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Stress is categorized as a condition of mental strain or pressure approaches because of upsetting or requesting conditions. (ere
are various sources of stress initiation. Researchers consider human cerebrum as the primary wellspring of stress. To study how
each individual encounters stress in different forms, researchers conduct surveys andmonitor it.(e paper presents the fusion of 5
algorithms to enhance the accuracy for detection of mental stress using EEG signals. (eWhale Optimization Algorithm has been
modified to select the optimal kernel in the SVM classifier for stress detection. An integrated set of algorithms (NLM, DCT, and
MBPSO) has been used for preprocessing, feature extraction, and selection. (e proposed algorithm has been tested on EEG
signals collected from 14 subjects to identify the stress level. (e proposed approach was validated using accuracy, sensitivity,
specificity, and F1 score with values of 96.36%, 96.84%, 90.8%, and 97.96% and was found to be better than the existing ones. (e
algorithm may be useful to psychiatrists and health consultants for diagnosing the stress level.

1. Introduction

Mental stress has become a social problem of the 21st
century. It affects the functionality of the routine work and
economy of an individual human and a nation as well. Stress
can be classified as positive and negative. Positive stress
alerts us and avoids the danger leading to performance
enhancement while negative stress can cause mental and
behavioral changes as one does not get relaxation in between
various challenges. Enthusiastic stress emerges because of
work pressure, complying with up time constraint, tests, and
so on [1]. (ere are various sources of stress initiation [2].
Researchers consider human cerebrum as the primary
wellspring of stress [3, 4]. To study the effect of stress on
different individuals, surveys are conducted and even
monitoring of individuals takes place [5]. Self-report surveys
are one of the most regularly utilized techniques to gauge a
person’s degree of stress [6–8]. To distinguish human
feelings and stress discovery, electroencephalogram (EEG) is
a significant technique used in stress detection and has
shown some significant results [9]. Electroencephalography
(EEG) is a test to estimate and record the brain’s electrical

activity [10, 11]. (e handling of EEG signals is the most
basic part in the present investigations [12]. Various tech-
niques have been developed either on the basis of a ques-
tionnaire or quantifying the changes in physiological signals
to measure and study the stress level. Physiological signals
are online real-time system and gives better accuracy in
stress estimation. (ese can be classified into two types: (i)
invasive type and (ii) noninvasive type. Invasive type
methods such as local field potential (LFP) and electro-
corticography (EcoG) provide high resolution in temporal
and spatial axes and high specificity. However, they have
limited coverage and may be not suitable to all situations.
(e noninvasive methods such as (i) functional magnetic
resonance imaging (fMRI), (ii) electroencephalography
(EEG), and (iii) magnetic encephalography (MEG) are
presently used for assessment of stress effect on human
health. EEG and MEG have higher resolution whereas fMRI
has high spatial resolution but very low temporal resolution.

(e proposed modified Whale Optimization Algorithm
(WOA) selects the optimal kernel in the support vector
machine (SVM) classifier for stress detection. Besides, the
other main contributions of this paper are the following:

Hindawi
Computational Intelligence and Neuroscience
Volume 2020, Article ID 8860841, 14 pages
https://doi.org/10.1155/2020/8860841

mailto:pagarwal@jamiahamdard.ac.in
https://orcid.org/0000-0002-7297-335X
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/8860841


(1) We integrated a certain set of algorithms (namely,
NLM, DCT, and MBPSO) for preprocessing, feature
extraction, and selection from noisy EEG.

(2) Optimal set of features which depend on the fre-
quency level are selected using MBPSO technique.

(3) (e Kernel of SVM is modified using WOA, since
the optimal SVM machine learning classifier has
been used for long term stress classification in which
it attains the better performance.

(4) Also, the proposed algorithm has been tested to
identify the stress level among 14 subjects.

(5) Further, the results of modified and existing algo-
rithm have been compared to identify the efficiency
of the 2 algorithms. Here, the authors want to
mention that WOA has not been used in any neu-
rological application and an attempt has been made
by the authors to observe this algorithm effect in
identifying stress through EEG signals.

(is paper is divided into 5 sections. Section 1 explains
the stress behavior and its analysis in Introduction, Section 2
explores the different research work carried out in the re-
lated area, Section 3 explains the methodology proposed in
the paper, and Section 4 explains and discusses the results
obtained after implementing our methodology on our
original work and presents comparison with modified
version of our original implemented work. Section 5 con-
cludes the study of this research paper.

