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Abstract

The application of machine learning and artificial intelligence to high-dimensional cytometry 

datasets has increasingly become a staple of bioinformatic data analysis over the past decade. This 

is especially true in the field of cancer biology, where protocols for collecting multiparameter 

single-cell data in a high-throughput fashion are rapidly developed. As the use of machine learning 

methodology in cytometry becomes increasingly common, there is a need for cancer biologists to 

understand the basic theory and applications of a variety of algorithmic tools for analyzing and 

interpreting cytometry data. We introduce the reader to several keystone machine learning-based 

analytic approaches with an emphasis on defining key terms and introducing a conceptual 

framework for making translational or clinically relevant discoveries. The target audience consists 

of cancer cell biologists and physician-scientists interested in applying these tools to their own 

data, but who may have limited training in bioinformatics.
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Introduction

Single-cell cytometry has proven to be a robust and flexible tool in both research and clinical 

laboratories since the early 1970s.1 In recent years, the advent of high-dimensional 

fluorescence cytometry,2 mass cytometry,3 and sequence-based cytometry4 in particular have 

allowed for the generation of richer, more complex single-cell data than ever before. For 

basic scientists, these innovations have provided low-cost, high-throughput methods of 

profiling the phenotypic and functional characteristics of millions of individual cells across a 

wide array of human tissues. For clinicians, cytometry has become a mainstay of diagnosing 

(and guiding the treatment of) numerous medical conditions including infection, malignancy, 

and immunodeficiency.5 While much of the cytometry field has focused on characterizing 

the identity of and relationships between subpopulations of immune cells, an emerging field 
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of particular significance is the application of high-dimensional cytometry to the study of 

cancer cell diversity and heterogeneity, which are difficult to characterize without many 

multiparameter, single-cell observations.6

Historically, cytometry data have been analyzed “manually” via direct inspection of 2-

dimensional biaxial plots and the sequential application of Boolean gates that are hand-

drawn based on the marker intensity distributions of individual cells.7 While this approach is 

familiar to many biologists and clinicians, it suffers from significant limitations—including 

high between-individual user bias, lack of scalability in the face of many markers or many 

individual samples, and a dependence on a priori knowledge regarding which cell 

populations are important for the biological question at hand.8 Importantly, these limitations 

are especially cumbersome in the study of cancer cells, whose segmentation into cellular 

subpopulations is generally less defined (and far more contentious) than that of healthy cells, 

which can often be divided into discrete lineages relatively easily based on cell-surface 

marker expression.

In large part due to the limitations of manual gating-based analytic approaches, it is 

becoming increasingly common to analyze single-cell cytometry data using high-

dimensional computational tools. In particular, the application of machine learning 

algorithms to cytometry datasets has increased significantly in the past 20 years, as has the 

application of artificial intelligence to biomedical datasets in general (Figure 1). Many 

machine learning approaches have been recently adapted specifically for the analysis of 

cytometry data and have been shown to perform at least as well (and often better) than 

human experts on a variety of tasks.8-9 Yet, despite the fact that these tools now exist, they 

are often nontrivial to understand and utilize to their full potential for most cancer biologists

—and certainly clinicians—due to their stark departure from traditional manual gating 

workflows.10–11 Similarly, machine learning analyses are often too complex for direct use in 

a clinical environment or require significantly larger datasets than are available to practicing 

physicians. Together, these issues demonstrate the difficulty of bridging the gap between 

data science and cancer systems biology in order to use cytometry data to answer important 

clinical or translational questions.12

Here, we describe the main machine learning algorithms that have been used to analyze 

high-dimensional cytometry data in cancer biology, with an emphasis on what kinds of 

translational insights each of them can yield for the user. In doing so, we present the reader 

with a practical workflow for analyzing cytometry data by first starting with more 

exploratory, unsupervised machine learning approaches before working towards more 

targeted analytical methods. The primary audience for this review is cancer cell biologists 

and physician-scientists interested in applying machine learning algorithms to cytometry 

data in a clinically focused way, but who may have little to no bioinformatics background. 

Thus, what we present here is not meant to be an exhaustive guide, but rather a primer that 

will orient the reader and lead them towards relevant, in-depth, and up-to-date resources for 

further learning.
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An overview of machine learning and high-dimensional cytometry

We use the term “machine learning” here to refer to a broad range of computational 

techniques that involve training an arbitrary model to find, classify, or predict patterns in 

data according to a carefully selected set of rules.13 While some data scientists explicitly 

distinguish between traditional statistical models (such as linear or logistic regression) and 

more complex procedures such as building artificial neural networks (NNs) or conducting 

clustering analyses, we deliberately avoid this distinction here in order to provide a broad 

discussion of as many of the currently available tools as possible. Specifically, we give close 

consideration to three kinds of data analysis: dimensionality reduction, clustering, and 

predictive modeling (with feature selection), each of which have been successfully applied 

to cytometry datasets in cancer research. Importantly, each of these analytic strategies yield 

distinct insights and, in turn, are associated with specific input and output data formats that 

are critical for them to be used effectively by an investigator.

