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Abstract An epidemiological model for COVID-19

was developed and implemented in MATLAB/GNU

Octave for use by public health practitioners, policy

makers, and the general public. The model distin-

guishes four stages in the disease: infected, sick,

seriously sick, and better. The model was preliminar-

ily parameterized based on observations of the spread

of the disease. The model assumes a case mortality

rate of 1.5%. Preliminary simulations with the model

indicate that concepts such as ‘‘herd immunity’’ and

containment (‘‘flattening the curve’’) are highly mis-

leading in the context of this virus. Public policies

based on these concepts are inadequate to protect the

population. Only reducing the R0 of the virus below 1

is an effective strategy for maintaining the death

burden of COVID-19 within the normal range of

seasonal flu. The model is illustrated with the cases of

Italy, France, and Iran and is able to describe the

number of deaths as a function of time in all these

cases although future projections tend to slightly

overestimate the number of deaths when the analysis is

made early on. The model can also be used to describe

reopenings of the economy after a lockdown. The case

mortality rate is still prone to large uncertainty, but

modeling combined with an investigation of blood

donations in The Netherlands imposes a lower limit of

1%.

Keywords SARS-CoV-2 � Herd immunity � Social

distancing � R0 � Doubling time � Case mortality rate

1 Introduction

The coronavirus disease 2019 (COVID-19) is a

respiratory disease caused by SARS-CoV-2 (Severe

Acute Respiratory Syndrome coronavirus 2). Typical

symptoms are fever, cough, chills, difficulty breathing,

and fatigue [1]. The pathology of COVID-19 is similar

to that of SARS and Middle Eastern Respiratory

Syndrome (MERS). Pulmonary edema and pneumo-

nia, and cytokine storm are common complications

[1, 2]. The disease also causes chronic cardiovascular

damage [3]. The main comorbidities in hospitalized

COVID-19 patients are hypertension (30%), diabetes

(19%), and coronary heart disease (8%) [4]. The

mortality of COVID-19 has been estimated at 2% [1],

2.2% [5], and 3.7% [2]. The case mortality rate is

strongly age-dependent and ranges from 0.2% up to

39 years of age, to nearly 15% at age 80 years and
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above [5]. The disease is 1.5-2 times as deadly in

males as in females [5]. A review of early estimates of

the reproductive number of COVID-19 (R0) led to a

mean value of 3.28, with estimates ranging from 1.95

to 6.49 [6]. The virus can be transmitted by aerosols

and surfaces [7]. There is evidence of strong non-

symptomatic disease transmission [8].

The disease first broke out in Wuhan, Hubei, China,

in December 2019 and caused a pandemic in the

following months. Thanks to stringent control mea-

sures, the epidemic is largely under control in China at

the time of writing (April 2020) with approximately

83,000 reported cases and 4600 reported deaths

(https://www.worldometers.info/coronavirus/country/

china/; accessed July 18, 2020). Worldwide, about 14

million cases and 600,000 deaths have been reported

as of July 18, 2020 (https://www.worldometers.info/

coronavirus/; accessed July 18, 2020). Except for

China and a number of Southeast Asian countries, the

pandemic grew exponentially in severity through late

February and all of March 2020, with a doubling time

of about 4 days. Doubling times were substantially

shorter in Europe and North America, generally less

than 3 days. Early April, the increase in the number of

cases became linear thanks to non-pharmaceutical

interventions. The case number resurged in mid-May

as the disease took hold in new populous countries

(e.g., Brazil, India, Russia) and accelerated mid-June

as the disease resurged in the USA. The death toll did

not resurge to the same extent as treatment methods for

COVID-19 are improving.

Draconian measures were taken early on to control

the spread of the disease in a number of Asian

countries, but the rest of the world was slower to

follow suit despite the obvious dangers of delaying

decisive action. This may have been due in part to the

lack of understanding of the mathematics of infectious

diseases among policy makers and public health

experts. Likewise, the public at large underestimated

the stakes involved due to a lack of understanding of

the impact of their own behavior, even well into the

epidemic.

Epidemiological models of infectious diseases have

been around for nearly a century. The basis of these

models is the SIR model [9]. Extensions focusing on

infection kinetics were proposed by Satsuma et al.

[10]. The outbreak of COVID-19 in Wuhan has been

modeled with logistic models and extensions of the

SIR model [11, 12].

Ferguson et al. [13] developed a stochastic model

for the spread of infectious diseases within and outside

family units and accounts for geographic spreading.

Simple models such as SIR do not have the required

accuracy to be used as a diagnostic tool for evaluating

the spread of an epidemic in real time. On the other

hand, models at the level of [13] require detailed

geospatial information about a population and require

substantial specialized knowledge to develop and run.

There is a need for simple models that are sufficiently

accurate for analysis of real-time data and subsequent

projections, so that quick, real-time decisions can be

made on how to respond to epidemics.

The purpose of this paper is to present an epidemi-

ological model that can be used by non-experts to

explore the mathematics of the COVID-19 pandemic,

and to present some preliminary results with the

model. In the interest of time, no effort has been made

to make the model fully accurate, or to optimize the

parameterization of the model. Open sources such as

the Worldometer Coronavirus website (https://www.

worldometers.info/coronavirus) will be used as infor-

mation source, to enable speedy development and

publication. The model was developed in MATLAB

and can be run with the open-source variant GNU

Octave (https://www.gnu.org/software/octave). This

paper is an updated and extended version of a preprint

posted on arXiv (https://arxiv.org/abs/2003.08824).