2. Literature Review

A lot of work has been carried out on detecting the stress.
Some are discussed in this section.

In [13], authors have enhanced some statistical tech-
nique using Renyi’s entropy to develop a technique for
removing artifacts that get introduced during the EEG
recordings.

Authors in [14] had stated the difficulty in removing
artifacts present in biomedical signals. To overcome this
difficulty, they had developed a method where they used
discrete wavelet transform (DWT) and independent com-
ponent analysis (ICA) together. (ey tested their method on
new real-time data to show its effectiveness.

Authors of [15] had used support vector machine (SVM)
for predicting protein stability that changes from single
amino acid mutations. (is inspired us to use SVM in
detecting stress from EEG signals.

In [16], authors have proposed a strategy for identifying
the stress by using the EEG signals. (ey had used K-means
clustering method for data classification and technique.

Gaurav et al. [17] have portrayed a strategy to distinguish
mental stress level dependent on physiological parameters.
(ey had used SVM based on the binary classifier and
classified stress in 2 levels and 3 levels, respectively. Out of 41
volunteers, 30 subjects had been correctly classified in the
binary classifier and 26 subjects were identified correctly in
the ternary classifier.

In [18], authors have proposed mental stress discovery
utilizing phonocardiography signals. Precompetitive (or
exam related) mental stress was identified from the S1-S1
interim of PCG signals, also termed as Interbeat Interval
(IBI). (ey had also performed another experiment; Krus-
kal–Wallis statistical test was used for identifying and
extracting various features. (e extracted features are then
fed into SVM based on the least square classifier.

Authors of [19] have analyzed the effect of English and
Urdu music tracks on human stress level. (e EEG signals
were collected while the subjects were listening either to
English or Urdumusic. Authors had implemented algorithm
based on 4 classifiers, namely, sequential minimal optimi-
zation, stochastic decent gradient, logistic regression (LR),
and multilayer perceptron.(ey classified stress into 2 and 3
classes. It was concluded that females are more responsive
than males to music.

An extensive structure for the initial identification of
mental stress by breaking down varieties in electroen-
cephalogram (EEG) and electrocardiogram (ECG) signals
has been proposed in [20]. (e prediction of treatment
efficacy compared to accuracy had been emphasized. (e
model explained in the paper defined the stress in 4 classes.
(e results had shown significant difference in the stress and
the control conditions.

In another research illustrated in [21], a technique has
been proposed to consequently perceive laborers’ stress in
building locals. Authors had extracted features in frequency
and time domain using fixed and sliding window techniques.
(ey had shown that fixed window approach along with the
Gaussian support vector machine resulted in highest ac-
curacy. Authors also collected cortisol, stress hormone from
workers during working hours, to classify into low and high
stress.

In [22], a machine learning-based approach has been
proposed to deal with driving-actuated stress. (ey had used
3 classifiers, namely, SVM, neural networks, and Random
Forest, to classify the EEG signals collected from the sub-
jects. (e study concluded by stating SVM performed better
during rest and stress states, over others.

In [23], two sparsity based techniques are used to remove
the eye blink artifacts, namely, Morphological Component
Analysis (MCA) and K-SVD. Results of both algorithms
were correlated with the developed FORCe method. K-SVD
algorithm removes eye blink better than theMCA algorithm.

Qi1 [24] discussed the elimination of the EOG product
from EEG signals using Recursive Least Square (RLS) al-
gorithm. In addition to it, Second-order Blind Identification
(SBI) algorithm was also used.

In [25], authors employed low-cost wireless EEG headset
for quantifying various cognitive stress states on the single-
trial basis. Here, Stroop-type color-word interference test
was conducted for eliciting the mild stress responses when
recording the scalp EEG of 18 subjects. (en, the compu-
tational feature was extracted from EEG signals during each
stimulus presentation. (en, the feature extraction output
was provided as the input to quadratic discriminant analysis,
logistic regression, and k-nearest neighbor classifier for
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classification. Here, the accuracy was found better, but failed
to examine cognitive stress in real time.