Dimensionality reduction and clustering are two forms of “unsupervised” machine learning. 

Unsupervised machine learning algorithms seek to describe how data are organized—either 

along a continuum or within distinct groups or clusters—based solely on the measurements 

associated with each observation. In the case of cytometry data, these measurements can 

correspond to a cell’s transcript or protein expression levels, readouts of its genomic or 

epigenomic status, and/or information about its morphological or higher-level spatial 

features.14–15 Using these measurements, dimensionality reduction algorithms project the 

data into a lower-dimensional (generally two- or three-dimensional) space in a way that 

preserves as much of the original information as possible and that can be easily visualized.7 

Somewhat similarly, clustering algorithms increase the ease of visualizing and interpreting 

high-dimensional data by explicitly partitioning each observation—or, in the case of 

cytometry data, each cell—into discrete groups based on their similarity to one another. This 

allows cluster size and characteristics to be compared across multiple samples, experimental 

conditions, or treatment groups such that novel cell types of interest can be identified and 

characterized.10

In contrast to dimensionality reduction and clustering, predictive modeling (of which there 

are many kinds) represents a form of “supervised” machine learning. Supervised machine 

learning relates the measurements associated with each observation in a dataset to the 

corresponding value of an outcome variable of some kind. In cancer biology, outcome 

variables of interest are generally diagnostic or prognostic in nature, such as a patient’s 

cancer type or subtype, their response to a specific therapy or therapies, or their likelihood of 

disease recurrence following remission.16 In addition to their direct application as predictive 

tools, supervised models are often informative because many of them can perform “feature 

selection,” a process in which only the most important features for predicting a particular 

outcome are identified and included in the final model.17 Often, these selected features are 

biologically informative and can represent candidate therapeutic targets, molecular 

mechanisms of disease, or biomarkers in the diagnosis or surveillance of a particular cancer.
18
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Together, dimensionality reduction, clustering, and predictive modeling can be used to guide 

a first-pass analysis of high-dimensional cytometry data by respectively allowing for easy 

data visualization, characterization of distinct cellular subpopulations, and selection of 

candidate features that most strongly predict the clinical or experimental outcomes of 

interest for the study at hand (Figure 2). This framework, while by no means exhaustive, is 

explicit in its emphasis on focusing the analysis towards clinically useful insights. In 

general, clinical cytometry analyzes fewer simultaneous parameters than research cytometry, 

with clinical cytometers utilizing only 2–8 colors on average for a given diagnostic test.19 

For cancer specifically, flow cytometry is generally used in several well-defined ways: (i) 

quantifying the presence of rare, aberrant cell populations such as in the detection of 

minimal residual disease (MRD) in the surveillance of leukemia,20 (ii) measuring the 

expression level of a particular protein or combination of proteins within a patient’s tumor 

cells,21 or (iii) identifying the clonality or lineage status of a patient’s bulk tumor population 

relative to a reference control.22

Given these restrictions on clinical cytometry in practice, it makes sense to organize 

translational cytometry studies around identifying a small number of specific surface 

markers, intracellular signals, or cell populations that could be potentially measured in a 

clinical lab. Organizing one’s analysis first on dimensionality reduction, then on clustering, 

and then on predictive modeling is one way of doing so.23 The following sections outline 

each part of this three-step workflow in closer detail while providing examples from the 

literature of how each of these strategies have been successfully applied to cancer cytometry 

data. In addition, the Glossary defines several key terms that appear in each of the sections 

below.

Before you start: Quality control and data pre-processing

Some readers will be familiar with the phrase “garbage in, garbage out” that is often used to 

describe a frustrating reality in the field of artificial intelligence: that is, if low-quality data 

are provided to even the best machine learning algorithm, it is unlikely that the results will 

be robust, reproducible, or even interpretable in a meaningful way.24 In the specific context 

of high-dimensional cytometry data, this means that datasets collected using flawed 

experimental design practices or in which technical artifacts have not been corrected are 

likely to produce spurious findings when analyzed with any machine learning tool. 

Furthermore, it is often more difficult to detect such errors after complex analyses have been 

performed. For these reasons, the importance of quality control and data pre-processing 

cannot be overstated. A full, in-depth discussion of high-dimensional cytometry 

experimental design and data cleaning is beyond the scope of this review, but it has been 

thoroughly discussed elsewhere (see 22, 25, 26, and 27 for several comprehensive 

descriptions).