2 Model development and implementation

2.1 Model development

The mechanism assumed for the infection and spread

of COVID-19 is shown in Fig. 1. It is an extension of

the SIR model [9] that models the progression of the

disease in multiple stages. In Fig. 1, U is the number of

uninfected people, I is the number of infected people

in the incubation period, S is the number of sick

people, SS is the number of seriously sick people, D is

the number of deceased, B is the number of people

who are recovering, but not yet recovered (‘‘better’’),

and R is the number of people who have completely

recovered, and who are immune. The rates of transi-

tion from one state to another are indicated by r1, r2,

etc. The rates are expressed in people per day.
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The rate r1, expressing the number of healthy,

nonimmune people that are infected per day, is

calculated based on the following assumptions:

• People in the categories I, S, SS, and B can infect

healthy people, each with a different rate.

• The infection rate is proportional to the fraction of

people that are uninfected.

Based on these assumptions, the infection rate r1 is

calculated as follows:

r1 ¼ k11I þ k12Sþ k13SSþ k14Bð ÞU
P

ð1Þ

where I is the number of people in category I, etc. P is

the number of people comprising the total population.

k11, k12, k13, and k14 are rate constants (day-1). This

equation is an extension of the infection rate in the SIR

model (r = k I U/P). It assumes that the overall

infection rate is the result of four parallel infection

processes: infection by incubating people I (rate k11 I

U/P), sick people S (rate k12 S U/P), seriously sick

people SS (rate k13 SS U/P), and recovering people B

(rate k14 B U/P). Each infection process has a rate

proportional to the number of people in the category

(I, S, …) and proportional to the fraction of uninfected

people in the population (U/P).

Equation (1) assumes that the disease is homoge-

neously distributed across the region, and that there is

no geographical variation of k11, k12, k13, and k14.

Violations of this assumption may lead to inaccura-

cies, particularly in the late stages of the disease, when

U/P significantly deviates from 1. The model is not

recommended in federal countries such as the USA,

where each state may adopt a different strategy to

mitigate the virus. In federal countries, each state

should be modeled separately.

Preliminary data fitting, as well as comparison with

clinical virus shedding data indicates that k14 = 0.

However, it is kept in the model for the sake of

completeness.

Next, it is assumed that all other transitions are first-

order processes with rate constants k2, k3, etc., with

rate constants expressed in day-1. Hence:

r2 ¼ k2I ð2Þ

r3 ¼ k3S ð3Þ

r4 ¼ k4SS ð4Þ

r5 ¼ k5S ð5Þ

r6 ¼ k6SS ð6Þ

r7 ¼ k7B ð7Þ

Applying these rates to the mechanism in Fig. 1, the

dynamics of the COVID-19 pandemic can be modeled

with the following differential equations:

dU

dt
¼ �r1 ð8Þ

dI

dt
¼ r1 � r2 ð9Þ

dS

dt
¼ r2 � r3 � r5 ð10Þ

dSS

dt
¼ r3 � r4 � r6 ð11Þ

dD

dt
¼ r4 ð12Þ

dB

dt
¼ r5 þ r6 � r7 ð13Þ

dR

dt
¼ r7 ð14Þ

where t is the time in days.

The value of P is set at 100 million people in the

hypothetical simulations below and set equal to the

actual size of the population when specific countries

are modeled. Initial conditions are given in the

implementation sections. The kinetic parameters are

given in the next section, with exception of the

Fig. 1 Mechanism of the COVID-19 model. U = uninfected,

I = infected, S = sick, SS = seriously sick, D = dead, B = bet-

ter, R = recovered; r1, etc., are rates of transition from one state

to another (people per day)
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infection rate k11, which can only be determined by

model fits to actual data.

The main output of the model is D (number of

deaths), but the numbers of people in various stages of

infection (I, S, SS, and B) is followed as well.

2.2 Parameterization

To reduce the number of adjustable parameters, the

following assumptions are made:

k12 ¼ k11

2
ð15Þ

k13 ¼ k11

3
ð16Þ

k14 ¼ 0 ð17Þ

As a justification for this choice of variables, it is

assumed that most people will self-isolate upon

experiencing symptoms, reducing the infection rate

by half, whereas seriously sick people will be in bed or

in the hospital, further reducing their physical or social

contact with others.

The remaining parameters are shown in Table 1.

k11 was determined by trial and error. In the

exploratory stage, a worldwide average value of k11

was estimated by comparing the doubling rate of the

total predicted number of cases of the disease by the

observed number of cases. As mentioned in the

Introduction, the number of cases doubled every four

days. In a second, diagnostic stage, a country-specific

value of k11 was obtained by fitting the cumulative

number of deaths versus time to the reported data.

The value of k2 is based on the observation that the

median incubation time of COVID-19 is 5.1 days [14].

The ratio k5/k3 (9) is based on the assumption that

10% of the infected become seriously sick, whereas

90% get better without developing serious symptoms.

This is less than the observed proportion of roughly

80/20. The reason for the lower proportion assumed

here is because many infected with mild symptoms

remain undiagnosed, leading to an underreporting of

mild cases. Seriously sick is defined here as needing

hospitalization, regardless of whether actual hospital-

ization occurs.

The ratio k6/k4 is based on the assumption that 15%

of hospitalized COVID-19 patient do not survive. This

leads to a case mortality rate of 1.5%. This number is

deliberately kept below the values reported in the

Introduction because of underreporting of mild cases.

The values of k5 and k7 are based on the assumption

that the median duration of the disease is 3.5 days in

the ‘‘sick’’ stage, followed by 10 days in the ‘‘better’’

stage. In other words, it is assumed that people

developing mild symptoms recover in about two

weeks as a median value.