Authors of [26] have developed a multiclass support
vector machine (SVM). To identify and classify stress, au-
thors had added error correction code (ECOC) to SVM. To
better record stress from PFC region, a limited number of
EEG-electrodes were used. (us, classification of stress
resulted in average accuracy.

(e research in [27] presented stage-wise methodology
for stress classification in humans. (e method suggested in
this paper can prepare classification model in limited time
and increased the accuracy. Data was collected from vol-
unteers, who wore single channel EEG device.

In [28], a technique was developed using multiclass
support vector machine for brain stress classification. Al-
though this framework achieves better performance in
monitoring the brain network states, it failed to consider
samples for training process.

(e research carried out in [29] employed SVM clas-
sification for stress classification using EEG signals. How-
ever, the accuracy was found better, but failed to examine a
large data for stress and nonstress subjects.

In another research carried out in [30], a fNIRS-based
brain-computer interface for EEG stress classification was
developed. Here, the accuracy was found better, but failed to
include the bundle type dataset to achieve minimal error.

3. Proposed Methodology

(e suggested method has four main phase algorithms,
namely, (i) preprocessing, (ii) feature extraction, (iii) feature
selection, and (iv) classification (stress level identification),
besides data acquisition stage. (e block diagram of the
suggested methodology is shown in Figure 1.

3.1. Data Acquisition. (e dataset used in the work was
taken from [31]. Around 14 human subjects with normal
vision (7 women and 7 men) of an average age of 26 years
(ranging between 22 and 46) volunteered for the study. (e
subjects sat in a dimly lit room, at a distance of 110 cm from a
colored computer screen having a block of 100 images.
Subjects were also holding a touch-sensitive button. (e 32
electrodes mounted on the EEG cap recorded the associated
EEG. Electrodes were placed in 10–20 system and are di-
vided into 2 categories: frontal electrodes and occipital
electrodes. A SynAmps recording system (Neuroscan Inc.)
was attached to a PC, which documented data at 1000Hz. In
addition, 500Hz of a low-pass filter was used and impedance
was maintained below 5 kOhms. Images were divided in
targets and nontargets (distractors) while shown to subjects.
Targets are photographs including images of mammals,
reptiles, arthropods, fish, and birds and nontargets include
images of outdoor and indoor places, natural landscapes or
urban sites, fruit, vegetables, trees, and flowers.(ere are two
types of tasks, namely, categorization or recognition. Cat-
egorization had 1000 pictures (50% distractors and 50%
objectives), shown only once to subjects. During the cate-
gorization task, targets and nontargets had an equal chance

in every block of a hundred pictures so the target photograph
assigned to the block was viewed fifty times between 50
completely different nontarget images. Fifteen targets (a
total of 210 targets) and therefore the same 750 nontarget
stimuli were tested by every one of the fourteen subjects.
One hundred forty targets (10 pictures per subject) con-
tained an animal within the 210 pictures used as targets and
were, therefore, closest to the target images employed in the
categorization method. Stimuli onset between 2 images was
random from 1800ms to 2200ms. Subject’s response as go/
no-go is recorded. On seeing the target image, they had to
release the button as soon as possible while, on watching the
nontargets, the button should not be released. Time to react
is 1000ms, beyond which it was recorded as no-go or
nontarget. (is experiment was performed for 2 days.
Subjects were screened for alternating tasks of categorization
and recognition in a session of 10 blocks each and corre-
sponding EEG is documented. For the method of recog-
nition task, every test block was preceded by a learning stage.
During training or learning phase, the target images were
flashed perpetually for twenty ms (comparable to the test
circumstances). In order to respond to images accurately
and quickly in the respective sequence of images, partici-
pants were advised to memorize images. (e block of testing
began instantly after the learning stage. Figure 2 shows the
international system used for 32-electrode setup for the said
experiment.

3.2. Preprocessing. (e preprocessing techniques remove
undesirable artifacts from the EEG signal and remove the eye
blinking artifacts [32]. Normalized least mean square
(NLMS) technique is used [33] for preprocessing.(eNLMS
algorithm updates the coefficients of an adaptive filter as tap-
weight at (m+ 1) iterations as per the following:

f(m + 1) � f(m) + μ · e(m)
x(m)

‖f(m)‖2
, (1)

where μ is a time varying step size and should be carefully
chosen, as large value can lead to algorithm instability while
less value can make algorithm large time converge. e (m) is
estimated error and its conjugate is found at mth iteration.
(e modification in NLMS is normalized to squared Eu-
clidean norm of μ (m) at (m+ 1) iteration. Based on the
above process, the input raw signal is preprocessed and the
resultant output was fed to the next step, feature extraction.