In general, the best way to guard against spurious results and data misinterpretation is a 

fastidious approach to experimental design before starting an experiment as well as attention 

to data cleaning and quality checks after data have been collected. During the experimental 

design phase of a project, careful consideration should be given to the inclusion of batch 

controls, using consistent experimental protocols and reagents, and balancing case and 
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control groups during sample acquisition. After data is obtained, it may need to undergo 

compensation to correct for spillover from overlapping fluorochromes or metal isotopes, 

transformation to the logarithmic or hyperbolic arcsine scale to improve data scaling, and 

normalization to correct for batch effects, technical variation between cytometers, and 

longitudinal differences in samples collected across broad timescales (i.e. weeks or months).
28,29,30,31 Finally, data should also undergo a “sanity check” for quality assessment. This 

may include detecting outliers, technical errors in individual samples, or larger-than-

expected between-sample variability and can frequently be accomplished by visualizing data 

distributions and computing summary statistics to discern how much each sample deviates 

from the norm.32,33 Often, machine learning tools are applied to data that have not yet been 

manually explored to identify routine sources of error; instead, these sources of error are left 

to quietly wreak havoc on the analysis until the late stages of a project in which they are 

more difficult to identify (and after a great deal of one’s time may have already been spent). 

Ensuring appropriate experimental design and quality control before undertaking any 

complex analyses can help to avoid these frustrating pitfalls.

Step 1: Dimensionality Reduction

Dimensionality reduction is a common method of succinctly visualizing single-cell data 

either to reveal broad trends in how cells are distributed in high-dimensional space or to 

roughly assess data quality across multiple experiments or datasets. Here, we discuss several 

methods of dimensionality reduction including Principal component analysis (PCA), t-

distributed stochastic neighborhood embedding (tSNE or viSNE), and uniform manifold 

approximation and projection (UMAP). Example applications of each of these 

dimensionality reduction approaches to a recently-published cancer cytometry dataset are 

provided in Figure 3.

Principal Component Analysis (PCA).

Principal Component Analysis (PCA) is one of the most commonly-used dimensionality 

reduction techniques and is often the first algorithm applied to new high-dimensional 

datasets. PCA reduces the dimensionality of an input dataset by recombining its variables 

into so-called principal components (PCs), a set of new, uncorrelated variables that are rank-

ordered by the amount of variance from the original data that they explain. Thus, principal 

component 1 (PC1) explains the largest amount of variance from the input dataset, principal 

component 2 (PC2) explains the second largest amount, and so on. Importantly, each 

principal component represents a linear combination of the original variables and, for 

cytometry data, can be conceptualized as a composite dimension of markers (or other 

cellular features) that contain similar information across all of the cells being analyzed.34

In general, PCA is often used to visualize the structure of high-dimensional cytometry data 

by plotting cells along the first two (or sometimes three) PCs, and this can be useful for 

observing broad separations in cellular phenotype.35 In addition, most statistical software 

capable of performing PCA will also report the contribution of each individual marker to all 

of the PCs (called “loadings”). Factor loadings can be helpful in determining which markers 

contribute most of the variance to a dataset and can be used in preliminary experiments to 
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narrow down an antibody panel for high-dimensional flow cytometry or mass cytometry (for 

an example of this approach, see 36).

Both because of its rapid compute time (due to its relationship with a linear algebra concept 

called the singular value decomposition, see Glossary) and lack of tuning parameters, PCA 

is an exceedingly convenient tool for analyzing broad patterns within a dataset.34 For 

instance, the EuroFlow Consortium recently used PCA to develop a highly-sensitive method 

for detecting minimal residual disease in B-cell precursor acute lymphoblastic leukemia 

(BCP-ALL).37–38 In their study, bone marrow aspirates from 178 BCP-ALL patients were 

collected before treatment, after induction therapy, and 1 year after ending treatment and 

were analyzed using PCA in order to develop an antibody panel that best separated leukemic 

blasts from healthy B-cell precursors. Yet despite PCA’s usefulness for tasks like this, it also 

suffers from an inability to meaningfully represent highly complex, nonlinear relationships 

between variables. Biological data is inherently non-linear because of the complex 

regulatory structures that abound in molecular biology—including processes like 

thresholding, saturation, signal amplification, and both positive- and negative-feedback. 

Thus, biological variables commonly have polynomial, exponential, or otherwise highly 

complex relationships with one another. This results in irregular distributions and 

relationships that may not be easily captured by PCA.39 Because of these common 

properties of biological data, dimensionality-reduction algorithms that can accommodate 

non-linear relationships are often used to detect more subtle relationships than those 

represented by PCA.

T-distributed Stochastic Neighbor Embedding (tSNE).

Although PCA is limited to the detection of linear patterns, not all dimensionality reduction 

algorithms are. The first of the non-linear algorithms we will discuss is t-distributed 

stochastic neighbor embedding (t-SNE; often also called “viSNE” when used for 

visualization).40 The t-SNE algorithm has been implemented in most programming 

languages commonly used for scientific computing including R, Python, and MATLAB. In 

addition, it is available for use as a graphical user interface (GUI) on both the FlowJo and 

Cytobank analysis platforms.

