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Background.(e benefit of prehospital epinephrine in out-of-hospital cardiac arrest (OHCA) was shown in a recent large placebo-
controlled trial. However, placebo-controlled studies cannot identify the nonpharmacologic influences on concurrent or
downstream events that might modify the main effect positively or negatively. We sought to identify the real-world effect of
epinephrine from a clinical registry using Bayesian network with time-sequence constraints.Methods. We analyzed a prospective
regional registry of OHCA where a prehospital advanced life support (ALS) protocol named “Smart ALS (SALS)” was gradually
implemented from July 2015 to December 2016. Using Bayesian network, a causal structure was estimated. (e effect of epi-
nephrine and SALS program was modelled based on the structure using extended Cox-regression and logistic regression, re-
spectively. Results. Among 4324 patients, SALS was applied to 2351 (54.4%) and epinephrine was administered in 1644 (38.0%).
Epinephrine was associated with faster ROSC rate in nonshockable rhythm (HR: 2.02, 6.94, and 7.43; 95% CI: 1.08–3.78,
4.15–11.61, and 2.92–18.91, respectively, for 1–10, 11–20, and >20 minutes) while it was associated with slower rate up to 20
minutes in shockable rhythm (HR: 0.40, 0.50, and 2.20; 95% CI: 0.21–0.76, 0.32–0.77, and 0.76–6.33). SALS was associated with
increased prehospital ROSC and neurologic recovery in noncardiac etiology (HR: 5.36 and 2.05; 95% CI: 3.48–8.24 and 1.40–3.01,
respectively, for nonshockable and shockable rhythm). Conclusions. Epinephrine was associated with faster ROSC rate in
nonshockable rhythm but slower rate in shockable rhythm up to 20 minutes. SALS was associated with improved prehospital
ROSC and neurologic recovery in noncardiac etiology.

1. Introduction

Current guidelines recommend epinephrine for advanced
life support (ALS) in out-of-hospital cardiac arrest (OHCA)
[1, 2]. After a long debate about its efficacy in OHCA,
Perkins et al. proved the drug can improve the chance of
survival in a large randomized placebo-controlled double-
blind study (RCT) [3, 4]. (e study objectively assessed the
averaged pharmacologic effect of the drug in OHCA.

However, if we see the aspect of epinephrine use as an ALS
procedure, rather than just focusing on the pharmacologic
effect, it is still not clear how its use will manifest in real-
world situation because the procedural aspect, such as se-
curing an intravenous access which was controlled in the
study by using saline placebo, can have significant impact on
other concurrent or downstream events and procedures that
might significantly modify the main effect of epinephrine in
a positive or a negative way.
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One alternative approach that can access the real-world
effect of epinephrine as an ALS procedure will be conducting
an observational study using clinical registries. However, the
treatment allocation in real-world situation is never random
and thus conditioning the appropriate variables is very
important. Specifically, one need to control a set of con-
founders that will close every open pathway between ex-
posure and outcome variables while being cautious not to
open a closed pathway by conditioning colliders [5, 6].
(erefore, it is required to know a priori the web of in-
fluences between significant factors before main analysis.

Defining the causal structure in OHCA is difficult be-
cause its outcomes are determined by complex interplays of
multiple factors. It is a common practice that an expert build
it based on his/her knowledge and experience for further
causal analysis. However, either the lack of previous study or
the presence of multiple previous studies with conflicting
results as well as any biased personal opinions of the expert
might lead to suboptimal causal structure. In addition, it
should be considered that the causal relationships can be
heterogeneous by study design and setting [7, 8].

(erefore, in present study, we take a data-driven ap-
proach to secure the causal structure and assess the effect of
epinephrine in prehospital resuscitation. Specifically, we use
Bayesian network, a computational methodology for anal-
ysis of the conditional dependencies between variables, to
identify causal pathways in OHCA [9]. (en, we model the
effect of epinephrine on outcomes utilizing the structure of
the causal pathways. (erefore, the objective of the present
study is twofold. (e first one is to identify the causal
structure in OHCA. (e second one is to estimate the effect
of prehospital epinephrine based on the structure.