The value of k6 is based on the assumption that the

median seriously sick patient remains in this state for

10 days. Because there is a second pathway (dying),

the actual median is less, 8.5 days. This is consistent

with a mean duration of 12.26 days. After adding the

3.5 days in the sick stage, a median of 12 days is

obtained, somewhat shorter than clinical observations

(22.0 days for discharge; 18.5 days for death [4]).

However, adding the median duration of the ‘‘better’’

stage leads to a median of 22 days, identical with the

median observed time from symptom onset to dis-

charge time. Adding the incubation time to the sick

and seriously sick conditions, a total of 17–18 days of

virus shedding as a median time is obtained, close to

the observed median of 20.0 days [4].

2.3 Implementation: exploratory stage

The model was implemented in Matlab. The code is

given in Online Resource 1. The differential equations

were integrated numerically with the fourth–fifth-

order Runge–Kutta–Fehlberg algorithm (function

ode45 in Matlab). The following data and initial

conditions were used:

Data:

P = 100 million

Initial conditions (time = 0):

I = 100

S = 10

SS = 1

Table 1 Parameters of the

COVID-19 model
Parameter (U) Value

k11 (day-1) variable

k2 (day-1) ln 2/5.1

k3 (day-1) k5/9

k4 (day-1) k6 9 15/85

k5 (day-1) ln 2/3.5

k6 (day-1) ln 2/10

k7 (day-1) ln 2/10
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D = 0

B = 0

R = 0

U = P - I - S - SS - D - B - R

At time zero, a total of 111 infected people are

assumed among a population of 100 million. This is an

arbitrary choice of initial condition. As long as the

initial numbers are orders of magnitude smaller than

the peak values, the exact values only affect the timing

of the dynamics of disease progression, not the

dynamics itself. In this early phase, it can be assumed

that the number of known infections will be on the

order of 10 or less. In other words, we are starting the

simulation very early on. The doubling time is

calculated from the total number of people in all

infected stages on day 29 and day 30 with the equation:

tdouble ¼
ln 2ð Þ

ln C30

C29

� � ð18Þ

where Cn is an estimate of the number of known or

reported ‘‘cases’’ on day n. The number of known

cases is assumed to be 5% of infected, a third of sick,

90% of seriously sick, 12% of recovering, 12% of

recovered, and 90% of deceased patients. The calcu-

lated doubling time is not sensitive to the choice of

these fractions.

To calculate the value of R0 (the number of people

infected by the average carrier of the virus), a separate

simulation was run with a single infected case, where

the number of newly infected is calculated over time.

To model non-pharmaceutical interventions (NPI),

an effectiveness E is defined such that:

k11jafter intervention¼ 1 � Eð Þk11jbefore intervention ð19Þ

The effectiveness E is not generally a constant that

is established instantaneously when NPI are imposed.

In practice, it will typically take a few days to

completely roll out a mitigation strategy. Some people

may anticipate the measure in their behavior before

the actual measure takes effect.

To operationalize this, a smooth function for k11

was used to model the implementation of the NPI over

the days following the NPI decision:

k11 ¼ k11;0 1 � E

2
1 þ erf t � tið Þð Þ

� �
ð20Þ

where k11,0 is the infection rate in the absence of

interventions, ti is the day after the time of the

intervention decision, and erf stands for the error

function. Equation (20) uses the property erf(–x) = –

erf(x). To illustrate this, Fig. 2 shows the value of k11

versus time for an intervention decision on day 30,

where k11,0 = 0.4 and E = 0.8. As the figure illustrates,

Eq. (20) has the desired properties: a gradual decrease

in the infection rate over a couple of days, with a slight

decrease anticipating the actual measure.

2.4 Implementation: diagnostic phase

In the diagnostic phase, time zero is set to February 1,

2020. The initial numbers of I (100), S (10), and SS (1)

are multiplied by a correction factor, which provides a

second adjustable variable in addition to k11. k11 and

the correction factor are adjusted by trial and error

until the predicted cumulative deaths predicted as a

function of time before the NPI closely matches the

reported number of deaths. The timing of the NPI (ti) is

chosen as the date of the main government decision to

impose NPI, typically the date when the government

imposes a lockdown. When there is a clear sequence of

government measures with increased severity, multi-

ple dates are chosen, each with an incremental

effectiveness. In that case, k11 is calculated as follows:

k11 ¼ k11;0 1 �
Xn
j¼1

Ej

2
1 þ erf t � tj

� �� �
 !

ð21Þ

Fig. 2 k11 versus time for a non-pharmaceutical intervention on

day 30. k11,0 = 0.4, E = 0.8
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where n is the number of NPIs considered in the

model, E1, E2, … is the effectiveness of the first,

second, … intervention, and t1, t2, … is the date of the

first, second, … intervention. Each effectiveness is

incremental and chosen with respect to k11,0, i.e., the

overall effectiveness after all measures have been

taken is the sum of the Ej values. This sum cannot

exceed one. A reopening of the economy can be

modeled by means of an intervention with a negative

incremental effectiveness.

The efficiency or efficiencies of the NPI were

determined by trial and error, by comparing modeled

deaths with reported deaths. The number of NPIs is

chosen as small as possible, to minimize overfitting.

The choice of fitting number of deaths rather than

number of cases has a number of advantages. First, the

precise date of deaths is generally known, whereas

there are generally no data on the exact date of

infection. Second, the number of reported deaths is

less sensitive to undercounting due to asymptomatic or

weakly symptomatic cases. Third, number of cases,

even as a relative measure, is sensitive to changes in

testing policies, shortage of test kits, and lag times

between taking the test and obtaining the test results.