Like PCA, t-SNE analyses start with high-dimensional input data in which single cells are 

associated with corresponding measurements of protein marker expression in flow 

cytometry, sequence reads in single-cell nucleic acid sequencing, or cellular neighborhood 

information in multiplexed imaging. However, whereas PCA reduces dimensionality through 

a series of linear transformations based on the input data’s global variance structure, t-SNE 

more accurately captures non-linear relationships by emphasizing differences in the data’s 

local structure.41 In brief, it does so in three steps. First, the pairwise distances between 

individual cells and each of their close neighbors are calculated in high-dimensional space 

and represented as a set of normal (Gaussian) probability distributions. Second, each cell is 

placed randomly on a pair of arbitrary axes to give an “initial” 2-dimensional representation 

of the data in which distances between close neighbors are calculated using the t-

distribution.42 And third, the probability distribution of the high-dimensional and initial 2-

dimensional representations are compared, and the 2-dimensional representation is 
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iteratively adjusted until it matches the high-dimensional representation as closely as 

possible. Ultimately, this means that t-SNE analysis places similar cells close to one another 

in the resulting plot such that distinct cellular subpopulations emerge visually.40

Importantly, t-SNE requires the user to set several hyperparameters before an analysis is run

—including the algorithm’s number of iterations, learning rate, and perplexity—and these 

parameters can have significant effects on the final result. Perhaps the most important of 

these values is “perplexity,” which represents the rough balance between the input data’s 

local and global structure that is emphasized in the construction of t-SNE’s low-dimensional 

representation. When perplexity is low, each data point is assumed to have a small number 

of close neighbors and local structure predominates; when perplexity is high, the opposite is 

true.42 Thus, a recommended best practice for conducting a t-SNE analysis is to test a 

variety of perplexity values (keep in mind that the recommended range is 5–50) on a given 

dataset and observe which underlying patterns in the data are consistently observed.40 In 

addition, it is important to test multiple values for the number of iterations that the algorithm 

will use when constructing the low-dimensional representation, as values that are too low 

will fail to represent the data accurately. Importantly, several variations on the t-SNE 

algorithm—including hierarchical tSNE (HSNE)43 and opt-SNE44—have been developed 

since its initial description to improve its accuracy and compute time on large datasets.

t-SNE has been successfully applied to variety of high-dimensional cytometry datasets in the 

study of human cancer. For example, in t-SNE’s initial application to cytometry data, Amir 

et al. used it to show that bone marrow aspirates taken from acute myeloid leukemia (AML) 

patients contain cells distinct from both healthy bone marrow populations and one another.40 

More recently, t-SNE analysis has been used in multiple studies characterizing the 

differences between circulating and infiltrating immune cell populations in patients with 

solid tumors. For example, one recent study applied t-SNE analysis to mass cytometry data 

acquired from hepatocellular carcinoma (HCC) patient biopsies to show that immune cells 

within the HCC tumor microenvironment express higher levels of immunosuppressive 

surface markers than those outside the tumor. Specifically, the authors were first able to 

identify subsets of tissue resident memory CD8+ T-cells and T-regulatory cells (T-regs) 

expressing high levels of T-cell exhaustion markers—including PD-1, Tim-3, and Lag-3—

after these cells segregated from other cell types on a series of t-SNE plots.45 Furthermore, a 

similar approach demonstrated a nearly identical result in a recent study of glioblastoma 

multiforme (GBM), in which t-SNE analysis helped to identify GBM tumor-resident T-regs 

cells that, when compared to T-regs in circulation, demonstrated both higher PD-1 

expression and an elevated molecular signature of T-cell exhaustion.46 Together, these 

examples indicate that t-SNE can be especially useful during the exploratory phase of data 

analysis by parsing out broad population dynamics and standout cellular subsets on easily-

visualized, low-dimensional plots.

Yet, while t-SNE is a powerful tool for representing high-dimensional, non-linear patterns in 

two or three dimensions, it can be easy to misinterpret. Even when t-SNE’s tunable 

parameters are appropriately set, the algorithm does not preserve density or global distances 

between observations. This means two important things. First, it means that the relative size 

of a subpopulation on a t-SNE plot does not necessarily correspond to its actual size in high-
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dimensional space. Second, it means that the distance between distant “clusters” in a t-SNE 

plot does not always accurately reflect their similarity to one another.11,42 Thus, interpreting 

distances on a t-SNE plot quantitatively can be misleading, although some studies have 

precariously done so to make claims regarding leukemic cell identity along the 

hematopoietic developmental trajectory.47–48 Importantly, it should also be noted that t-SNE 

is stochastic, which means that it can yield slightly different low-dimensional 

representations when applied to the same data multiple times, although differences tend to 

be minor when the algorithm’s parameters are chosen well.42

Uniform Manifold Estimation and Projection (UMAP).

While t-SNE is the most commonly used non-linear dimensionality reduction technique in 

high-dimensional cytometry data analysis, it is limited to analyzing a relatively small 

number of cells due to its slow computation time (which scales quadratically with the 

number of cells being analyzed).41 Due to this and other constraints on t-SNE’s 

performance, an algorithm called Uniform Manifold Approximation and Projection (UMAP) 

was recently developed as an alternative dimensionality reduction approach.49,50 Because 

UMAP was so recently developed, there are limited examples of its application to the study 

of cancer biology specifically; however, UMAP is becoming increasingly widespread in the 

field of bioinformatics in general, which is why it warrants discussion here.51,52,53 UMAP 

has been implemented as software packages in both Python and R.