2. Methods

2.1. Study Setting, Participants, and Data Source. A pre-
hospital ALS protocol named “Smart Advanced Life Support
(SALS)” was gradually implemented in 7 urban and sub-
urban areas of South Korea from July 2015 to December
2016. If SALS is applied, ALS procedures are provided by
emergencymedical technicians (EMTs) under direct medical
control. (e procedures include advanced airway and re-
peated IV epinephrine bolus at least for 20 minutes on scene
if there is no ROSC. A dedicated smart phone-based video
call system was used for the medical control. (e protocol
requires a second ambulance available for help in the same
area and an informed consent by the caregiver. If any of the
two is not available, BLS is provided instead of ALS without
any use of epinephrine for at least 5 minutes on scene. (e
implementation of prehospital ALS was the first attempt in
Korea.

(e data source was a regional OHCA registry initiated
for quality assurance of SALS. It includes various Utstein-
and SALS-related information and is managed by dedicated
researchers allocated to each participating area. OHCA cases
excluded from registry as well as the present study were
irreversible death, age less than 18, do-not-resuscitate status,
and traumatic cardiac arrest. Cardiac arrest monitored by
EMTs was additionally excluded. (e institutional review

board at our hospital approved the analysis and waived the
requirement of informed consent (IRB Number: AJIRB-
TEMP-TEMP-15-516).

2.2. Statistical Analysis. A Bayesian network is a probabi-
listic graphical model that represents a set of variables and
their conditional dependencies via a directed acyclic graph
(DAG) [9–12]. Each vertex (variable) has a probability
function that takes a set of values from its parents and gives
the probability distribution of the state of the vertex. We
used discrete Bayesian network where all vertices are rep-
resented by finite and discrete states [11].

We used the following variables: sex, age, presumed
etiology, public location, witnessed cardiac arrest, response
time, bystander CPR, initial rhythm, application of SALS,
epinephrine use, advanced airway, time to emergency de-
partment (ED) arrival (EDA time), prehospital ROSC, and
neurologic recovery (6-month cerebral performance cate-
gory [CPC] score 1 or 2). Because we are using discrete
Bayesian network, we categorized continuous variables to
quartiles: age: <59, 59–72, 73–81 and >81, response time: <7,
7,8–10 and >10, EDA time: <19, 19–26, 27–35 and >35.

Generating a Bayesian network is a two-step process. We
first construct its structure and then estimate its parameters.
We determined a priori the hierarchy of possible influences
among variables by imposing chronological orders (Sup-
plemental Table 1, Supplemental Figure 1). (is inhibits
pathways that are absolutely impossible (e.g., influence to
preceding events or attributes) being generated during
structural estimation. Its first tier includes sex and age and
the second one is presumed etiology. (e third one includes
location-related factors such as public location, witnessed
arrest, and response time. (e fourth tier is bystander CPR
and the fifth tier is shockable initial rhythm. (e sixth tier
includes SALS, ALS procedures (epinephrine and advanced
airway), EDA time, and prehospital ROSC. In this tier, there
are additional constraints that allow only the influences from
SALS to each ALS procedure but not in reverse direction.
(e last tier is neurologic recovery. (e structural learning is
briefly summarized as follows [11, 12]. We generate 2,000
datasets with the same number of cases as the original
dataset using bootstrapped resampling. (en, we apply hill
climbing algorithm to generate an optimal network structure
for each resampled dataset.(e algorithm starts from a DAG
with no edge, then it adds, removes and reverses one edge at
a time, and picks the change that increases the network score
the most. (e network score used was Bayesian Dirichlet
equivalent uniform score. It is a posterior probability of a
candidate graph with a flat Dirichlet prior over both the
space of DAGs and the parameter space of each node. It
takes the form of
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where G is a DAG, D is a dataset, α is the imaginary sample
size associated with the Dirichlet prior, p is the number of

2 Emergency Medicine International



nodes in G, qi is the number of categories for the node Xi, ri

is the number of configurations of the categories of the
parents of Xi, and nijk is the number of samples for the jth
category for node Xi and kth configuration for its parents.
(en model averaging is performed by determining whether
the probability of each possible edge present in the true
network structure is larger than a threshold. (e threshold
was determined as the value minimizing the L1-norm be-
tween the cumulative distribution function of the observed
edge confidences and those of its asymptotic counterpart
[13]. After structural learning, model parameters are esti-
mated based on Bayesian method using non-informative
prior.