Reported deaths are likely less sensitive to such issues.

There are disadvantages of fitting the model to death

data as well. First, the death numbers respond more

slowly to changing behavior or changing policies.

Second, death numbers are sensitive to improving

treatment procedures.

In some cases, spikes in k11 are considered to

account for events (e.g., festivals, etc.) where large

numbers of people are gathered or where large

numbers of new infections can be expected over a

short time. In that case, a Gaussian curve centered

around the time of the event with a standard deviation

of 0.5 days is added to the calculation of k11:

k11 ¼ k11;0 1 �
Xn
j¼1

Ej

2
1 þ erf t � tj

� �� � 

þ
Xm
j¼1

kspike;j

r
ffiffiffiffiffiffi
2p

p exp �
t � tspike;j

� �2

2r2

 !!
:

ð22Þ

3 Results

3.1 Doubling times, infection rates, reproduction

numbers

First, the doubling time of the pandemic is calculated

for different values of the infection rate k11. As

mentioned in the Introduction, the worldwide dou-

bling time of COVID-19 outside China was 4 days in

the latter half of February and the first half of March

2020. This doubling time was found to correspond

with k11 = 0.261 day-1. This value was used as the

default in further simulations, unless specified

otherwise.

In Europe and North America, doubling times were

significantly shorter during that time. For instance, in

Italy, the reported number of COVID-19 cases grew

approximately exponentially from 150 on February 23

to 10,149 on March 10 (16 days later) (https://www.

worldometers.info/coronavirus/country/italy/). An

exponential fit to the data leads to a doubling time of

2.66 days (R2 = 0.9841). This is consistent with

k11 = 0.344 day-1. Most of the Western world expe-

rienced similar growth rates during the same time.

The R0 value was calculated as a function of k11.

The relationship between R0 and k11 follows a perfect

linear relationship as follows:

R0 ¼ ak11 ð19Þ

where a = 10.0388 days. The value of a depends on

the other kinetic parameters as well, but because they

were either kept constant, or kept proportional to k11,

the value of a can be considered as a constant in the

current study.

The R0 value reaches 1 when k11 = 0.0996 day-1,

only 38.1% of the global average k11 value in late

February to early March 2020, and 29.0% of the value

in Italy during that time. As a result, the model-based

estimate for R0 in late February to early March is 2.62

worldwide outside China, and 3.45 in Italy and most of

the Western world. These are just estimations based on

the assumption that the proportion of cases reported

remains constant over time.

3.2 Scenarios: average, fast, slow

In this section, a number of scenarios will be run to

assess the number of infected and the number of deaths

as a function of time, for a population of 100 million,
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starting with 111 infected (100 incubating, 10 sick,

and 1 seriously sick) at time 0.

Figures 3 shows the evolution of the epidemic in

the base case (doubling time = 4 days,

k11 = 0.261 day-1, R0 = 2.62), without intervention.

The first deaths are predicted around day 12, when

about 1200 people are infected. The number of people

showing symptoms at this time is around 460 (250

mild, 20 serious, 190 recovering). This early in the

epidemic, it is likely that testing is not yet fully

deployed, and the number of reported cases is likely to

be on the order of 200 or less.

After 1 month, the model predicts 30–35 deaths and

a total of about 27,000 infected. Of these, about 16,000

show no symptoms, 5000 show mild symptoms, 500

severe symptoms, and 5000 are recovering. At this

point, the official case count is probably a few

thousands. Around this time or up to two weeks later,

most governments started taking serious precautions

to limit the spread of the virus.

After two months without intervention, there are

4.5 million infections and over 6000 deaths. As a rule

of thumb, there is one death per 750 cases in the

expansion phase of the disease when the doubling time

is 4 days. 2.7 million people are in the incubation

phase, and 85,000 people are seriously sick.

The peak of seriously sick people is reached on day

95, when over 2.5 million people are seriously sick and

over half a million people have died.

After 150 days, the disease is declining but is still

overwhelming the health care system, with about

180,000 people seriously sick. The model predicts

1.33 million deaths at this time, 1.33% of the

population. Given the severe lack of care that would

occur, the death toll could be underestimated by as

much as a factor 2 or 3. About 91.6 million people get

infected overall, significantly more than the expected

number from ‘‘herd immunity’’ (61.8 million). This is

because the disease expands so rapidly that it

overshoots and continues to infect people as it winds

down past the 62 million mark. This simulation clearly

shows that herd immunity is only effective when

people are vaccinated before the spread of the disease.

Next, the simulation was repeated for a ‘‘fast’’

scenario where the doubling time is the same as in

Italy in late February to early March, 2.66 days

(k11 = 0.344 day-1, R0 = 3.45). The results are shown

in Fig. 4. The main difference with the base case is

that the disease spreads faster and peaks sooner. At its

peak, 3.2 million people are seriously sick, on day 70.

The death burden after 150 days is 1.44 million, or

1.44% of the population. At this time, the disease has

affected 96.4 million people, 96.4% of the population.

Again, this is massively above the number expected

from herd immunity (71.0 million people).

During the initial spread of the disease, there is one

death every 1800–2000 cases, indicating that the

epidemic may be underestimated even more when it

spreads rapidly. This ratio explains why the case

mortality rate of COVID-19 is sometimes incorrectly

speculated to be on the order of 0.1% (https://www.

forbes.com/sites/carlieporterfield/2020/04/21/scientists-

Fig. 3 Left: uninfected (U: solid), all infected (I ? S ? SS ?

B: long dash) and deceased (D: short dash) people versus time.

