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Abstract

A thorough understanding of sex differences that exist in the brains of healthy indi-

viduals is crucial for the study of neurological illnesses that exhibit phenotypic differ-

ences between males and females. Here we evaluate sex differences in regional

temporal dependence of resting-state brain activity in 195 adult male–female pairs

strictly matched for total grey matter volume from the Human Connectome Project.

We find that males have more persistent temporal dependence in regions within

temporal, parietal, and occipital cortices. Machine learning algorithms trained on

regional temporal dependence measures achieve sex classification accuracies up to

81%. Regions with the strongest feature importance in the sex classification task

included cerebellum, amygdala, and frontal and occipital cortices. Secondarily, we

show that even after strict matching of total gray matter volume, significant volumet-

ric sex differences persist; males have larger absolute cerebella, hippocampi, para-

hippocampi, thalami, caudates, and amygdalae while females have larger absolute

cingulates, precunei, and frontal and parietal cortices. Sex classification based on

regional volume achieves accuracies up to 85%, highlighting the importance of strict

volume-matching when studying brain-based sex differences. Differential patterns in

regional temporal dependence between the sexes identifies a potential neurobiologi-

cal substrate or environmental effect underlying sex differences in functional brain

activation patterns.
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1 | INTRODUCTION

The study of sex differences in the brain is one of the most long-

standing and debated themes in neuroscience. A compelling reason to

investigate sex differences in the brain is that for many neu-

rodevelopmental, neuropsychiatric, and neurodegenerative illnesses,

the age of onset, prevalence, and symptomatology varies between the

sexes. Furthermore, insight into the etiology of sex differences in the

healthy brain provides an important foundation with which to delin-

eate sex-specific pathophysiological mechanisms in different disorders

and to guide the development of sex-specific treatment.

Even at rest, the brain generates an ever-changing pattern of

activity that can be measured using fMRI. This activity is characterized

by long-range temporal dependence such that signal fluctuations at

the present time influence signal dynamics up to several minutes in

the future. The Hurst exponent (HE) is a scalar measure of long-range
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temporal dependence of time series that quantifies the tendency of a

time series to either regress to the mean or persistently cluster in a

direction (Tagliazucchi et al., 2016). The value of HE can be used to

characterize the fMRI signal into three different scenarios: (a) when

0.5 < HE <1 there exist long-range temporal correlations such that a

high value in the time series is likely to be followed by a second-high

value and this tendency to cluster in one direction relative to the

mean is likely to persist in the future; (b) when H = 0.5 there exists

uncorrelated temporal activity such that the time series is similar to

random noise; and, (c) when 0 < HE <0.5 there exist long-range antic-

orrelations such that a high value in the time series is likely to be

followed by a low value and then another high value, and this ten-

dency to fluctuate between high and low values is likely to persist into

the future (Tagliazucchi et al., 2016). Based on these characteristics of

the HE, it has been suggested that HE can represent signal complexity

of brain activity, with a higher HE corresponding to lower signal com-

plexity (A. M. Wink, Bernard, Salvador, Bullmore, & Suckling, 2006;

Alle Meije Wink, Bullmore, Barnes, Bernard, & Suckling, 2008).

The use of HE to study signal fluctuations in functional MRI

(fMRI) in both healthy and clinical populations has recently emerged

(Dong et al., 2018; Lai et al., 2010; Tagliazucchi et al., 2016; Wei

et al., 2013; A. M. Wink et al., 2006). In recent years, it has been

observed that a baseline state of wakefulness in healthy subjects is

associated with critical dynamics in the resting state time series and

unconscious brain states (e.g., asleep or sedated) exhibit a departure

from critical dynamics (Tagliazucchi et al., 2016). This departure corre-

sponds to a reduction in long-range temporal dependence in the fron-

tal lobe, salience network, and thalamus during unconsciousness

(Tagliazucchi et al., 2016), suggesting that there is a relationship

between consciousness and regional temporal dependence in the

brain. Another recent study looked at the relationship between long-

range temporal dependence and sex in healthy subjects and observed

sex differences in frontal, parietal, occipital, and limbic lobes (Dong

et al., 2018). In order to understand clinical or behavioral implications

of HE, we must first fully quantify any baseline sex differences in the

temporal dependence of resting-state time series in healthy adults.

In recent years, machine-learning techniques have increasingly

been used in the analysis of resting-state fMRI data (Khosla, Jamison,

Kuceyeski, & Sabuncu, 2019). Supervised methods have been suc-

cessfully applied to make subject-level predictions in both healthy and

clinical populations (Khosla, Jamison, Ngo, Kuceyeski, &

Sabuncu, 2019). Despite the widespread interest on sex differences in

the brain, very few studies have focused on sex classification using

structural and/or functional information from the healthy brain. Using

whole-brain functional connectomes and a partial least squares

approach applied to data from the Human Connectome Project (HCP),

sex classification has been performed with a maximum accuracy of

79–86% (Zhang, Dougherty, Baum, White, & Michael, 2018). Another

study using a subset of the HCP data compared sex classification

accuracies of 436 different models, each one based on a region's con-

nectivity to the rest of the brain, in an effort to reduce the overall

dimensionality. They reported mean accuracies of 60.0 to 68.7%, and

a maximum accuracy of 75.1% (Weis et al., 2020). While sex

classification using functional connectivity profiles has achieved vary-

ing levels of accuracy (Weis, Patil, et al., 2020; Zhang et al., 2018), it

has not yet been attempted, to the best of our knowledge, using tem-

poral dependence measures of brain activation like HE.