We assessed the effect of epinephrine in two ways. (e
first one is to estimate the effect of a treatment (e.g., epi-
nephrine) on ROSC rate during an ongoing resuscitation.
(e second one is to estimate the effect of a treatment
decision (e.g., SALS) on prehospital ROSC and neurologic
recovery, whose rationale will be discussed later. (e effect
on ROSC rate was modelled by constructing an extended
Cox-regression model where prehospital epinephrine is
included as a time varying covariate [14]. In this model, the
resuscitation duration was split into three segments (t< 10
minutes, 10≤ t< 20 minutes, t≥ 20 minutes) and the effect
size of epinephrine was assumed to be constant within each
segment. (e effect of SALS on prehospital ROSC and
neurologic recovery was modelled using logistic regression.
In both of the models, covariates were chosen based on the
DAG and interactions were checked up to first order. Lastly,
we repeated the same analysis by querying the Bayesian
network itself.

All variables were reported using frequency and pro-
portion. Chi-square or Fisher’s exact test was used to
compare the groups. P values <0.05 were considered sig-
nificant. All statistical analyses were performed using the R
package version 3.3.0 (R Foundation for Statistical Com-
puting, Vienna, Austria).

3. Results

A total of 4745 OHCA victims were identified. Excluding
monitored cardiac arrest (N� 417, 8.8%) and incomplete
data entry (N� 4, 0.1%), a total of 4,324 patients (91.1%) were
included. SALS was applied to 2351 (54.4%) patients (Ta-
ble 1). SALS was associated with younger median age (53 vs.
56 years; IQR, 38–62 vs. 41–64; P< 0.001), presumed cardiac
etiology (17.2% vs. 3.4%; P< 0.001), bystander CPR (67.8%
vs. 60.0%; P< 0.001), and shockable initial rhythm (19.7% vs.
13.8%; P< 0.001). Epinephrine was administered only in
SALS group (69.9% vs. 0.0%; P< 0.001) while advanced
airway was applied in both groups with higher frequency in
SALS group (95.9% vs. 53.7%; P< 0.001). SALS group re-
quired significantly more time until ED arrival (28 vs 14
minutes; IQR, 22–35 vs. 10–20; P< 0.001); however, it
showed higher prehospital ROSC (13.8% vs. 4.2%; P< 0.001)
and neurologic recovery (6.3% vs. 2.6%; P< 0.001).

A DAG was constructed using bootstrap model aver-
aging (Figure 1). SALS was dependent on presumed etiology
and bystander CPR while epinephrine was dependent on

SALS and initial rhythm. Prehospital ROSC was dependent
on initial rhythm, SALS, epinephrine, and presumed eti-
ology. Neurologic recovery was dependent on prehospital
ROSC, initial rhythm, epinephrine, and SALS. Advanced
airway was dependent on SALS, epinephrine, and presumed
etiology; however, it did not have any direct or indirect
pathway leading to outcome variables. Based on the struc-
ture, model parameters were estimated using Bayesian
method with non-informative prior. Conditional probabil-
ities of exposure and outcome vertices (SALS, epinephrine,
prehospital ROSC, and neurologic recovery) are summa-
rized in supplemental Figure 2.

(e effect of epinephrine on ROSC rate was estimated
using extended Cox-regression (Table 2). Shockable initial
rhythm and SALS were included as covariates based on the
DAG. With a significant negative interaction between epi-
nephrine and shockable initial rhythm, we estimated the
effect of epinephrine in shockable and nonshockable rhythm
using linear combination (Figure 2). While epinephrine was
associated with faster ROSC in nonshockable initial rhythm
with HR of 2.02 (95% CI, 1.08–3.78; P � 0.028), 6.94 (95%
CI, 4.15–11.61; P< 0.001), and 7.43 (95% CI, 2.92–18.91;
P< 0.001), respectively, for each resuscitation phase, it was
associated with slower rate up to 20 minutes in shockable
initial rhythm with HR of 0.40 (95% CI, 0.21–0.76;
P � 0.005), 0.50 (95% CI, 0.32–0.77; P � 0.002), and 2.20
(95% CI, 0.76–6.33; P � 0.146; supplemental Table 2),
respectively.