Like t-SNE, UMAP seeks to represent the high-dimensional structure of an input data matrix 

in low-dimensional space such that local relationships between nearby cells are conserved. 

Unlike t-SNE, however, UMAP leverages manifold theory and Riemannian geometry to 

accomplish this by first approximating the high-dimensional surface on which the data sits, 

then utilizing a weighted k-nearest neighbor graph architecture to project that surface onto a 

low-dimensional layout.49 While UMAP is derived using mathematical theory that most 

biologists will be unfamiliar with, in practice UMAP and tSNE can be used for similar 

purposes. UMAP’s particular strengths derive from its significantly faster compute time and 

greater emphasis on global data structure relative to t-SNE, as well as its ability to add new 

observations to an existing plot, of which t-SNE is not directly capable.50 This ability to 

embed additional data points on an existing plot is particularly useful for biological data 

analysis, as it has direct applications in longitudinal disease monitoring (i.e. tracking 

individual patients over time throughout disease progression or treatment) as well as in the 

detection of batch effects when new samples are analyzed. Importantly, UMAP’s greater 

preservation of a dataset’s global structure means that comparing distances between clusters 

on a UMAP embedding might be a bit more meaningful than doing so on a t-SNE plot.54 

However, because local distances are used to compute both t-SNE and UMAP embeddings, 

global distances (particularly between very distant data points) are difficult to interpret. In 

most cases, it is less precarious to simply compute distances in the original, high-

dimensional data space, making use of the distance metric that best suits your particular 

dataset (see “Distance metrics” in the Glossary).

UMAP requires the user to tune several hyperparameters, including n, the number of 

neighbors that UMAP will use to learn local data structure; d, the target number of output 
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embedding dimensions; min-dist, the minimum distance allowed between close points in the 

low-dimensional representation; and n-epochs, the number of iterations the algorithm should 

use to find a stable low-dimensional representation.49 Arguably the most important of these 

parameters is n, for which larger values will emphasize global data structure over local 

structure (similar to t-SNE’s perplexity parameter; see Figure 3c). By contrast, min-dist is a 

purely aesthetic parameter for which low values will result in more closely-packed plots. In 

general, users should expect to test a variety of values for n and min-dist while using values 

of d and n-epochs that provide stable output in the desired number of dimensions (generally 

2 or 3).

When choosing between PCA, t-SNE, and UMAP in practice, there are several 

considerations to keep in mind. For instance, PCA is an optimal choice when computational 

speed, interpretability and simplicity (due to PCA’s lack of hyperparameters) are important. 

By contrast, t-SNE and UMAP are stronger choices when an analysis requires the visual 

separation of cell types whose measurements have highly non-linear relationships with one 

another or whose differences are poorly resolved using PCA in 2 or 3 dimensions. Finally, 

longitudinal data analyses are best performed using PCA and UMAP due to their ability to 

embed new samples into a coordinate system that has already been computed on previous 

samples, thereby allowing the direct comparison of old and new data. That being said, 

outside of these specific criteria, many data scientists also choose between these 

dimensionality reduction methods using trial-and-error—generally by starting with PCA due 

to its speed and working up to slower, more complex methods like UMAP and t-SNE if 

necessary.

Step 2: Clustering

While dimensionality reduction algorithms are useful for exploratory data analysis and 

visualization, they do not explicitly compare cell subpopulation structure between samples. 

To accomplish this, investigators can utilize clustering algorithms that stratify cells into 

quantifiable subsets that are (for the purposes of the clustering) assumed to be similar. This 

allows the bulk characteristics of different clusters to be compared both to one another and 

across sample types. While there are many kinds of clustering algorithms that work in 

different ways, they all seek the explicit goal of assigning observations into distinct groups 

such that similar observations are assigned to the same group and dissimilar observations are 

assigned to different groups. While clustering ultimately leads to the loss of single-cell 

resolution when applied to cytometry data, it also allows investigators to make inferences 

about which phenotypes—shared among many cells—are present in their data. Such 

inferences are frequently important in cancer biology, where deconvolving heterogeneous 

mixtures of cells within bulk tumor populations is a common experimental goal.55–56

In this section, we give an overview of the most common clustering approaches used in the 

analysis of cancer cytometry data including hierarchical clustering, k-means clustering, 

density-based clustering, and graph-based clustering (Figure 4). We also provide examples 

of how these algorithms have been applied to specific questions in cancer biology and 

adapted specifically for the analysis of cytometry data. Importantly, many existing clustering 
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tools are associated with built-in visualization strategies, but clusters can also be visualized 

using any of the dimensionality reduction strategies described in the previous section.

Hierarchical clustering.