The present study evaluated sex differences in regional long-term

temporal dependence of the resting-state fMRI time series in a GM-

volume-matched subset of 390 subjects from the HCP (Van Essen

et al., 2013) data set. The project's primary goals were: (a) to quantify

regional sex differences in temporal dependence of cortical and sub-

cortical grey matter (GM) regions and (b) to test if regional temporal

dependence information is sufficient to successfully classify subjects

based on sex. As a secondary goal, this study also evaluated whether

regional volumetric sex differences persisted even after matching sub-

jects on total GM volume.

2 | METHODS

An outline of our overall workflow can be found in Figure 1. All codes

used for data analysis are available on GitHub (https://github.com/

elvisha/HurstSexDifferences).

2.1 | Data set

Publicly available high-resolution, preprocessed magnetic resonance

imaging data from the Human Connectome Project—Young Adult

S1200 release (Van Essen et al., 2013) were used in this study. We

examined time series from 1,003 volume-matched healthy adults hav-

ing four complete resting-state fMRI runs (1,200 volumes each). The

subjects had a mean age of 28.71 years (range: 22–37 years,

SD = 3.71, median = 29) and included 469 males (46.8%). In order to

avoid biases introduced by volumetric differences between males and

females, a subset of 390 volume-matched subjects (190 non-

overlapping male–female pairs) were identified and all analyses for

this study were performed solely on that subset unless otherwise

specified. The mean age of the 390 subjects was 28.6 years (range

22–37 years, SD = 3.7, median = 29).

Although the term “gender” is used in the HCP data dictionary,

we use the term “sex” in this article because the database collected

subject self-reported biological sex as opposed to gender identifica-

tion. Genetic information was not used to verify the self-reported

biological sex.

2.2 | Preprocessing of fMRI data

HCP MR imaging data were acquired on a Siemens Skyra 3 T scanner

at Washington University in St. Louis. Each subject underwent four

gradient-echo EPI rfMRI runs (TR = 720 ms, TE = 33.1 ms, 2.0 mm iso-

tropic voxels, FoV = 208 × 180 mm2, flip angle = 52�,

matrix = 104 × 90, 72 slices) of about 15 min each over two sessions:

two runs in the first sessions (REST1_LR and REST1_RL) and two runs
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in the second session (REST2_LR and REST2_RL). The data consisted

of 1,200 volumes for each run for a total of 4,800 volumes for each

subject over the four runs. Each run of each subject's rfMRI was

preprocessed by the HCP consortium (Smith et al., 2013). The data

were minimally preprocessed (Glasser et al., 2013) and had artefacts

removed using ICA + FIX (Griffanti et al., 2014; Salimi-Khorshidi

et al., 2014).

2.3 | Motion

Framewise displacement (Power et al., 2014) (FD) was computed for

each subject. Sex differences in framewise displacement for the

specific windows used to calculate HE were evaluated using a two-

sample t test. There were no sex differences identified in motion.

2.4 | Parcellations

As part of the HCP preprocessing pipeline (Glasser et al., 2013),

FreeSurfer's recon-all pipeline (Dale, Fischl, & Sereno, 1999; Fischl

et al., 2002; Fischl et al., 2008; Fischl, Liu, & Dale, 2001; Fischl,

Sereno, & Dale, 1999; Fischl, Sereno, Tootell, & Dale, 1999; Segonne,

Grimson, & Fischl, 2005) was optimized for the high-resolution HCP

data. Structural T1-weighted and T2-weighted images (0.7 mm isotro-

pic) were used with the optimized HCP FreeSurfer pipeline to auto-

matically segment subcortical structures (Fischl et al., 2002) and

cortical sulci and gyri (Desikan et al., 2006). These segmentations

were used to reduce the fMRI data of the whole brain into cortical

and subcortical GM regions of interest (ROI). All analyses were

repeated seven times using the following seven different

parcellations, where R denotes the number of ROIs: Automated Ana-

tomical Labeling (Tzourio-Mazoyer et al., 2002) (AAL, R = 116),

Craddock 200 (Craddock, James, Holtzheimer 3rd, Hu, &

Mayberg, 2012) (CC200, R = 200), Craddock 400 (Craddock

et al., 2012) (CC400, R = 392), Eickhoff-Zilles (Eickhoff et al., 2005)

(EZ, R = 116), Harvard-Oxford (Goldstein et al., 2007; Makris

et al., 2006) (HO, R = 110), Talairach and Tournoux (Lancaster

et al., 2000) (TT, R = 94), as well as a FreeSurfer aparc+aseg

parcellation (FS86, R = 86) in which cortical GM was divided into

34 regions per hemisphere as per the Desikan-Killiany atlas (Desikan

et al., 2006), and subcortical GM was divided into nine regions per

hemisphere. Results from the CC400 atlas are presented in the main

article, while results from all other atlases are shown in the supple-

mental materials.

2.5 | Hurst exponent

Detrended fluctuation analysis (DFA) was used to analyze the tempo-

ral correlations of BOLD fluctuations, and estimate long-range tempo-

ral dependence in time series while accounting for nonstationarities.

The obtained exponent from DFA is a generalization of the HE, with

the exception that DFA may also be applied to time series whose

underlying statistics or dynamics are nonstationary. In order to esti-

mate the HE, DFA was used as previously described (Tagliazucchi

et al., 2016) and summarised below.