Right: Incubating (I: solid), sick (S: long dash), seriously sick

(SS: short dash), recovering (B: very short dash) and deceased

(D: dotted) people versus time. Base case, no intervention,

doubling time 4 days
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widely-criticize-studies-that-claim-coronavirus-death-

rate-could-be-far-lower-than-believed/#31cde7711517:

accessed April 22, 2020).

The next scenario is a ‘‘slow’’ scenario. It repre-

sents a containment strategy that is popularized as

‘‘flattening the curve.’’ For the purpose of this paper, a

containment strategy is defined as a strategy to

significantly reduce the infection rate in order to slow

down the spread of the disease in an attempt to avoid

overburdening the health care system, but with no

attempts to eradicate the disease, i.e., the R0 remains

significantly above 1. The simulation is run with an

infection rate k11 = 0.18 day-1 (doubling time

7.65 days, R0 = 1.81). The result is shown in Fig. 5.

The peak in the number of seriously sick people is

significantly delayed, to day 185, but the number of

patients still far exceeds the capacity of any health care

system, with 1.4 million seriously sick, half the

number of the base case. The death burden in the

‘‘flattening the curve’’ strategy is slightly over 1

million, still over two-thirds of the fast scenario. The

total number of people that get infected in a 240-day

time span is 73.3 million, again markedly more than

the number expected from herd immunity considera-

tions (44.7 million).

Clearly, containment as defined here is an inade-

quate strategy for fighting the COVID-19 pandemic.

Fig. 4 Left: uninfected (U: solid), all infected (I ? S ? SS ?

B: long dash) and deceased (D: short dash) people versus time.

Right: Incubating (I: solid), sick (S: long dash), seriously sick

(SS: short dash), recovering (B: very short dash) and deceased

(D: dotted) people versus time. Fast case, no intervention,

doubling time 2.66 days

Fig. 5 Left: uninfected (U: solid), all infected (I ? S ? SS ?

B: long dash) and deceased (D: short dash) people versus time.

Right: Incubating (I: solid), sick (S: long dash), seriously sick

(SS: short dash), recovering (B: very short dash) and deceased

(D: dotted) people versus time. Slow case, no intervention,

doubling time 7.65 days
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3.3 Scenarios: social distancing intervention

for elimination of the virus

Next, starting from the base case, it is assumed that

drastic social distancing measures are taken on day 30

that reduce R0 to below 1. This is a strategy of

elimination, as opposed to the containment strategy

discussed in the previous section. It is assumed that the

value of k11 is reduced by 70% (i.e., from 0.261 to

0.0783 day-1, i.e., R0 decreases from 2.62 to 0.786).

The result is shown in Fig. 6. A 70% effective social

distancing intervention with a starting value of

k11 = 0.261 day-1, i.e., with respect to the world

average, is equivalent with a 77% effective interven-

tion with a starting value of k11 = 0.344 day-1, i.e.,

with respect to the situation in Italy and most of the

Western world. In other words, in much of the Western

world, the results shown in Fig. 6 reflect a social

distancing initiative that is 77% effective, not 70%.

There is a marked decline in the number of infected

in this scenario. After 240 days, the number of people

who died of COVID-19 is 1420, about three orders of

magnitude less than the previous scenarios. Still, this

number is 42 times the number people who had died at

the onset of the intervention (34).

The number of seriously sick people peaks at a

value of 1642 on day 51, again about three orders of

magnitude less than in the preceding scenarios.

What is clear from this scenario is that the decline

of the epidemic is much slower than its growth. This

has important repercussions for any public health

policy aiming to save lives. Even 7 months into the

intervention, the number of infected is comparable to

the number of infected two and a half weeks before the

intervention. Terminating the intervention would

immediately relaunch the epidemic. The reproductive

number must be maintained below 1 until the popu-

lation can be vaccinated on a large scale.

3.4 Scenarios: the death burden of inaction

In this section, the number of deaths will be evaluated

as a function of time and effectiveness of the social

distancing intervention. The starting point is the base

case, with a doubling time of 4 days

(k11 = 0.261 day-1, R0 = 2.62).

First, the effect of effectiveness of the social

distancing intervention is calculated. It is assumed

that the intervention starts on day 30 with an

effectiveness ranging from 50 to 80%. Figure 7 shows

the number of deaths after 60, 150, and 300 days.

After 60 days, i.e., 30 days after the start of the

intervention, the effect of effectiveness of intervention

on mortality is very limited. This is concerning

because to observers it appears that the interventions

are not working. However, over a 150-day time span, a

5% decrease in efficiency can triple the mortality.

Over a 300-day time span, a 1% decrease in the

efficiency (e.g., from 62% to 61%) can cause a 50%

increase in mortality. This explains why some Asian

countries treat seemingly trivial violations of the

social distancing rules as felonies.

The value of R0 equals 1 at 61.8% efficiency in this

case. The importance of keeping R0 below 1 is

Fig. 6 Left: uninfected (solid), all infected (long dash) and

deceased (short dash) people versus time. Right: Incubating

(solid), sick (long dash), seriously sick (short dash), recovering

(very short dash) and deceased (dotted) people versus time. Base

case, doubling time 4 days, intervention on day 30 with 70%

effectiveness
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immediately obvious from Fig. 7. When the initial

value of k11 is 0.344 day-1, an efficiency of 71.0% is

needed to lower R0 to 1. This should be the minimum

target efficiency of social distancing in Europe and

North America.