Input dataset

(i) Normalized least mean square (NLMS)

(ii) Discrete cosine transformation (DCT)

(iii) Modified binary particle swam optimizer (MBPSO)

(iv) Modified support vector machine (MSVM)

Figure 1: Block diagram of EEG data processing algorithms.
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3.3.FeatureExtraction. Feature extraction retrieves themost
significant features from the input signal. In the proposed
algorithm, features were extracted using the discrete cosine
transform (DCT). In the two stages of the DCT, there exist 2
coefficients, each concentrated on the low and high fre-
quency components. To obtain the DCT coefficients, the
DCTwas applied on the input signal, in the first phase. Later,
in the second phase, feature vectors were constructed using
some of the selected coefficients. (e DCT input a (n) is a set
ofN data values (EEG samples, audio samples, or other data)
and the output A (n) is a set of N Discrete Cosine Transform
coefficients [34].

A(n) � ∝ (p) 􏽘
N−1

n�0
a(n)cos

π(2n + 1)p

2N
􏼢 􏼣,

a(n) � 􏽘
N−1

k�0
∝ (p)A(n)cos

π(2p + 1)n

2N
􏼢 􏼣,

∝ (p) �

��
1
N

􏽲

, p � 0,

��
2
N

􏽲

, p≠ 0.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(2)

(e first coefficient A (0) is called the DC coefficient and
rests are referred to as AC coefficients. (e DC coefficient
encompasses mean from the input signal. (e DCTdisplays
good energy compaction for highly correlated signals. (e
feature vector has been generated from the input signal by
utilizing the DCT. Some of the features extracted were mean,
median, standard deviation, kurtosis, skewness, variance,
short time energy, waveform length, frequency value, SNR,
and mean absolute deviation. (ere are a total of 22 features
extracted.

3.4. Feature Selection. In order to choose the optimal feature
for stress level identification issue, the modified binary
particle swarm optimization (MBPSO) algorithm was

utilized. In the proposed method, traditional particle swarm
optimization algorithm was modified by means of binary
value to modified binary particle swarm optimization
(MBPSO) [35]. (e new random particle for selecting the
new optimal feature set generation is used as follows:

v
new
p d � wv

old
pd + c1r1 pbestpd − x

old
pd􏼐 􏼑􏽨 􏽩

+ c2r2 gbestpd − x
old
pd􏼐 􏼑􏽨 􏽩,

(3)

where gbest and pbest are global best and local best values of
fitness function from entire iterations and current iteration,
respectively, vnewpd represents the new velocity particles, and
voldpd represents the previous velocity of particle p in dth it-
eration. (e c1 � c2 � 2 are constant variable. Each particle
representing the feature selection is given by

S V
new
pd􏼐 􏼑 �

1
1 + e

− vnew
p d

. (4)

(e feature on renewal is calculated by the function
S(vnewpd ), in which the speed value is Vnew

pd . (e xnew
pd repre-

sents the new particle in the MBPSO technique. If S(Vnew
pd )

is larger than a randomly formed disorder number within
(0, 1), then the feature is selected; otherwise, the feature is
not selected. (us, the final optimal feature set has been
extracted by utilizing the MBPSO technique.

3.5. Classification (Stress Level Identification). (e proposed
stress level identification is finally performed with the help of
support vector machine (SVM). Here, the Modified Whale
Optimization Algorithm (MWOA) is used to select the
optimal kernel in the SVM classifier. (e kernel function
used in support vector machines (SVM), K (xn, xi), trans-
formed the original data space into a new space with a higher
dimension.(e accuracy of theWOA algorithm as discussed
in [36] is enhanced by assigning fitness objective function
values to random numbers. (is is discussed as (i) encircling
prey phase, (ii) exploitation (bubble-net attacking) phase,
and (ii) exploration (search for a prey) phase. For hunting,
whales use the spiral bubble technique which is depicted in
the WOA.