1 Given xt, series of T measurements, 1 ≤ t ≤ T, subtract mean of sig-

nal, <x>, and compute cumulative sum, Xt =
Pt
i=1

xi− < x>ð Þ.
2 Divide signal into nonoverlapping windows of length L, with each

segment labeled as Yk
j , with j indexing time within segment (1≤ j≤ L)

and k indexing segment number (1≤ k≤ T/L).

3 For each segment, fit a linear function using the least squares to

determine slope, ak and intercept, bk.Subtract best fitting linear

trend and compute fluctuation from mean of resulting signal,

F IGURE 1 Overall workflow of analysis. (1) Functional MRI
images from the Human Connectome Project were used to extract
(2) voxel-wise time series. (3) Voxel-wise Hurst exponents were
computed. (4) Parcellations of the voxels were generated for seven
different atlases and (5) Hurst exponents were averaged for all voxels
within a given ROI to generate ROI-based Hurst exponents. (6) Sex
differences in regional Hurst exponent were analyzed using a
Student's t test. (7) Prediction of sex was performed using a linear
SVM classifier. Nested cross validation was used to optimize
hyperparameters and a final model was fitted to the train data and
evaluated on the test data
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Fk =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
L

PL
j=1

Yk
j−akj−bk

� �2
s

.

4 Average Fk for all segments at temporal scale L to yield fluctuation

function, F(L).

5 Repeat 2–4 using different window lengths, L = [10, 15, 25, 30].

6 The slope of F(L) in logarithmic scale versus L is the HE.

For every subject, DFA was applied to 32 segments (8 segments

per scan) of 150 volumes each of the BOLD time series of every

voxel. The HE computed over the 32 segments were averaged

together to generate a single mean HE for each voxel. The HE was

averaged over voxels within each ROI to generate a single HE value

per ROI.

2.6 | Volume

To compare ROI size differences, subject-specific ROI volumes were

computed by counting voxels in each subject's native 0.7 mm anatom-

ical space. The FreeSurfer-derived FS86 atlas was already defined in

this native space. The remaining atlases were defined in 2 mm

MNI152 space, and were first transformed from MNI152 to each sub-

ject's native space using the standard2acpc_dc nonlinear warp pro-

vided by HCP and nearest-neighbor interpolation.

To avoid biases introduced by volumetric sex differences,

390 subjects (190 nonoverlapping male–female pairs) were selected

such that each pair had a matched total GM volume (cortical and sub-

cortical) with a percent difference less than or equal to 1%. The final

volume-matched sample did not differ in total GM volume (p > .05)

between males and females.

2.7 | Sex differences in HE and volume

For each atlas, sex differences in HE across the ROIs were evaluated.

For each ROI, the difference in means between males and females

was analyzed using a two-tailed two-sample t test. This was repeated

with all atlases. p-values were corrected for multiple comparisons

across all regions in all atlases (i.e., corrections accounted for 1,114

regions which is the total number of regions across all atlases) using

the Benjamini-Hochberg procedure (Benjamini & Hochberg, 1995) to

decrease the false discovery rate. This same process was repeated for

volumetric sex differences.

2.8 | Sex classification

In order to classify subjects in the GM-volume-matched subset into

males and females using ROI-based HE or regional volume from each

atlas, a linear support vector machines (SVM) approach was

implemented (Pedregosa et al., 2011). SVMs (Cortes & Vapnik, 1995)

are supervised learning models which can be used for classification

tasks. Given labeled training data with n features, the algorithm out-

puts an optimal hyperplane which can be used to separate the classes

with a maximal margin. If the data are linearly separable, linear SVMs

can be used to find this optimal hyperplane. Linear ridge, SVM with

radial basis function kernel, random forest, and neural network classi-

fiers were also evaluated in this work. However, the performance

metrics obtained from those classifiers were worse than those

obtained for linear SVM so the results for this article focus on

linear SVM.

GM-volume-matched subjects (n = 390) were separated into

stratified train (80%) and test (20%) subsets and the same train and

test subsets were used across all atlases so that results could be

directly compared with one another. For each atlas, hyperparameter

tuning of penalty parameter C was conducted using nested cross vali-

dation in which both the inner and outer folds were randomly split

into five stratified groups. A single best model and the hyper-

parameter C corresponding to it were identified. A coarse grid search

followed by a finer grid search across the same hyperparameter space

was conducted for all atlases. This nested grid search cross validation

was repeated 100 times to generate 100 separate values for C. The

final model was created by averaging the hyperparameter C obtained

across 100 iterations of the finer grid search. This final model was

evaluated on the test subset and the corresponding accuracy, area

under the receiver operating characteristics curve (AUC), and feature

importance are reported. This was repeated using the same 10 permu-

tations of randomized training and testing splits for all atlases to get a

distribution of overall performance metrics for both HE- and volume-

based classification. The feature weights vector obtained from the lin-

ear SVM classifier for each atlas was averaged across the permuta-

tions and the absolute value of the average scaled such that feature

importance for each ROI falls between zero and one, and it is easier

to interpret across atlases. An ensemble model that combined predic-

tion probability for each test subject's sex across all atlases (Khosla,

Jamison, Kuceyeski, & Sabuncu, 2019) was also implemented for both

HE- and volume- based sex classification separately. Atlas-specific

ensemble models that combined prediction probability from the HE-

and volume- based classification for each test subject's sex was also

implemented. Lastly, a final ensemble model combined prediction

probabilities from both the HE- and volume- based classification for

each test subject's sex across all atlases. Differences in the classifica-

tion AUC and accuracy between the HE-based classification, volume-

based classification, and ensemble model classification based on both

HE and volume were evaluated using a one-way analysis of variance

(ANOVA).