We assessed the effect of SALS on prehospital ROSC and
neurologic recovery using logistic regression (supplemental
Table 3). Covariates were selected based on the same DAG
structure. SALS was associated with increased prehospital
ROSC with OR of 5.36 (95% CI, 3.54–8.41, P< 0.001).
However, SALS showed significant negative interaction with
both shockable initial rhythm and presumed cardiac etiology
(P � 0.001 and P � 0.004, respectively). SALS was associated
with increased neurologic recovery with OR of 1.94 (95% CI,
1.31–2.91; P � 0.001). However, there was significant neg-
ative interaction between SALS and presumed cardiac eti-
ology (P � 0.008). Figure 3 summarizes the effect of SALS in
each combinatorial states of the covariates with significant
interaction. SALS was beneficial only in noncardiac etiology
for both of the outcomes. (e HRs for prehospital ROSC
were 5.36 (95% CI, 3.48–8.24; P< 0.001) and 2.05 (95% CI,
1.40–3.01; P< 0.001) for nonshockable and shockable initial
rhythm, respectively. (e HR for neurologic recovery was
1.94 (95% CI, 1.30–2.89; P � 0.001; supplemental Table 4).
Direct querying of the Bayesian network showed similar
results (Supplemental Figure 3).

4. Discussion

In this study, we mapped the network of influences in
OHCA using Bayesian network. (e network, which was
given in the form of DAG, was used as a guidance to model
the effect of epinephrine on prehospital ROSC and neuro-
logic recovery. We found the effect of epinephrine is de-
pendent on the context. It was associated with faster ROSC
rate if initial rhythm was nonshockable, but slower rate up to
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Table 1: Patient characteristics of the study population.

Characteristics SALS applied (N� 2351) Not applied (N� 1973) P

Sex, male (%) 1593 (67.8%) 1197 (60.7%) <0.001
Age, years, median (IQR) 53.0 (38.0–62.0) 56.0 (41.0–64.0) <0.001
1st quartile: <59 years 671 (28.5%) 474 (24.0%)
2nd quartile: 59–72 years 612 (26.0%) 449 (22.8%)
3rd quartile: 73–81 years 626 (26.6%) 517 (26.2%)
4th quartile: >81 years 442 (18.8%) 533 (27.0%)

Presumed etiology, cardiac (%) 404 (17.2%) 67 (3.4%) <0.001
Public location (%) 354 (15.1%) 296 (15.0%) 0.994
Witnessed cardiac arrest (%) 1131 (48.1%) 900 (45.6%) 0.109
Bystander CPR (%) 1595 (67.8%) 1184 (60.0%) <0.001
Shockable initial rhythm (%) 464 (19.7%) 273 (13.8%) <0.001
Response time, minutes, median (IQR) 7 (6–9) 7 (6–10) 0.195
1st quartile: <7 minutes 868 (36.9%) 762 (38.6%)
2nd quartile: 7 minutes 399 (17.0%) 243 (12.3%)
3rd quartile: 8–10 minutes 681 (29.0%) 544 (27.6%)
4th quartile: >10 minutes 403 (17.1%) 424 (21.5%)

Epinephrine (%) 1644 (69.9%) 0 (0.0%) <0.001
Advanced airway (%) 2254 (95.9%) 1060 (53.7%) <0.001
EMS time, minutes, median (IQR) 28 (22–35) 14 (10–20) <0.001
1st quartile: <19 minutes 143 (6.1%) 988 (50.1%)
2nd quartile: 19–26 minutes 498 (21.2%) 641 (32.5%)
3rd quartile: 27–35 minutes 834 (35.5%) 237 (12.0%)
4th quartile: >35 minutes 876 (37.3%) 107 (5.4%)

Prehospital ROSC (%) 324 (13.8%) 83 (4.2%) <0.001
Early ROSC (≤8 minutes) 97 (4.1%) 116 (5.9%) 0.010

Neurologic recovery (6-month CPC score 1 or 2) 148 (6.3%) 52 (2.6%) <0.001
SALS, smart ALS (protocol); IQR, interquartile range; CPR, cardiopulmonary resuscitation; EMS, emergency medical service; ROSC, return of spontaneous
circulation; CPC, cerebral performance category.