By far the most commonly-used clustering technique in bioinformatics is hierarchical 

clustering. Hierarchical clustering operates either by iteratively combining observations into 

progressively larger groups (the bottom-up or “agglomerative” approach) or by iteratively 

dividing observations into progressively smaller groups (the top-down or “divisive” 

approach).57 In the agglomerative approach, each cell is initially assigned to its own cluster 

and, as the algorithm iterates through multiple steps, clusters are combined with similar 

clusters one-by-one until the desired number of clusters is reached. In the divisive approach, 

all cells are initially assigned to a single cluster that is repeatedly divided into smaller 

clusters such that the dissimilarity between the resulting clusters is maximized. As in the 

agglomerative approach, this splitting process continues until the desired number of clusters 

is reached.58 In both approaches, the investigator must choose the desired number of clusters 

in the final result a priori—and while this is the only hyperparameter that hierarchical 

clustering requires, users should be cautious to avoid choosing a number of clusters that is 

too small, which can limit the analysis’s resolution by forcing dissimilar cell types to be 

grouped together spuriously.

Importantly, hierarchical clustering approaches vary in how they define the dissimilarity or 

distance between clusters. In single-linkage hierarchical clustering, the distance between two 

clusters is defined as the smallest distance between any point in the first cluster and any 

point in the second cluster. By contrast, complete-linkage hierarchical clustering does so by 

instead using the largest distance between any data point in the first cluster and any data 

point in the second cluster. As something of an intermediary between single-linkage and 

complete-linkage, average-linkage hierarchical clustering uses the average distance between 

all data points in one cluster and all data points in a second cluster to define inter-cluster 

distance.59 Each of these linkage types produce slightly different results, and they are each 

capable of using a variety of distance metrics. While Euclidian distance is a common choice, 

other similarity metrics (such as Manhattan distance, Pearson’s correlation, and others) are 

frequent alternatives.

In the analysis of high-dimensional cytometry data in particular, a commonly-used 

application of hierarchical clustering is spanning-tree analysis of density-normalized events 

(SPADE), an algorithm best known for its application to the analysis and visualization of 

mass cytometry data, originally applied by Bendall et al.3 After an initial density-dependent 

subsampling step, SPADE utilizes agglomerative, single-linkage hierarchical clustering in 

which the distance between observations is calculated using the absolute value (L1) norm.60 

After identifying a user-specified number of clusters, SPADE constructs a minimum 

spanning tree (MST) diagram that connects similar clusters to one another and embeds them 

in a two-dimensional plot. In SPADE plots, clusters are represented as nodes within the 

MST whose size corresponds to the number of cells in each cluster, and whose color can be 

used to represent marker expression. As a widely used tool, SPADE has been implemented 

in R, C++, and Java and is also available as a graphical user interface (GUI) within 
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Cytobank. Recently, a deterministic implementation of SPADE was developed such that its 

downsampling and MST construction steps are no longer stochastic; however, this version 

has not yet received widespread use in the study of cancer.61

While SPADE was initially developed to cluster and visualize subsets of hematopoietic 

lineage cells in the healthy immune system, it has since been applied to single-cell cancer 

data to help parse bulk tumor heterogeneity. In one recent study, investigators applied 

SPADE to data acquired from blood samples collected from nine patients with secondary 

acute myeloid leukemia (sAML). After clustering, the authors were able to identify several 

populations of CD34+CD38+ AML cells whose intracellular signaling program (specifically, 

phosphorylated STAT3 and STAT5 expression) responded to thrombopoeitin stimulation 

differently than healthy controls, revealing a potentially targetable population for therapeutic 

development.62 SPADE has also recently been used to identify a subset of metabolically 

impaired, tumor-infiltrating CD8+ T lymphocytes in clear cell renal cell carcinoma (ccRCC) 

patient samples analyzed using mass cytometry. In this study, analysis of SPADE plots 

revealed that a subset of ccRCC CD8+ T-cells exhibited a less activated surface phenotype 

compared to circulating T-cells in ccRCC patients’ peripheral blood, with functional 

experiments confirming that this resulted from ccRCC T-cells having small, fragmented 

mitochondria and glucose metabolism-deficiency.63

Another algorithm with similar visualization capabilities to SPADE is FlowSOM, a recently 

developed clustering approach that also returns its result in the form of an MST. Unlike 

SPADE, FlowSOM does not require downsampling of its input data, which both 

significantly reduces its computation time and allows it to analyze a larger number of cells at 

once.64 This is due to the fact that, instead of directly performing hierarchical clustering, 

FlowSOM first assigns single cells to clusters using an artificial neural network called a self-
organizing map (SOM). Self-organizing maps are trained by assigning cells to their most 

similar node in a discretized grid of the input space, then iteratively adjusting the position of 

all nodes until similar cells are grouped together in an a priori specified number of clusters.
64 After clusters are identified, they can then be visualized as an MST and combined into 

larger meta-clusters in a final agglomerative hierarchical clustering step. While FlowSOM 

has been applied to studying cancer less than to studying the immune system, one recent 

study utilized FlowSOM to analyze melanoma cells biopsied from patients both immediately 

before initiating chemotherapy and after 4 weeks of treatment. The investigators’ analysis 

revealed one cluster of melanoma cells with a consistent surface marker profile that persisted 

throughout treatment, suggesting a potential role for this rare subtype in treatment-resistant 

melanoma.65

K-means clustering.