3.5.1. Encircling Prey Phase. During the said phase, the
whales, which are search agents looking for the prey,
identifies the position of the prey, and then they start circling
them. (is can be formulated using the following:

D � C · X
∗
(t) − X(t)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌, (5)

X(t + 1) � X
∗
(t) − A.D, (6)

where A and C are coefficient vector, the current iteration is
recorded by t, and X∗ represents the best position vector
obtained till current phase while X indicates the overall best
value of respective position vector. (e coefficient vectors, A
and C, are evaluated as follows:

A � 2a · r1 − a,

C � 2 · r2,
(7)
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Figure 2: (e 32-electrode location map used in the data acqui-
sition step as per 10–20 international system.
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where r1, r2 are random numbers that decrease linearly
during exploitation and exploration phases.

3.5.2. Exploitation (Bubble-Net Attacking) Phase. (is phase
marks the implementation of two techniques, namely,
shrinking encircling technique (Figure 3) and spiral
updating position (Figure 4) [36].

Whales update their position as per the following
equation:

X(t + 1) � De
bt cos(2πt) + X

∗
(t), (8)

whereD � |X∗(t) − X(t)| indicates the distance between the
current whale’s position and the prey’s position and b
represents a constant which describes the movement of
whales in a spiral path. (is switching can be expressed
mathematically by

X(t + 1) �
X∗ − AD, p< 0.5,

Debt cos(2πt) + X∗(t), p≥ 0.5,
􏼨 (9)

where p is a random number over the interval [0, 1].

3.5.3. Exploration (Search for a Prey) Phase. (is phase
explores the property of the whales to refresh their position
in accordance with the reference whale, which is selected
randomly.(us, the updation to identify the best whale for a
global search is presented by equations (10) and (11) [36]:

D � CXrand − X
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌, (10)

X(t + 1) � Xrand − AD, (11)

where Xrand is a random value that identifies the location of
the randomly selected whale from the pool of available
whales. (e iteration will continue till it reaches the max-
imum iteration.

Further, the WOA is enhanced to the MWOA by cal-
culating random values, r1 and r2, used in encircling prey
phase as per equations (12) and (13) [33–38]:

r1 �
fmax + fmin

2
, (12)

r2 �
fmax − fmin

2
, (13)

(X∗ – AX, Y)

(X∗ – AX, Y∗ – AY) (X∗, Y∗ – AY) (X, Y∗ – AY)

(X∗ – AX, Y∗) (X, Y∗)
(X∗, Y∗)

(X∗, Y) (X, Y)

A = 0.2
A = 0.4

A = 0.5

A = 0.8
A = 1

Figure 3: WOA shrinking encircling mechanism [37].

x

l10.5 –1

(X, Y)
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Figure 4: WOA spiral updating position [37].
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where fmax is maximum value of fitness function and fmin is
minimum value of fitness function from MBPSO.

3.6. 8e Objective Function. (e purpose of calculating
objective function is to enhance the accuracy of theWOA for
the stress level identification and is given by

Fit � max
i�1: n

tp + tn􏼐 􏼑

tp + tn + fp + fn􏼐 􏼑
⎛⎝ ⎞⎠, (14)

where tp and tn correspondingly represent true positive and
true negative and fp and fn correspondingly represent false
positive and false negative.

4. Results and Discussion

(e proposed optimal stress level predictions have been
computed using MATLAB. In this section, the proposed
strategy is explained through the results. (e input EEG
signal dataset is taken from [31]. For each of the 14 subjects
(25 files for each subject), preprocessing was performed
using the NLMS algorithm. (e adaptive filter removes the
eye blink artifacts. (e input signals have 31 different at-
tributes as shown by different colors in Figure 5. (e results
of Figure 4 are images before preprocessing step. (e
subjects are named as cba, clm, ega, fsa, gro, hth, lmi, mba,
mma, mta, pla, sce, sph, and wpa.

Further, Figure 6 shows the NLMS output after eye blink
removal for 14 subjects. (is shows the results after pre-
processing step. In the preprocessing, each input signal has
31 different attributes.(eNLMS preprocessing technique is
used to uniquely identify a signal which depends on 31
attributes of each subjects. Hence, the signal data has been
compressed which is represented in the graphical plots.

Figure 7 shows a total of 24 features extracted (for cba
subject) using the DCT. (e DCT is used to compress the
signal from different attributes and the feature extraction has
been computed for the vector subject. (e DCTconverts the
original signal into vectorized outcomes in which it is used to
enhance the classification process to acquire the different
long term stress level classification.