SALS

EPI

PREH.ROSC

SEXAGE
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WITNESSED
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SHOCKABLE

CARDIAC

EDA.TIMENEUR.RECOVERY

Figure 1: (e directed acyclic graph (DAG) structure of the Bayesian network constructed using bootstrap model averaging. Arrow
indicates the direction of influence and line thickness corresponds to the relative edge strength. Smart advance life support (SALS) was
dependent on presumed etiology and bystander cardiopulmonary resuscitation (CPR) while epinephrine was dependent on SALS and initial
rhythm. Prehospital return of spontaneous circulation (ROSC) was dependent on initial rhythm, SALS, epinephrine, and presumed etiology.
Neurologic recovery was dependent on prehospital ROSC, initial rhythm, epinephrine, and SALS. Advanced airway was dependent on
SALS, epinephrine, and presumed etiology; however, it did not have any direct or indirect pathway leading to outcome variables. CARDIAC,
presumed cardiac etiology; WITNESSED, witnessed cardiac arrest; PUBLIC, public location; BYST.CPR, bystander cardiopulmonary
resuscitation; SALS, Smart advance life support; EPI, epinephrine use; PREH.ROSC, prehospital return of spontaneous circulation;
ADV.AIRWAY, advanced airway; NEUR.RECOVERY, neurologic recovery; EDA.TIME, emergency department arrival time.
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20 minutes if initial rhythm was shockable. In addition,
SALS was beneficial only if presumed etiology was non-
cardiac. (ese suggest prehospital resuscitation strategy
should be differentiated by initial rhythm, resuscitation
phase, and presumed etiology.

Bayesian network can help to identify causal pathways
[9–12] and has been used in clinical studies [15–17].
However, statistical relationships alone are not sufficient
for finding a unique causal graph. It can only narrow down
possible graphs that are Markov equivalent. (erefore, we
applied chronological hierarchy to the structural learning,
because temporal information can provide additional cues
to a causal structure [10, 18]. However, temporal

information can only be used to rule out improbable
pathways and does not provide sufficient cue to rule them
in. Despite the limitation, this data-driven approach has
several merits over the traditional expert-driven ap-
proach. First, building a DAG structure by integrating
expert’s fragments of causal knowledge is difficult and
prone to be biased by personal beliefs. Second, there could
be either the lack of previous study or the presence of
multiple previous studies with conflicting results in each
candidate causal pathway. (ird, some known causal
relationships could be just association. Fourth, the causal
relationships can be heterogeneous by study design or
setting [7, 8].

Table 2: Extended Cox-regression model for the effect of epinephrine on prehospital ROSC rate.

Predictor
Phase 1 (0–10 minutes) Phase 2 (11–20 minutes) Phase 3 (>20 minutes)
HR (95% CI) P HR (95% CI) P HR (95% CI) P

SALS 0.56 (0.43–0.72) <0.001 2.15 (1.36–3.39) 0.001 1.04 (0.36–3.01) 0.936
Shockable 19.42 (14.43–26.12) <0.001 21.71 (13.05–36.12) <0.001 6.18 (2.14–17.83) 0.001
Epinephrine: SALS 2.02 (1.08–3.78) 0.028 6.94 (4.15–11.61) <0.001 7.43 (2.92–18.91) <0.001
Epinephrine: SALS : shockable 0.20 (0.08–0.47) <0.001 0.07 (0.04–0.13) <0.001 0.3 (0.1–0.91) 0.033
ROSC, return of spontaneous circulation; HR, hazard ratio; SALS, smart ALS.
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Figure 2: Effect of epinephrine on prehospital ROSC rate. Epinephrine use was associated with faster ROSC rate in nonshockable initial
rhythm (left), while it was associated with slower ROSC rate up to 20 minutes in shockable initial rhythm (right).
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(ere were two previous RCTs testing the effect of
epinephrine in OHCA before the recent one by Perkins et al.
Olasveengen et al. compared IV placement plus epinephrine
(N� 418) with control (N� 433) and discovered the inter-
vention improves short-term outcomes in nonshockable
initial rhythm [19]. Jacobs et al. compared epinephrine
(N� 272) with placebo (N� 262), in which epinephrine
improved short-term outcomes. However, both of the
studies were not powered enough to detect long-term
benefits [20]. In the recent RCT by Perkins et al., a total of
8,014 patients were assigned to receive either epinephrine or
saline placebo administered by an intravenous or intra-
osseous route every 3 to 5 minutes [4]. (e use of epi-
nephrine was associated with increased primary outcome
(30-day survival, 3.2% vs. 2.4%) and long-term survival (3-
month survival, 3.0% vs. 2.2%). In the subgroup analysis for
the primary outcome, there was no statistically significant

interaction. However, the favorable effect of the epinephrine
was statistically significant only when the arrest was
unwitnessed or the initial rhythm was nonshockable. (e
neurologic recovery measured at three months was 2.1% in
the epinephrine arm and 1.6% in the placebo arm. However,
the study was not powered enough to assess the significance
of the difference.