Another commonly-used clustering algorithm is K-means clustering. Like hierarchical 

clustering, the K-means algorithm requires a user to explicitly specify the numbers of 

clusters (called K) to be identified within the input data.66 Once K is chosen, the algorithm 

performs a three-step procedure. First, it randomly assigns each observation to one of the K 
clusters. Second, it computes the mean of each input variable across all data points within 

each cluster. Third, it reassigns each observation to the cluster whose mean is closest to it, 
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regardless of which cluster that observation was assigned to previously. Thus, the second 

and third steps of this algorithm can be repeated many times until the means of the K 
clusters change very little (or not at all), indicating that all observations have been given a 

stable cluster assignment.

K-means clustering can be used similarly to any of the hierarchical clustering approaches 

described above, so we avoid going into further detail here. While k-means clustering is 

commonly used in bioinformatics overall, its tendency to produce spherical clusters has been 

shown to impair its performance on high-dimensional cytometry datasets, which often 

contain irregularly-shaped cell subpopulations.67 For that reason, variations on k-means 

clustering such as flowMeans, an algorithm that automatically combines similar clusters 

detected by k-means clustering, are more commonly used.68 Perhaps most importantly, 

however (and often a source of confusion among novice data scientists), we point out that K-

means clustering is different than K-nearest-neighbor classification (and other K-nearest-

neighbor algorithms) despite their names sounding similar. Rather, K-nearest-neighbor 

algorithms—some of which are described below—revolve around identifying a user-

specified number of data points (also called K) with the smallest distances to a particular 

observation and then performing some computation using those data points. While K-nearest 

neighbor algorithms are useful for a variety of applications, K-means clustering does not 

involve calculating any point’s K nearest-neighbors.

Graph-based clustering.

In addition to hierarchical and k-means clustering, an increasingly common approach to cell 

subset detection in high-dimensional cytometry is utilizing graph-based community 

detection algorithms to identify distinct subpopulations of cells. In graph-based clustering, 

individual cells are represented as nodes or vertices that are connected to one another along a 

set of links (called edges) based on their phenotypic similarity to one another. Together, this 

set of nodes and edges is referred to as a “graph,” an abstract data structure that emphasizes 

the relationships between data points (and can be visualized two-dimensionally, as in Figure 

5). There are many ways to represent a cytometry dataset in graph form, and depending on 

the kind of graph being constructed, individual cells may have many or few connections to 

other cells. Regardless of the specific kind of graph used, however, graph representations 

allow for the application of powerful computational tools to single-cell data in ways that 

have yielded many unique discoveries.

An important graph-based clustering algorithm in the study of cancer cells is Louvain 

clustering, an approach that was first developed to detect interconnected communities in 

mobile phone networks.69 The Louvain algorithm works by repeatedly applying two 

computational steps. In the first step, the algorithm assigns each node to its own cluster 

(similar to agglomerative hierarchical clustering). Then, the algorithm combines clusters 

iteratively until the graph’s overall “modularity”—a measure of the connection density 

within clusters relative to the connection density between clusters—is locally maximized.70 

In the second phase, the algorithm constructs a higher-order graph by creating super-nodes 

out of clusters identified in the first phase. These two phases are repeated until the graph’s 

modularity can no longer be increased, at which point the final clustering result is returned. 
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Louvain clustering has been implemented in a variety of programming languages and is 

generally considered both relatively fast and stable relative to many other graph-based 

algorithms.71

In the analysis of cytometry data, one variation of Louvain clustering was used to develop 

the PhenoGraph algorithm, a clustering method specifically developed to study cancer cell 

heterogeneity.36 In brief, PhenoGraph works by representing the input dataset as a graph in 

which each cell is connected to each of its k nearest neighbors using Euclidian distance 

(where k is a user-specified hyperparameter). Using this initial representation, PhenoGraph 

then builds a second graph in which the similarity between cells is redefined according to 

their number of shared neighbors using the Jaccard coefficient.72 Louvain clustering is then 

performed on this graph, yielding a clustering result that can detect cell subpopulations as 

rare as 1/2,000 and that robustly reproduces manual gating.36 Importantly, PhenoGraph 

accepts only a single user-defined parameter: k, the number of nearest neighbors used to 

construct the initial graph, and automatically detects the optimal number of clusters present 

in the dataset without a priori specification.

