tetracycline-induced knockdown experiments.
For RNAI in the BSF cells, either a single marker Lister 427 cell
line (59) or a double inducible DIb427 cell line (36) was used.

Live cell imaging, immunofluorescence, and microscopy

PCEF cells expressing fluorescently tagged proteins were har-
vested, resuspended in 1X PBS, and spread on the surface of 1%
low melting point-agarose gel (Bio-Rad) prepared in condi-
tioned medium. The gel was then placed on an imaging dish
with the parasite side facing the coverslip, allowing the cells to
be trapped and partially immobilized between the agarose gel
and the coverslip. The cells could be imaged at room tempera-
ture for at least 30 min or through an entire cell cycle with
appropriate temperature and CO, control (60, 61).

For immunofluorescence assays, 7. brucei cells expressing
fluorescent and/or other epitope tags were washed and resus-
pended in 1X PBS and attached to coverslips. Cells were fixed
with 4% PFA and permeabilized with 0.25% Triton X-100
unless otherwise stated. DNA was stained with DAPI (2.5 pg/
ml). Images were captured by Zeiss Axio Observer Z1 fluores-
cence microscope with a X63 objective (NA = 1.4) and a Cool-
SNAP HQ2 CCD camera (Photometrics).

Image quantification and statistical analyses

For quantifications, images acquired using fixed exposure
conditions were processed using Image]. Fluorescence intensity
of the flagellum was performed using the plot profile function,
by drawing a 2-um line (width = 5 pixels) along the distal over-
hang of the flagellum, where it is not attached to the cell body.
Fluorescence intensity of the cytosol was quantitated over a 2-
pm line (width = 5 pixels) in the posterior region of the cyto-
plasm away from the kinetoplast and nucleus. The membrane
association of TbSMP1-1-GFP or TbSMP1-1(G2A)-GFP pro-
teins was quantitated by plotting a 5-um line (width = 1 pixel)
transverse the posterior region of the cell body, away from the
kinetoplast and nucleus. The fluorescence intensity measure-
ments were plotted on GraphPad Prism 5. The p values were
calculated using two-tailed ¢ test with 95% confidence interval.

Co-immunoprecipitation and pulldown assays

0.5-1 X 10% cells co-expressing GFP or GFP-TbUncl19
(induced with 5 pg/ml of cumate for 24 h) and mNeonGreen-
BB2-tagged TbArl3-GTPase (29) were harvested by centrifu-
gation at 4500 X g for 7 min at room temperature. After 2
washes with 1X PBS, the cells were resuspended in 1X PBS
supplemented with protease inhibitor mixture (Sigma) and ho-
mogenized by sonication. The cell lysates were centrifuged at
17,000 X g for 15 min at 4°C and the cleared supernatants
were incubated with magnetic GFP-nAb™ beads (Allele
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Biotechnology) to co-precipitate GEP fusion proteins together
with their binding partners. Proteins bound to the magnetic
beads were eluted by boiling in 1X Laemmli buffer and ana-
lyzed by SDS-PAGE and immunoblotting.

GST-tagged TbArl2, TbArl3A, and TbArI3C GTPases and
His-TbUnc119 fusion proteins were expressed in Escherichia
coli (induced with 0.1 mm isopropyl 1-thio-B-p-galactopyrano-
side). Purification of tagged proteins was performed using
nickel-nitrilotriacetic acid beads (Qiagen) or GSH Sepharose™
4B beads (GE healthcare) according to the manufacturers’
instructions. His-TbUnc119 bound to nickel-nitrilotriacetic
acid beads were incubated with cell lysates containing GST-
TbArl3A, GST-TbArl3C, and GST only. Alternatively, GSH
Sepharose™ 4B beads bound to GST or GST fusions including
GST-TbArl2 were incubated with His-TbUnc119. Interaction
between TbUnc119 and TbArl-GTPases was then examined by
SDS-PAGE followed by immunoblotting.

Nucleotide exchange assay

GST-TbArl3A bound to GSH beads was treated with alkaline
phosphatase (10 units/ml) to enzymatically dephosphorylate
purified GST-TbArl3A (containing a mixture of GTP- or GDP-
bound forms) to nascent guanosine state in 1 ml of exchange
buffer (20 mm HEPES, pH 7.4, 1 mm MgCl,, 1 mm DTT) supple-
mented with 50 mm EDTA for 1 h at room temperature. The
beads were washed three times with 1 ml of exchange buffer and
then incubated with GTP (100 um), GDP (100 wm), or no nucleo-
tide, in the presence of 100 mm MgCl, for 1 h at room tempera-
ture. Beads were washed once each with exchange buffer and 1X
PBS and incubated with purified His-TbUnc119 for 4 h at 4°C.
Beads were then washed three times each with 1% Triton X-100
in 1X PBS followed by 1X PBS. Bound proteins were eluted by
boiling in 1X Laemmli buffer and analyzed by immunoblottings.

Proximity-dependent biotinylation (BiolD) and LC-MS/MS
analyses

Approximately 10° cells were induced for the expression of
3HA-BioID2-TbUnc119 or TbUnc119-BiolD2-HA with 5 pg/
ml of cumate for 16 h. WT cells were used as negative control.
50 uMm biotin was added to each culture 8 h prior to harvest.
Cells were washed extensively with PBS, and lysed with lysis
buffer (0.4% SDS, 500 mm NaCl, 5 mm EDTA, 1 mm DTT, 50
mM Tris-HCl, pH 7.4) supplemented with protease inhibitors
(Sigma). Cell lysates were centrifuged, and the clear superna-
tant was incubated with streptavidin-coated Dynabeads®
(Invitrogen) for 4 h or overnight at 4 °C. The beads were washed
twice with PBS containing 1% SDS, twice with PBS containing
1% Triton X-100, and then twice with 1X PBS for 5 min each.
The bound proteins were treated with triethylammonium (500
mum, pH 8.5) and reduced with 4 ul of 100 mm Tris(2-carbox-
yethyl)phosphine at 50°C for 1 h with gentle mixing. Beads
were alkylated with 5 mm MMTS (methyl methanethiosulfo-
nate) at room temperature for 15 min. After overnight on-bead
digestion with 2.5 ug of trypsin, peptide fragments were
desalted and processed for LC—MS/MS analyses (see Table S1
for details on proteomics sample preparation and data process-
ing procedures). Top candidates identified in 3HA-BioID2-
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TbUnc119 and TbhUnc119-BioID2-HA samples were scanned
for the presence of the myristoylation consensus sequence
(MGXXXS/T) as well as their presence in the previously pub-
lished myristoylation proteome of T. brucei (40).

Antibodies for immunostaining and immunoblots

Anti-HA (1:500; Santa Cruz, sc-7392) and streptavidin-Alexa
Fluor 568 (1:2000; Invitrogen) were used in immunofluores-
cence assays. For immunoblots, anti-YFP (1:1000, rabbit) (62),
anti-TbArl13 (1:2000, rabbit) (29), anti-TbBiP (1:1000, rabbit)
(63), anti-His (1:5000, mouse; GE Healthcare), anti-GST
(1:5000, mouse; Santa Cruz Biotechnology) and anti-BB2 anti-
bodies (1:500, mouse) (43) were used.

Data availability

The MS proteomics data have been deposited to the Proteo-
meXchange Consortium via the PRIDE partner repository with
the data set identifier PXD019488.
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