Sex classification based on HE was also performed for the entire

data set and randomly sample-size-matched subsets using the CC400

atlas. Ten permutations of sex classification, as described above, were

completed using stratified splits of the entire data set (n = 1,003,

46.8% male) to determine the overall effect of GM volume matching

on the performance metrics. Additional permutations of sex classifica-

tion using randomly generated subsets were also performed to deter-

mine how an overall decrease in sample size (unrelated to GM volume

matching) may affect the results. Ten distinct subsets (n = 390) were
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randomly generated by selecting 195 males and 195 females from the

entire data set. For each of the 10 distinct subsets, 10 permutations

of sex classification, as described above, were completed. Balanced

accuracy and AUC distributions were generated by averaging the

results across the subsets. Finally, differences in the classification

AUC and balanced accuracy between the GM-volume-matched sub-

set, randomly sample-size-matched subset, and entire data set were

evaluated using a one-way analysis of variance (ANOVA).

3 | RESULTS

We present results from a cohort of 390 GM-volume-matched

healthy young adults (ages 22–37; 190 males) from the HCP—Young

Adult S1200 data set (Van Essen et al., 2013). Each subject had four

complete resting state fMRI scans with 1,200 volumes each that were

acquired over two sessions and preprocessed (Smith et al., 2013).

Each of the four fMRI scans was divided into eight segments of

150 volumes each, and HE was estimated using detrended fluctuation

analysis (Tagliazucchi et al., 2016) on each segment. Voxel-wise HE

maps were obtained by averaging HE over all segments from each of

the four scans (8 × 4 = 32 segments total) to improve signal-to-noise

ratio. Regional HE was obtained by averaging the HE values of each

voxel within a given region. Two sample t tests were used to evaluate

regional sex differences in HE and all p-values were corrected for mul-

tiple comparisons (Benjamini & Hochberg, 1995). A linear SVM was

optimized using 100 iterations of nested grid search with fivefold

inner and outer cross validation and fit on a training subset of the

total data (80%). Classification performance is calculated based on the

final model's performance on the remaining 20% hold-out test data.

This procedure was repeated over 10 permutations to assess robust-

ness to training/test set assignments. To ensure that results were not

subjected to biases introduced by a single GM parcellation scheme, all

analyses were replicated over seven different atlases. An ensemble

model that took the average of each of the individual atlas model pre-

dictions was also created. Finally, to quantify the effect of sample size

and volume-matching on results, HE-based sex classification using the

CC400 atlas was also performed: (a) for the entire data set (n = 1,003)

and (b) for 10 randomly selected (not volume-matched) subsets of

equal size to the volume-matched sample (n = 390). Additionally, as a

secondary analysis, regional volume was used to perform sex classifi-

cation to determine whether volume alone, even after strict GM vol-

ume matching, can still identify sex. Details are given in Methods

section and an outline of the workflow can be seen in Figure 1. For

clarity, we primarily present the results for the CC400 atlas in this arti-

cle and results for all other atlases are shown in the Supplementary

Materials.

3.1 | Sex differences in HE

Significant sex differences (p-corrected<.05) in HE was observed in

28 cortical and subcortical GM regions of the CC400 atlas, including

the left (L) and right (R) superior and middle temporal gyri, L and R

precentral and postcentral gyri, L and R paracentral lobules, L middle

occipital gyrus, R parahippocampal gyrus, L cingulate gyrus, and R

cuneus. In all regions found to be significantly different between the

sexes, males exhibited a higher HE than females. Group average HE

values for males and females are shown in Figure S1. The t-statistics

for regions exhibiting significant sex differences in HE are shown in

Figure 2a for the CC400 atlas. Results from other atlases demonstrate

similar regional patterns of significant sex differences and are shown

in the Supplementary Materials.

3.2 | Sex classification using HE

ROC curves for HE-based sex classification for all atlases can be

seen in Figure 2b, and accuracy and AUC can be found in Table 1.

For HE-based classification, a mean accuracy of 81.2% (SD = 3.5%)

and a mean AUC of 0.87 (SD = 0.033) was achieved using the

CC400 atlas. Regions exhibiting the strongest feature importance

were the cerebellum, amygdala, frontal cortex, and occipital cortex,

and a feature importance map is visualized in Figure 2c. Results

from other atlases identified similar regions as important features

for sex classification and are shown in the Supplementary

Materials.

3.3 | Sex differences and classification using
volume

As a secondary set of analyses, sex differences in regional volume

were analyzed, and sex classification was repeated using regional vol-

ume information. Significant sex differences (p-corrected<.05) in

regional volume was observed in 149 cortical and subcortical GM

regions of the CC400 atlas. Females exhibited larger absolute vol-

umes in the bilateral cingulate cortices, pre- and postcentral gyri, pre-

cunei, and frontal gyri, while males exhibited larger absolute volumes

in bilateral cerebella, hippocampi and parahippocampi, thalami, cau-

dates, and amygdalae. The t-statistics for regions exhibiting signifi-

cant sex differences in volume are shown in Figure 3a for the CC400

atlas. Again, the other atlases demonstrate similar patterns of volu-

metric sex differences and these results are shown in the Supplemen-

tary Materials.