Next, the effect of timing of introduction of a social

distancing intervention on the mortality over 60 days,

150 days, and 300 days is calculated. The results are

shown in Fig. 8. Probably not surprisingly, the number

of deaths doubles with every 4-day delay of the

introduction of social distancing. This is an important

point, because the number of deaths may seem small at

the time of introduction (e.g., from 34 on day 30 to 68

on day 34), the number of deaths after 300 days

increases from 1429 to 2845 as a result of this delay.

Every additional death at the time of intervention

represents 42 additional deaths over a 300-day time

span.

3.5 Diagnostic modeling: NPI phase

In this section, modeled deaths versus time will be

compared with reported deaths in three countries:

Italy, France, and Iran. These countries were chosen

because they were hit relatively early so there is more

data, the death toll for these countries is relatively

high, and they represent three distinct cases. For each

country, an analysis was made in early April, and

again in late April. The death rate data used to

calibrate the models, as well as the modeling results,

are given in Excel format in Online Resource 2. The

early analyses were presented on YouTube to docu-

ment and time-stamp the projections (see https://www.

youtube.com/watch?v=7Y9fwus0fvQ for Italy,

https://www.youtube.com/watch?v=MT4wjniICLY

for France, and https://www.youtube.com/watch?v=

z1DMM68HHB8 for Iran). The results of the two

analyses are compared. The adjustable parameter

values obtained in each analysis is compared in

Table 2. In all but the Italian case, only one NPI event

was needed to explain the entire data set. As a result,

E2 and E3 were set equal to 0 in the case of France and

Iran. In both cases, adding more interventions could

have been added to the model, but the quality of fit

between the model and the data indicates that this was

not necessary.

The model fit to the data in Italy is shown in Fig. 9.

The initial fit was based on a single NPI on March 8,

the day a national lockdown was declared. This fit

provided a poor prediction of the data after April 3,

due to the complexity of the situation. The epidemic

started in the region of Lombardy, in the North of Italy,

and spread to the rest of the country. The second fit

required three NPI phases and still showed some lack

of fit. The total mortality projection declined from

about 47,000 based on the original fit to about 31,000

based on the second fit.

Figure 10 shows the data for France, with the model

fits. The overall efficiency of the NPI is similar to the

Italian case, but in France, the lockdown was more

sudden in France and occurred at a later date. The

projections of the original model fit are more accurate

in the case of France in comparison with Italy, because

Fig. 7 Number of deaths after 60 days (short dash), 150 days

(long dash) and 300 days (solid) versus effectiveness of

intervention. Base case, doubling time 4 days, intervention on

day 30

Fig. 8 Number of deaths after 60 days (short dash), 150 days

(long dash) and 300 days (solid) versus time of intervention.

Base case, doubling time 4 days, intervention effectiveness 70%
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a single lockdown decision explains the entire data set.

The lack of fit in Fig. 10 is mainly due to late reporting

of some cases, particularly deaths occurring in retire-

ment homes. The mortality projection was 35,156 in

the first data fit, and 32,449 in the second data fit. On

April 9, the last data point of the first fit, the reported

mortality in France was 12,210.

The data for Iran are shown in Fig. 11. Prediction of

the epidemic in Iran was complicated by the Iranian

New Year, which occurred on March 20. The quality

of fit improved upon adding a spike in the infection

rate on that day. Because the spike masked the

effectiveness of the NPI in Iran, the mortality projec-

tion from the first model fit was a serious overestimate

(over 13,000 deaths) in comparison with the second fit

(around 8000 deaths). The relatively low mortality in

Iran is thanks to the earlier intervention. As long as the

reproduction number of the disease is brought below 1,

an early timing of the intervention is more important

than the effectiveness.

Table 2 Adjustable parameters of the COVID-19 spread in Italy, France, and Iran, obtained in early April and late April

Country Italy Italy France France Iran Iran

Analysis date April 3 April 21 April 9 April 21 April 5 April 21

k11,0 (day-1) 0.378 0.40 0.323 0.323 0.32 0.34

Correction 0.136 0.08 0.049 0.049 0.518 0.296

t1 March 9 March 2 March 24 March 24 March 5 March 5

E1 0.794 0.224 0.87 0.89 0.73 0.8

t2 – March 9 – – – –

E2 – 0.46 – – – –

t3 – March 21 – – – –

E3 – 0.226 – – – –

kspike – – – – – 0.6

tspike – – – – – March 20

Population 60.5 9 106 60.5 9 106 65.2 9 106 65.2 9 106 83.7 9 106 83.7 9 106

Projected deaths 47,620 31,323 35,156 32,499 13,676 8061

Note that tj is the day after the NPI decision, whereas tspike is the day of the event leading to the spike

Fig. 9 Left: original model fit to reported deaths in Italy up to April 3 (long dash) and projection after April 3 (short dash), second data

fit (solid); (right) mortality projection based on second fit. Circles: cumulative reported deaths
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3.6 Preliminary mortality rate estimation:

Netherlands

On April 16, 2020, Reuters reported a study of 10,000

blood donations in The Netherlands, indicating that

3% of the samples contained antibodies against SARS-

CoV-2 (https://www.reuters.com/article/us-health-

coronavirus-netherlands-study/dutch-study-suggests-

3-of-population-may-have-coronavirus-antibodies-

idUSKCN21Y102). The study is non-peer-reviewed

and no methodological details were given, so this

analysis is preliminary at best. Assuming that the test

results are correct and the sample set is representative

of the population in The Netherlands, this leads to an

estimated 510,000 coronavirus positive people of a

population of 17 million. The model was fitted to

mortality data in The Netherlands as shown in Online

Resource 3. The obtained values were k11 = 0.34,

interventions on March 15 and March 23 with effec-

tiveness 0.34 and 0.58, respectively, and a correction

of 0.00118. This leads to a long-term projected mor-

tality of 5800. On April 8, a week before the report, the

number of coronavirus positive cases in The Nether-

lands is predicted at 360,000 by the model, of the same

order of magnitude as the estimate from the blood

donation samples. A refit indicates that the model

would predict a case number of 510,000 if a case

mortality rate of 1.06% is assumed.