While Figure 8 shows the DCToutput for all 14 subjects.
From the DCT signal, the proposed features are extracted
and then the optimal features are selected by MBPSO. (e
algorithm runs for 100 iterations to find the best among the
24 extracted. Finally, the stress level identification is done by
SVM. It should be noted that, from 25 files for each subject,
18 were considered for training and 7 were considered for
testing purposes.

Among these 24, 10 best features are selected for both
current and proposed algorithm, respectively. For one of the
subjects, cba, selected features are shown in Table 1. Here it
should be noted that the algorithm for selecting best features
had run for 100 iterations and the best results after each
iteration were noted. (e iterations which had best result
among each other are selected for the next step.

(e performance analysis is based on the confusion
matrix parameters. (e results are assessed by accuracy,
sensitivity, specificity, and F1 score.

Accuracy �
TP + TN

TP + TN + FP + FN
,

Sensitivity �
TP

TP + TN
,

Specificity �
TN

(TN/FP)
,

F1 score �
2TP

(2TP + FP + FN)
,

(15)

where TP refers to true positive, TN refers true negative, FP
refers to false positive, and FN refers to false negative.

Table 2 demonstrates the overall result attained for all
subjects. (e performance analysis comprising accuracy,
sensitivity, specificity, and F1 score has been evaluated. (e
different techniques were such as MPSO_MWOA_SVM
(proposed technique), PSO_MWOA_SVM, MBPSO_-
WOA_SVM, and MBPSO_SVM. From the comparative
analysis, the proposed technique shows the better outcomes
when compared with the other techniques.

Figure 9 is graphical representation of Table 2 for easier
understanding.

Figure 7: 24 features extracted and their respective values using DCT (for cba subject).
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(e effectiveness of the proposed strategy
(SVM+MWOA) contrasted with current method
(SVM+WOA) is presented in Table 3.

(e average computational time taken by the proposed
algorithm is 46 sec. Figure 10 shows the histogram of the
results in Table 3. Average accuracy, sensitivity, specificity,
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Figure 8: (e DCT plot for the signals whose features were extracted in Figure 6.
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and F1 score for existing algorithm are 0.9165, 0.9623,
0.6193, and 0.9523, while for proposed algorithm, average
accuracy, sensitivity, specificity, and F1 score are 0.9602,
0.9689, 0.9087, and 0.9800.

Stress level was categorized into 4 different classes. On
the basis of above parameters, files in each subject were
categorized as low, high, medium, or no stress level. (e
tasks were carried out in 2 days. Table 4 shows the stress level
identification for each task carried out in 2 days, for subject
cba.

Figure 11 shows the overall average performance of the
entire input dataset.

When the various results are analyzed, it is found that the
proposed method (SVM+MWOA) attains the maximum
performance value compared to the original method
(SVM+WOA). (e graphical representation of the ROC
plot for cba is shown below in Figure 12.

From the outcomes, it is observed that the proposed
stress level identification accomplishes better classification
accuracy when contrasted with current techniques.

Table 1: Feature selected for the subject cba.

Feature selected using SVM+WOA (current algorithm) Feature selected using SVM+MWOA (proposed algorithm)
Median Skewness
Frequency value Mean absolute deviation
Standard deviation Wilson amplitude
SNR Spectral centroid
Standard deviation Zero crossing rate
Waveform length Zero crossing rate
Spectral flux Mean
Mean absolute deviation Mean absolute deviation
Variance Spectral flux
Skewness Cross convolution

Table 2: Effectiveness of different technique for overall subjects.

Techniques Accuracy Sensitivity Specificity F1 score
MBPSO+MWOA+SVM 0.989637 0.497382 0.989691 0.989583
MBPSO+WOA+SVM 0.948187 0.497268 0.968421 0.947917
PSO+MWOA+SVM 0.917098 0.508475 0.915789 0.918367
MBPSO+ SVM 0.852041 0.508982 0.863158 0.854271
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Figure 9: Average performance comparison of various techniques used along with particle swarm optimization (PSO) and modified binary
particle swarm optimization (MBPSO).
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Table 3: Effectiveness of proposed stress level, identification for 14 subjects in the dataset.