ROC curves for volume-based sex classification for all atlases can

be seen in Figure 3b, and accuracy and AUC can be found in Table 1.

For volume-based sex classification, a mean accuracy of 85.4%

(SD = 2.5%) and a mean AUC of 0.92 (SD = 0.023) was achieved using

the CC400 atlas. Regions exhibiting the strongest feature importance

were the cerebellum, cingulate cortex, and temporal cortex and a fea-

ture importance map is shown in Figure 3c. Results from other atlases

identified similar regions as important features for sex classification

and are shown in the Supplementary Materials. Feature importance

for HE-based models and volume-based models were not correlated

for any of the atlases (p-corrected >.05).
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TABLE 1 Sex classification results from grey-matter-volume-matched data set (n = 390)

Atlas (# of regions)

Hurst exponent GM region volume
Ensemble predictions (Hurst
exponent + GM region volume)

Accuracy (%) AUC Accuracy (%) AUC Accuracy (%) AUC

FS86 (86) 72.95 ± 3.33 0.79 ± 0.04 72.18 ± 6.25 0.79 ± 0.05 75.77 ± 6.34 0.86 ± 0.04

TT (94) 72.95 ± 4.89 0.78 ± 0.04 73.08 ± 3.47 0.82 ± 0.03 78.59 ± 2.57 0.87 ± 0.03

HO (110) 74.23 ± 5.25 0.81 ± 0.03 73.08 ± 6.16 0.78 ± 0.05 77.69 ± 4.70 0.86 ± 0.04

AAL (116) 74.10 ± 2.08 0.79 ± 0.03 77.82 ± 3.31 0.86 ± 0.04 82.31 ± 4.28 0.89 ± 0.03

EZ (116) 74.49 ± 4.81 0.80 ± 0.04 78.08 ± 3.94 0.86 ± 0.04 82.56 ± 4.34 0.90 ± 0.03

CC200 (200) 77.56 ± 4.69 0.85 ± 0.04 81.92 ± 4.16 0.90 ± 0.03 86.15 ± 4.24 0.93 ± 0.03

CC400 (392) 81.15 ± 3.53 0.87 ± 0.03 85.38 ± 2.51 0.92 ± 0.02 87.31 ± 3.22 0.94 ± 0.02

Ensemble model (all atlases) 81.15 ± 3.39 0.86 ± 0.03 81.41 ± 4.84 0.91 ± 0.03 86.67 ± 4.22 0.93 ± 0.03

Note: Mean balanced accuracy ± SD and mean area under the curve (AUC) ± SD over 10 outer-loop permutations for each model are shown. Columns 2–3
show results for sex classification based on the Hurst exponent. Columns 4–5 show results for sex classification based on GM region volume. Columns

6–7 show results for sex classification based on ensemble models that combine prediction probabilities from Hurst exponent—and volume—based classifi-

cation models across the same single atlas. The last row shows the results for sex classification based on an ensemble model that combines predictions

from all seven atlases. Bold text indicates the model with the highest accuracy and AUC in each column

F IGURE 2 Sex differences and classification using regional Hurst exponent (HE). (a) Region-wise sex differences in HE for the CC400 atlas.
Lateral (top) and medial (bottom) sides of the left (LH) and right (RH) hemispheres are shown. Regional t-statistics are shown as per the color scale
for all significantly different (p-corrected <.05) areas. Nonsignificant areas are shown in grey. A positive t-statistic indicates that males have a
higher mean value in that region than females. (b) Receiver operating characteristic curves for linear support vector machine (SVM) sex
classification for all atlases based on HE. Mean and SD of the area under the curve (AUC) values for each atlas are indicated. (c) Feature
importance map for a linear SVM classifier used to predict sex using HE computed on the CC400 atlas. Lateral (top) and medial (bottom) sides of
the left (LH) and right (RH) hemispheres are shown. The absolute value of feature weights obtained from the linear SVM were scaled to generate
normalized feature importance values as plotted per the color scale. Values closer to one indicate greater importance in the overall classification
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3.3.1 | Ensemble models for sex classification

Atlas-specific ensemble models for sex classification were generated

by combining the prediction probabilities from the atlas-specific HE-

and volume- based classification models. Results from the ensemble

models are shown in Table 1. The CC400 atlas' ensemble model per-

formed with a mean accuracy of 87.3% (SD = 3.2%) and a mean AUC

of 0.94 (SD = 0.015). The atlas-specific ensemble models significantly

outperformed the HE-based models in terms of accuracy (p < .05) and

AUC (p < .01). While these atlas-specific ensemble models also had a

higher mean accuracy and AUC than the volume-based models, this

difference was not significant (p > .05).