This case mortality rate estimation does not account

for inaccuracies in the immunological testing. Assum-

ing a test specificity of 99% (i.e., a false positive rate of

1%), the real number of cases would be 343,000,

Fig. 10 Left: original model fit to reported deaths in France up to April 9 (long dash) and projection after April 9 (short dash), second

data fit (solid); (right) mortality projection based on second fit. Circles: cumulative reported deaths

Fig. 11 Left: original model fit to reported deaths in Iran up to April 5 (long dash) and projection after April 5 (short dash), second data

fit (solid); (right) mortality projection based on second fit. Circles: cumulative reported deaths
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leading to a case mortality rate of 1.57%. If a test

specificity of 98% is assumed, the real number of cases

would be 173,000, and the case mortality rate would

be as high as 3.12%. It follows that the data impose a

lower limit of the case mortality on the order of 1%

and will be higher unless the test used is exceedingly

specific.

3.7 Diagnostic modeling: reopening phase

The modeling of coronavirus deaths in Iran, Italy, and

France, including reopening data, is based on data

given in Online Resource 4. Whereas the data in

Sect. 3.5 were analyzed before submission of the

original manuscript in late April, this section is based

on a data analysis carried out in July, during prepa-

ration of the revised manuscript. None of the numbers

in Sect. 3.5 were altered during the revision.

In some countries, the reopening of the economy

after a successful NPI phase has led to a renewed

spiking of coronavirus cases, sometimes leading to a

resurgence of coronavirus deaths. An example is Iran,

where the economy was gradually reopened in late

April and early May. By the end of June, the Iranian

government introduced the requirement to wear face

masks in public spaces.

The model was fitted to coronavirus deaths up to

July 18. The parameters are shown in Table 3. An

intervention with effectiveness - 18.5% on May 1

was introduced to represent the reopening. For a good

fit of the model, it was necessary to add an additional

intervention on June 1, with effectiveness 1.5%. Late

June, the Iranian Government mandated the wearing

of facemasks in public spaces. An intervention with

effectiveness 9.25% (i.e., a reduction in k11 by 25%)

was introduced in the model on July 1 to account for

this. The result is shown in Fig. 12. A good fit between

the model and the data is observed. The model predicts

nearly 40,000 deaths by the spring of 2021, almost five

times the prediction made on April 21. Clearly, a

reopening can have a devastating effect if it pushes the

reproduction rate of the virus above 1. If the recent

decrease in the infection rate modeled by E4 = 0.0925

is indeed caused by the introduction of facemasks,

then the impact of this measure in terms of lives saved

can be calculated by setting E4 = 0 and comparing the

results. This calculation indicates that the long-term

death toll with E4 = 0 would be 463,000, indicating

that this measure may save over 420,000 lives.

Projections based on this type of calculations would

allow governments to make rational decisions about

reopening their economy.

Italy started reopening around May 18. This was

modeled with a negative efficiency of -5% starting on

that date. To obtain a good fit with the reported deaths,

an additional negative efficiency of -5% had to be

assumed, starting on March 31. The long-term death

projection increases from slightly over 31,000 to

slightly over 35,000. The model fit is shown in Fig. 13.

Clearly, the previous model fit underestimated the

ultimate number of deaths. The reopening only affects

deaths after early to mid-June and has only a minor

effect. For now, it can be concluded that Italy’s

reopening is successful.

To obtain a good fit with the France data, the

efficiency of the original NPI had to be increased

further, from 89% to 92%. The reopening started

around June 1, but a reversal in the death trend

occurred too soon to be explained by the reopening

alone. For that reason, an additional NPI on May 12

with effectiveness - 10% was assumed, along with an

NPI on June 1 with effectiveness - 12%. The fit of the

model with the data is shown in Fig. 14. As with Italy,

the progression of deaths is somewhat underestimated

in the April 21 projection, but the underestimation is

undone by the reopening, which adds several thou-

sands to the death toll. The calculations indicate that

the reproduction number in France as of mid-July is

dangerously close to 1, and further initiatives to

reopen the economy should be combined with miti-

gating measures.

To confirm the model’s ability to describe the

COVID-19 epidemic in a range of countries, addi-

tional analyses were conducted on data of Spain and

Germany. The data and model fits are shown in Online

Resource 5. The parameter values, as well as a brief

discussion, are given in Online Resource 6.

4 Discussion

The worldwide average R0 value of COVID-19

outside China is estimated at 2.82 for the late

February—early March 2020 period, based on a

doubling time of 4 days for the number of cases,

whereas the value was around 3.83 at the same time in

the Western world, based on a doubling time of

2.66 days. For the countries investigated, values
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ranging from 3.23 to 4.02 were found. This is

significantly higher than regular influenza viruses,

which have a mean R0 of 1.3 [15]. As a result,

experience with flu is a poor guide for predicting the

course of the COVID-19 epidemic. For instance, flu

viruses are seasonal because their R0 tend to drop

below 1 over the summer months, but COVID-19 is

too contagious to display a similar seasonality without

strict NPI.