Subjects Metrics
Accuracy Sensitivity Specificity F1 score

Cba Existing 0.9226 0.9664 0.6405 0.9558
Proposed 0.9141 0.9716 0.9074 0.9815

Clm Existing 0.9162 0.9611 0.6272 0.9521
Proposed 0.9586 0.9632 0.9124 0.9769

Ega Existing 09195 0.9646 0.6116 0.9543
Proposed 0.9645 0.9692 0.9095 0.9804

Fsa Existing 0.9050 0.9610 0.5920 09449.
Proposed 0.9660 0.9714 0.9078 0.9813

Gro Existing 0.9180 0.9618 0.6262 0.9532
Proposed 0.9592 0.9645 0.9055 0.9773

Hth Existing 0.9184 0.9608 0.6363 0.9534
Proposed 0.9671 0.9722 0.9111 0.9812

Lmi Existing 0.9213 0.9636 0.6345 0.9552
Proposed 0.9623 0.9675 0.9122 0.9790

Mba Existing 0.9127 0.9626 0.5969 0.9501
Proposed 0.9660 0.9707 0.9112 0.9813

Mma Existing 0.9142 0.9586 0.6262 0.9509
Proposed 0.9627 0.9699 0.9052 0.9794

Mta Existing 0.9141 0.9608 0.5986 0.9512
Proposed 0.9674 0.9729 0.9038 0.9821

Pla Existing 0.9184 0.9596 0.6363 0.9536
Proposed 0.9649 0.9705 0.9055 0.9806

Sce Existing 0.9173 0.9611 0.6307 0.9527
Proposed 0.9614 0.9664 0.9060 0.9787

Sph Existing 0.9262 0.9681 0.6271 0.9583
Proposed 0.9642 0.9650 0.9154 0.9806

Wpa Existing 0.9072 0.9622 0.5862 0.9465
Proposed 0.9646 0.970 0.9101 0.9803
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Figure 10: Comparative results of 2 subjects (cba and clm) based on confusion matrix parameters. (e results show the comparison of
existing and proposedmethod on 4 different parameters. It also explains the effectiveness of proposedmethod over existing. (a) Parameter of
cba. (b) Parameter of clm.
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Figure 12: Existing (nonmodified SVM) and proposed (modified SVM) ROC plots for subject cba. (a) Exiting method (cba). (b) Proposed
method (cba).

Table 4: (e subject cba files (different tasks) divided into various stress levels (low, medium, high, and no stress).

Day 1 Day 2
Subject cba Stress level Subject cba Stress level
Cbad11 Low Cbad21 Low
Cbad110 Low Cbad210 Low
Cbad111 Medium Cbad211 No stress
Cbad112 High Cbad212 Low
Cbad113 Low Cbad22 No stress
Cbad12 High Cbad23 High
Cbad13 Medium Cbad24 Low
Cbad14 Low Cbad25 Medium
Cbad15 No stress Cbad26 No stress
Cbad16 High Cbad27 Low
Cbad17 Low Cbad28 High
Cbad18 Medium Cbad29 Medium
Cbad19 No stress
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Figure 11: Average performance comparison of the input EEG dataset.
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5. Conclusion

(e test outcomes depict the effectiveness of the stress level
identification by figuring the right and accurate estimation
with the maximum accuracy value. (e proposed method
accomplishes the maximum accuracy, sensitivity, specificity,
and F1 score with values 96.36%, 96.84%, 90.8%, and 97.96%.
From the analyses of the above results, we found that adding
fitness function in the WOA could enhance the efficiency of
the algorithm. Also, it can be well concluded after the
discussions of the results that the set of algorithms chosen
for the study suits best to enhance the efficiency of our
proposed algorithm. Eye blink artifacts had been removed
during preprocessing step using NLMS. Later, for feature
extraction, the DCT had been used and further MBPSO has
been for feature selection. Further for classification step,
SVM has been used along with the WOA, which was further
modified for classifying stress effectively. Although an at-
tempt to classify the stress level for each subject using the
WOA has beenmade in this research, we still feel if few other
biological features along with EEG can be added, then we
can detect level stress much accurately and efficiently. Be-
sides, implementation of the WOA and its modified version
has been successfully done in this application of stress de-
tection. (e future work can also be broadened by utilizing
some other independent component analysis and other
machine learning techniques to improve the characteriza-
tion exactness.
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