3.3.2 | Effect of volume-matching and sample size
reduction on classification performance

Classification based on HE for entire data set (n = 1,003) performed

with a mean balanced accuracy of 85.4% (SD = 2.1%) and mean AUC

of 0.94 (SD = 0.012) for the CC400 atlas. Models trained on HE from

the CC400 atlas for 10 randomly selected (not volume-matched)

sample-size-matched subsets (n = 390) performed with a mean bal-

anced accuracy of 84.0% (SD = 1.7%) and a mean AUC of 0.92

(SD = 0.012). A comparison of the balanced accuracy and AUC distri-

butions obtained from sex classification models based on HE on the

GM-volume-matched subset, random sample-size-matched subset,

and the entire data set are shown in Figure 4. Mean balanced accura-

cies achieved by atlas-specific models trained with the GM-volume-

matched subset were significantly worse than atlas-specific models

trained with the entire data set (p < .01). Mean balanced accuracies of

atlas-specific models trained with sample-size-matched subsets were

not significantly different from atlas-specific models trained with the

GM-volume-matched subset (p > .05) or atlas-specific models trained

with the entire data set (p > .05). Mean AUCs achieved by atlas-

specific models trained with the GM-volume-matched subset were

significantly worse than atlas-specific models trained with the sample-

size-matched subsets (p < .001) and atlas-specific models trained with

the entire data set (p < .001). Mean AUCs of models trained on the

F IGURE 3 Sex differences and classification results using regional volume. (a) Region-wise sex differences in volume for the CC400 atlas.
Lateral (top) and medial (bottom) sides of the left (LH) and right (RH) hemispheres are shown. Regional t-statistics are shown as per the color scale
for all significantly different (p-corrected <.05) areas. Nonsignificant areas are shown in grey. A positive t-statistic indicates that males have a higher
mean value in that region than females. (b) Receiver operating characteristic curves for linear support vector machine (SVM) sex classification for all
atlases based on volume. Mean and SD of the area under the curve (AUC) values for each atlas are indicated. (c) Feature importance map for a linear
support vector machine (SVM) classifier used to predict sex using volume of each region in the CC400 atlas. Lateral (top) and medial (bottom) sides
of the left (LH) and right (RH) hemispheres are shown. The absolute value of feature weights obtained from the linear SVM were scaled to generate
normalized feature importance values. Values closer to 1 indicate greater importance in the overall classification
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sample-size-matched subsets and the entire data set were not signifi-

cantly different (p > .05).

4 | DISCUSSION

Our findings reveal sex differences in long-range temporal depen-

dence in healthy young adults, with males exhibiting more persistent

long-range temporal dependence (higher HE) than females in the tem-

poral, parietal, and occipital cortices. We performed sex classification

based on regional temporal dependence using a linear SVM and

achieved mean accuracy as high as 81.1% and mean AUC as high as

0.86. In our secondary analyses, we found that even when males and

females are strictly matched on total GM volume, significant sex dif-

ferences persist in regional volume across many cortical and subcorti-

cal regions. In fact, sex classification based on regional volume using a

linear SVM and achieved mean accuracy of 85.3% and mean AUC

of 0.92.

Male and female brains are similar in many respects but may be

different in others (Cosgrove, Mazure, & Staley, 2007). Understanding

the biology of male and female brain functionality in healthy individ-

uals is crucial to elucidating mechanisms and determining more effec-

tive interventions for many neurodevelopmental, neurological, and

psychiatric illnesses, which exhibit sex differences in prevalence, age

of onset, and symptomatology (Giedd, Raznahan, Mills, &

Lenroot, 2012). Both genetic and hormonal influences play a role in

brain development, but any sex difference in neural structure may also

be shaped through experience, practice, and neural plasticity

(Cosgrove et al., 2007). In this study, sex differences were observed in

the long-range temporal correlation of resting-state time series. How-

ever, the relationship between genetic information, hormonal mea-

sures, and HE was not evaluated in this study. In the absence of proof

of genetic or hormonal influence underlying these observed sex dif-

ferences in HE, it is important to note that any existing sex difference

may have been shaped through experience, practice, or neural plastic-

ity (Eliot, 2011).

F IGURE 4 Balanced accuracy (left)
and area under the curve (AUC) (right)
distributions obtained from sex
classification models based on HE on the
grey-matter-volume-matched subset
(n = 390), randomly selected sample-size-
matched-subset (n = 390), and the entire
data set (n = 1,003). Significant
differences in means (p < .05) are denoted

by *
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Biological substrates driving HE are not well understood.

Although sex differences at cellular and molecular levels of the ner-

vous system have been observed (Cosgrove et al., 2007), we do not

know whether it is gene expression, neuronal signaling, glial activity,

anatomical structure, regional blood flow, hormone effects or other

factors that are driving them. It is even less clear how these factors

may contribute to sex differences in temporal dependence, as mea-

sured by HE, within the resting-state time series. As a result, it is diffi-

cult to interpret what these results may represent in a biological or

behavioral domain. Previous work conjectured that sex differences in

HE may be related to differences in behavioral and cognitive domains

between males and females (Dong et al., 2018), however, no work yet

has analyzed the relationship between behavior and/or cognitive

domains and HE. It is important, however, to acknowledge that sex

differences in cerebral blood flow have been observed at both a global

(R. C. Gur & Gur, 2017; Song et al., 2019) and a regional (Rodriguez,

Warkentin, Risberg, & Rosadini, 1988) level. Since the fMRI signal is a

measure of the BOLD signal, it is possible that sex differences in HE

are related to the sex differences in regional cerebral blood flow that

would then influence the BOLD signal. Recent work has also investi-

gated sex differences in low-frequency fluctuations (Yu et al., 2019),

and eigenvector centrality dynamics (A. M. Wink, 2019) of resting-

state fMRI. While these works do not attempt sex classification, they

do report sex differences in these measures to varying degrees.

Hence, additional properties of the temporal signal may also be con-

tributing to the sex differences observed here.