The case mortality rate assumed in the model 1.5%

was assumed to be constant. In practice, the value is

strongly age and gender specific. The value is also

expected to increase in cases where the hospital

system is overwhelmed. These factors were not

Table 3 Adjustable parameters of the COVID-19 spread in Italy, France, and Iran, obtained in late April and mid-July

Country Italy Italy France France Iran Iran

Analysis date April 21 July 18 April 21 July 18 April 21 July 18

k11,0 (day-1) 0.40 0.40 0.323 0.323 0.34 0.34

Correction 0.08 0.08 0.049 0.049 0.296 0.296

t1 March 2 March 2 March 24 March 24 March 5 March 5

E1 0.224 0.224 0.89 0.92 0.8 0.8

t2 March 9 March 9 – May 12 – May 1

E2 0.46 0.46 – –0.1 – –0.185

t3 March 21 March 21 – June 1 – June 1

E3 0.226 0.226 – –0.12 – 0.015

t4 March 31 July 1

E4 –0.05 0.0925*

t5 May 18

E5 –0.05

kspike – – – – 0.6 0.6

tspike – – – – March 20 March 20

Population 60.5 9 106 60.5 9 106 65.2 9 106 65.2 9 106 83.7 9 106 83.7 9 106

Projected deaths 31,323 35,656 32,499 32,476 8061 39,022

Note that tj is the day after the NPI decision, whereas tspike is the day of the event leading to the spike

*Corresponding with a reduction in k11 of 25% at the time of implementation

Fig. 12 Left: fit to reported deaths in Iran up to April 21 (long dash) and projection after April 21 (short dash), post-reopening data fit

(solid); (right) mortality projection based on second fit. Circles: cumulative reported deaths
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accounted for and may lead to deviations between

modeled and reported deaths. The assumed mortality

is lower than current estimated values. The main

sources of error in estimated values are underreporting

of cases due to lack of testing, which leads to

overestimation, and the time lag between illness and

death, which leads to underestimation. The analysis of

blood sample data from The Netherlands tentatively

indicates a value of 1% or more, depending on the

specificity of the testing, indicating that the number

used here, as well as the current estimates, are in the

correct range.

The model predicts that there is 1 death per 750 cases

during the growth phase of the epidemic when the

doubling time is 4 days, and 1 death per nearly 2000

cases when the doubling time is 2.66 days. With

approximately 50,000 deaths as of April 1, when the

growth rate of the epidemic started to decline, this

means that the number of infected was probably on the

order of 40 million people around that time. Assuming a

death rate of 1.5%, a lower limit of 600,000 deaths can

be expected worldwide, even if no new infections occur.

Irrespective of the variables used, model predic-

tions indicate that COVID-19 will affect vastly more

people than expected from ‘‘herd immunity’’ consid-

erations. This is because there is a huge number of

infected people at the time of onset of herd immunity,

enough to infect most of the remaining uninfected

Fig. 13 Left: fit to reported deaths in Italy up to April 21 (long dash) and projection after April 21 (short dash), post-reopening data fit

(solid); (right) mortality projection based on second fit. Circles: cumulative reported deaths

Fig. 14 Left: fit to reported deaths in France up to April 21 (long dash) and projection after April 21 (short dash), post-reopening data fit

(solid); (right) mortality projection based on second fit. Circles: cumulative reported deaths
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people before the epidemic spirals down. It follows

that public health strategies based on herd immunity

are extremely misguided and extremely deadly. Herd

immunity is only effective when the population is

vaccinated before the onset of the disease.

Likewise, a public health strategy based on contain-

ment (‘‘flattening the curve’’) without diminishing R0

below 1 is inadequate and extremely deadly, with an

expected mortality rate of about 1% based on the entire

population even with the unrealistic assumption that the

healthcare system can handle the number of patients.

Only measures that bring the reproduction number

below 1 significantly reduce number of deaths.

Once a country takes decisive action to reduce R0

below 1, the mortality still increases by about a factor

42 before the disease is stopped. Based on that

number, the estimate of 600,000 deaths is probably

vastly underestimated.

The mortality of COVID-19 after intervention is

very sensitive to the effectiveness of the intervention,

particularly when the reproductive number is close to

1. Minor gaps in the social distancing policy (e.g.,

closing bars but allowing private parties), or a small

fraction of the population violating the policy can have

disastrous effects on mortality rates.

Simulations of the effect of reopening on the

epidemic in Italy, France, and Iran were carried out.

Reopenings were successfully modeled by adding

additional NPIs with negative effectiveness (typically

- 10 to - 20%). Hence, the model can be used to

evaluate if a country is ready for reopening, and to

make projections of the effect of reopening on the

number of deaths.

5 Software

The software of the model consists of two MATLAB

files, main_ND.m and f_ND.m. The file main_ND.m is

the control file that should be run. The file f_ND.m

defines the differential equations. The model can be run

on MATLAB, or on its open-source equivalent GNU

Octave (https://www.gnu.org/software/octave). The

source code is shown in the supporting document, Online

Resource 1 and can be obtained from the author by

e-mail.

Two additional files are included for the calculation

of R0: main_ND_R0.m and f_ND_R0.m.

For terms of use: see source code.

6 Conclusions

Calculations with an epidemiological model devel-

oped to describe the spread of the COVID-19

pandemic indicates that highly successful social

distancing measures are needed to keep the mortality

of the pandemic below 1% of the population. With

successful social distancing implemented early, the

death burden can be reduced by up to three orders of

magnitude.

The model can be applied to specific countries and

used to make projections of future death rates. Robust

predictions can be made approximately 1 month after

the onset of social distancing, provided the initiative is

swift and decisive.

Based on a (non-peer reviewed) study of blood

donation samples in The Netherlands, a lower limit on

the case mortality rate of COVID-19 has been

preliminarily set to 1%.
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