(ere were several large-scale observational studies.
Hagihara et al. analyzed Japan national OHCA registry
(2005–2008) using propensity matching and reported pre-
hospital epinephrine was associated with worse 1-month
survival and functional outcome [21]. Nakahara et al. an-
alyzed the same registry (2007–2010) using different sta-
tistical method (time-dependent propensity score matching)
and reported the opposite results; prehospital epinephrine
improved overall survival with small but statistically sig-
nificant functional gain in nonshockable initial rhythm [22].
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Figure 3: Effect of SALS intervention on prehospital ROSC and neurologic recovery. SALS was beneficial only in noncardiac etiology for
both of the outcomes.
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Fukuda et al. analyzed the same registry (2011–2012) using
standard propensity matching and reported decreased 1-
month survival and neurologic outcome with epinephrine
use [23]. In most of these studies including the three RCTs
previously mentioned, the effect of epinephrine was more
favorable in nonshockable rhythm.(e effect was stronger if
it was beneficial while the effect was milder if was detri-
mental. (is dependency on context was also observed in
our study.(ere was strong interaction between epinephrine
use and its contexts including initial rhythm, resuscitation
phase, and presumed etiology. Unlike previous studies, we
statistically demonstrated the presence of these interactions
in our models.

(e slower ROSC rate with epinephrine use in shockable
initial rhythm needs further discussion. Conventionally, effect
of an intervention on ROSC has been assessed by comparing
the proportion of the outcome variables. However, this leads
to biased estimate of its effect because doing some inter-
vention increases the duration of prehospital phase which will
in turn increase the chance of having prehospital ROSC.
(erefore, we adopted extended Cox-regression to see if the
intervention actually increases the speed of ROSC [24]. (e
mechanism for the slower ROSC rate up to 20 minutes is not
clear. It is possible that additional efforts for epinephrine
administration could have detrimental effect on overall
quality of CPR. In the paper by Olasveengen et al., the quality
of resuscitation was not affected by IV and epinephrine use
[19]. However, it was an RCT involving highly trained EMTs
and field anesthesiologists. In real world, administration of
epinephrine can have significant negative impact on overall
quality of resuscitation.

We used SALS intervention (intention-to-treat approach)
instead of epinephrine use (per-treatment approach) as an
exposure variable to assess the effect of epinephrine on
neurologic recovery. It was because the time of ROSC in-
fluences both exposure (epinephrine) and outcomes (ROSC
and neurologic recovery) and can induce significant biases
without proper control [25]. (is problem was recognized by
Nakahara et al. and the authors used time-dependent pro-
pensity scorematching to control the bias [22].We could have
adopted the same approach; however, we were not sure
whether it can estimate the effect size as a whole. It matches a
patient with first epinephrine administration at certain time
point with those without it but has the same chance at that
time. (erefore, what the method really assesses is the dif-
ference of outcomes between patients with earlier and later
(or no) administration.(erefore, we used treatment decision
(SALS) which is made at the beginning of resuscitation and
thus not dependent on the duration of CPR. We admit the
other component of SALS, advanced airway, could also have
influenced the outcomes. However, we think the influence
should be small because there was no direct or indirect causal
pathway between advanced airway and any outcome in the
DAG structure we identified.

5. Limitations

Our study has several limitations. Firstly, it is a retrospective
observational study, and biases intrinsic to the design could

have influenced the results. Secondly, the quality of pre-
hospital resuscitation, which can have significant con-
founding effects, was not considered because of the absence
of related data. (irdly, the DAG structure we identified
using Bayesian network is a statistical estimation of causal
pathways. Although we disallowed absolutely impossible
causal pathways only, it is possible the resulting DAG
structure is not sufficiently comprehensive.

6. Conclusions

Prehospital use of epinephrine was associated with faster
ROSC rate if initial rhythm was nonshockable, but slower
rate up to 20 minutes if initial rhythm was shockable.
Prehospital ALS protocol mandating epinephrine admin-
istration was associated with improved prehospital ROSC
and neurologic outcome if presumed etiology was
noncardiac.
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A. A. López-González, and A. Aguiló, “Bayesian network
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