While no previous studies, to our knowledge, have attempted sex

classification using HE, one study did perform statistical comparisons

of HE between males and females across a wide age range (Dong

et al., 2018). They found HE was higher in females than males in the

parietal lobe (Dong et al., 2018). Here, we report the opposite finding,

that is, that HE is higher in males than females in many regions of the

brain, including parietal lobes. The disagreement in our results and

those of Dong et al. (2018) may be attributable to the demographic

differences in the data sets used; their study had a much wider age

range than the HCP data set and had a smaller sample size (N = 116).

Other studies using the HCP data set in particular have performed sex

classification using ROI-based resting-state functional connectivity

measures (Weis, Patil, et al., 2020; Zhang et al., 2018). Those studies

reported maximum test accuracies of 86.6% (AUC of 0.93) using

whole-brain functional connectivity (Zhang et al., 2018) and 72.6%

using region-specific functional connectivity (Weis, Patil, et al., 2020),

which are comparable to the results reported here. This shows that

while HE and functional connectivity represent different information

about activation patterns in the brain, they share the ability to make

accurate predictions about sex. HE is inherently lower in dimensional-

ity, thus avoiding the curse of dimensionality, and can be mapped to a

single specific region in the brain, making it potentially easier to inter-

pret than functional connectivity that represents pairs of regions.

One key difference between our study and previous ones is that

we strictly control for volume differences between the sexes. This is a

major factor to consider when studying sex differences as there is

inherent bias introduced by volumetric differences between males

and females (Cosgrove et al., 2007; Ruben C Gur et al., 1999). In an

initial analysis performed on the entire HCP data set (n = 1,003), we

found that 725 regions (out of 1,114 across seven atlases) exhibited

significant sex differences in HE. However, upon repeating the analy-

sis on the grey-matter volume matched subset (n = 390) to eliminate

the effects of volumetric differences, we found that only a subset of

the originally identified regions were significantly different between

males and females, suggesting that these differences must be

accounted for when analyzing sex differences.

In terms of the influence of volumetric differences on sex classifi-

cation, a previous study using functional connectivity to classify sex

differences reported a decrease in performance in a GM-volume-

matched subset compared with their entire data set (Weis, Patil,

et al., 2020). However, they attributed the decrease in performance to

the overall decrease in sample size. Our results show that the mean

AUC for the sex classification task was significantly lower for models

trained with the GM-volume-matched subset compared to both the

entire data set and the randomly selected (not volume-matched) sub-

sets of the same size. This suggests that, in our case, the decrease in

AUC cannot be attributed to the decrease in sample size; rather,

volume-matching reduced the classification performance of our fMRI-

only based biomarker. Future studies that investigate sex differences

in functional activation patterns must be aware that results may be

inflated if they are not strictly volume-matching their female and male

populations.

Studies often tend to use global volume matching strategies to

reduce sex effects on volume. We show here that even after matching

subjects on total GM volume, significant volumetric sex differences

persist in many cortical and subcortical regions. Males had signifi-

cantly larger volumes in the cerebellum, hippocampus,

parahippocampus, thalamus, caudate, and amygdala while females had

significantly larger volumes in the cingulate, precuneus, frontal cortex,

and parietal cortex. This demonstrates that sex differences in regional

brain volume exist even after matching subjects for GM volume.

Finally, atlas-specific ensemble models that combined the prediction

probabilities from the HE- and volume-based models had significantly

better performance than HE based models and trends for better per-

formance than volume-based models. This suggests that HE and vol-

ume measures are capturing distinct information that distinguishes

males and females.

In this work, we repeated all of our analyses on sex differences

and sex classification using seven different parcellation schemes. This

was to ensure that sex differences observed in HE could be replicated

with different atlases and were not subjected to biases introduced by

one particular parcellation. The parcellations were used to segment

the brain's GM into varying number of regions ranging from 86 to

392. For sex classification based on HE, we find that the classification

performance, as measured by balanced accuracy, is significantly corre-

lated with the number of regions (r = .98, p = .0001) in the atlas on

which each model is based. In other words, as the number of regions

increases, the classification performance also improves, suggesting

that the algorithm may benefit from the increased precision of the

parcellation, which also increases data dimensionality. While not
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explicitly analyzed, a similar trend has been observed in previous work

(Khosla, Jamison, Kuceyeski, et al., 2019). This observed correlation

between number of regions and classification accuracy also holds for

sex classification performed in our secondary analyses using regional

volume (r = .88, p = .0094) and ensemble approaches (r = .79,

p = .0331). These results suggest that the classification models benefit

from the increased dimensionality of data. This effect of parcellation

scheme might be important to consider in future work attempting to

classify subjects based on neuroimaging data.

The choice of how to compute HE may also influence overall

results. Here, we estimated HE using DFA applied to voxel-wise time

series and then averaged HE across voxels to get each region's HE. An

alternative approach is to calculate a single HE for each region using

the average time series over each voxel in that region. All analyses

presented in this article using HE computed on voxel-wise time series

were repeated using HE computed on ROI time series and similar

results were obtained for sex differences and sex classification with

the CC400 atlas. These results are presented in detail in the Supple-

mental Materials, which largely showed similar results to what is pres-

ented in the main text.

4.1 | Limitations

Machine learning problems based on neuroimaging data are prone to

the curse of dimensionality. Voxel-wise data are on the order of hun-

dreds of thousands of features, and even when examining ROI-based

data, there can be several hundred features. To avoid the curse of

dimensionality and remove noise from the data, we used parcellations

of the brain to generate a single measure per ROI for each subject.

This resulted in the dimensionality being reduced from hundreds of

thousands to between 86 and 392, depending on the atlas. However,

by drastically reducing the overall dimensionality, information may

have been lost and biases may have been introduced that limit the

overall classification performance. In an attempt to mitigate possible

biases introduced by atlas selection, the findings described in this arti-

cle were evaluated over seven different parcellation schemes. How-

ever, to further reduce possible bias introduced by the use of atlases,

a voxel-wise analysis of sex differences could be examined in future

work. Finally, a single scaling parameter such as the HE is limited in its

ability to characterize temporal features due to the complex nature of

fMRI time series (Shimizu, Barth, Windischberger, Moser, &

Thurner, 2004). An alternative to the HE is to use a whole set of frac-

tal Hölder exponents instead which can also account for local inten-

sity fluctuations (Shimizu et al., 2004).

Sex differences in functional brain activity may be due to an

underlying hormonal effect (Jacobs & Goldstein, 2018; Pritschet

et al., 2019). While various studies have shown that resting-state

functional connectivity fluctuates across the menstrual cycle in

women (De Bondt et al., 2015; Hjelmervik, Hausmann, Osnes,

Westerhausen, & Specht, 2014; Weis, Hodgetts, & Hausmann, 2019),

the effect of hormones on the HE has not yet been studied. Hormonal

measures which would allow the study of the relationship between

females' menstrual cycles and regional HE were not available in the

data set used for this work. Future data sets should aim to collect hor-

monal levels such that a thorough investigation on the effect of men-

strual cycle on HE can be examined. It is also important to note that

hormonal fluctuations in regional HE may result in females exhibiting

increased variability in those regions, as conjectured in (Weis, Patil,

et al., 2020). Consequently, this could influence classification perfor-

mance such that classification is more accurate in women during cer-

tain points of their cycles than others.

Studies examining sex differences often do not consider an indi-

vidual's gender identity and fluidity. This study only used information

about each subject's self-reported sex in the absence of gender identi-

fication. Males and females are exposed to different expected gender

roles and a lifetime of gender-differentiated experience could be the

underlying cause to sex differences in neuroimaging biomarkers

(Eliot, 2011). These social factors may be partially responsible for the

regional group differences in temporal dependence and overall classi-

fication performance reported in this study. Future data sets should

aim to collect data about gender identity and fluidity for subjects and

studies should incorporate this information into their work.

This study only used data from the HCP data set. Time series

obtained from fMRI can be sensitive to scan parameters and

preprocessing pipelines. Although test hold-out sets were used exclu-

sively for evaluating the models generated for sex classification, the

overall results may not be entirely generalizable to other data sets. A

recent study used resting state functional connectivity data from HCP

data set to make predictions about behavioral function

(Li et al., 2019). The study identified that using functional connectivity

with global signal regression improves prediction of a wide range of

behavioral phenotypes compared to functional connectivity without

global signal regression. It is therefore important to acknowledge that

preprocessing steps used in the HCP data as well as in computation of

HE for this study may have an influence on the overall results

obtained.

5 | CONCLUSION

Understanding sex-specific brain differences in healthy individuals

is a critical first step towards understanding sex-dependent varia-

tion in neurological, developmental, and psychiatric disorders and,

possibly, the use of this information to develop personalized inter-

ventions. In this study, we observe that males exhibit higher tempo-

ral dependence of resting-state time series than females in the

temporal, parietal, and occipital lobes. Furthermore, using ROI-

based information about temporal dependence, we were success-

fully able to classify males and females using a linear SVM algorithm

with a maximum mean accuracy of 81.1% and mean AUC of 0.86.

We also identify that regional volume differences between males

and females persist even after matching for cortical and subcortical

grey-matter volume. Regional volume can also be used to success-

fully classify males and females with a maximum mean accuracy of

85.3% and mean AUC of 0.92. Finally, we demonstrate that
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matching male and female groups for GM volume can decrease sex-

classification accuracy of functionally-derived biomarkers, an issue

that must be a carefully considered in future studies. Additional

research is needed to understand the biological substrates underly-

ing the observed sex differences in temporal dependence of

resting-state fMRI.

6 | CITATION GENDER DIVERSITY
STATEMENT

Recent work in neuroscience and other fields has identified a bias in

citation practices such that papers from women and other minorities

are under-cited relative to the number of such papers in the field

(Caplar, Tacchella, & Birrer, 2017; Chakravartty, Kuo, Grubbs, &

McIlwain, 2018; Dion, Sumner, & Mitchell, 2018; Dworkin

et al., 2020; Maliniak, Powers, & Walter, 2013; Thiem, Sealey, Ferrer,

Trott, & Kennison, 2018). Here we sought to proactively consider

choosing references that reflect the diversity of the field in thought,

form of contribution, gender, and other factors. We used classification

of gender based on the first names of the first and last authors

(Dworkin et al., 2020), with possible combinations including male/

male, male/female, female/male, and female/female. Excluding self-

citations to the first and last authors of our current article, the refer-

ences contain 59.6% male/male, 12.8% male/female, 19.1% female/

male, and 8.5% female/female. We look forward to future work that

could help us to better understand how to support equitable practices

in science.
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