When it was first presented, PhenoGraph was applied to cytometry data collected from 

pediatric AML patient bone marrow aspirates. While other clustering methods failed to 

partition the data into interpretable subpopulations, PhenoGraph clustering revealed that 

AML cells were distinguishable mainly by their signaling phenotypes (particularly with 

regard to phosphorylated STAT5 and phosphorylated AKT) despite their high variability in 

surface phenotype. Since this initial study, PhenoGraph has also been used to characterize 

rare, progression free survival-associated macrophage and lymphocyte populations in human 

renal cell carcinoma samples,73 to survey the differences in immune composition between 

circulating and tumor-infiltrating immune cells in lung adenocarcinoma,74 and to identify a 

novel neutrophil-specific progenitor cell type in human bone marrow that confers pro-

leukemic activity when transplanted into immunodeficient mice.75 In each of these cases, 

PhenoGraph was used to identify both small clusters with high-resolution as well as larger 

“metaclusters” of common cell types shared between tissues and patients.

Density-based clustering.

The final clustering approach that we will discuss is density-based clustering, which 

partitions high-dimensional data into discrete subpopulations based on local densities. 

Density-based algorithms are capable of identifying clusters without assuming a particular 

cluster size or number, and are well-suited for cytometry experiments in which a large 

number of observations are collected. There are many ways to calculate density estimates in 

single-cell data, with particular methods performing best for specific applications over 

others.76

One robust density-based algorithm developed specifically for analyzing high-dimensional 

cytometry data is X-shift.77 Using k-nearest-neighbor density estimation, X-shift computes a 

local density estimate for each cell in the dataset. It then searches for local density maxima 

among these estimates and labels each of these maxima as a cluster centroid. All remaining 

data points are then assigned to the nearest cluster along a density-ascending path. After 

clusters are identified in this way, the final step of the algorithm checks for the presence of 
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local density minima between neighboring centroids—if no clear minima are found, 

neighboring clusters are merged. Clusters are also merged if they are separated by a 

Mahalanobis distance of less than 2.0, a value based on the theoretical density-separation 

cutoff of the normal distribution.78 Importantly, the optimal value for the parameter k 
(signifying the number of nearest neighbors used in local density estimation) is 

automatically selected by the X-shift algorithm, resulting in an autonomously identified 

number of clusters. The optimal value of k is selected using line-plus-exponent regression—

in other words, k is located at the “switch point” where the number of X-shift clusters begins 

to increase exponentially. Thus, the switch point is used to set the value of k in order to 

avoid over fragmenting the input data into an exceedingly larger number of clusters.

Despite the high degree of computational time required to conduct density-based clustering 

(due to the inherent slowness of exhaustively computing local densities), X-shift’s 

performance has been validated extensively on flow cytometry datasets of healthy immune 

cells.9 More recently, X-shift has also been applied to cancer immunology. In one recent 

study, X-shift clustering was used to identify distinct populations of Reed-Sternberg (RS) 

cells in classical Hodgkin Lymphoma (cHL) patient biopsies.79 In addition to demonstrating 

that some populations of RS cells lose MHC class I expression relative to control lymphoid 

tissue, X-shift allowed for the identification of multiple differences in cells of the cHL tumor 

microenvironment, including an expansion of immunosuppressive T helper 1 cells and T-

regs. X-shift has also been applied to the dissection of solid tumor cell heterogeneity by 

identifying a relapse-associated tumor cell subset particularly high in vimentin, HE4, and 

cMyc expression in 17 high-grade serous ovarian tumor samples.80

Together, the clustering methods described above constitute a broad range of strategies for 

cell subset detection in cancer cytometry data. It is important to note that each of these 

clustering algorithms is most useful with specific analytical goals in mind. For instance, 

when fast compute times are important, k-means clustering (and its variants) as well as 

flowSOM are generally optimal, whereas PhenoGraph, X-shift, and SPADE are significantly 

slower. By contrast, hierarchical clustering is a useful choice when multiple sets of nested, 

non-mutually exclusive clusters are desired, and either PhenoGraph or X-shift can be helpful 

when you’re unsure how many clusters are present in your dataset (due to their ability to 

automatically detect cluster number). Furthermore, PhenoGraph is particularly useful for 

detecting especially rare cell subtypes despite requiring a fair amount of computational time 

and memory resources. And when understanding the phenotypic relationships between 

clusters is important, both SPADE and flowSOM’s built-in minimum-spanning tree 

visualization capabilities can make them strong candidates for your analysis. Importantly, 

we also note that implementation details differ between each of these methods—only 

flowSOM, SPADE, and X-shift have been implemented with GUIs, so groups unfamiliar 

with R or Python may find it more difficult to use other tools.

Step 3: Correlative Biology & Predictive modeling

Using a combination of dimensionality reduction, visualization, and clustering tools, it is 

possible to identify subpopulations of cells with distinct molecular characteristics. But once 

these clusters are identified, how can we tell which ones (if any) are biologically or 
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clinically important? To answer this question, we can look for associations between cluster 

characteristics—such as relative abundance, surface marker expression, and intracellular 

signaling program—and the clinical or experimental conditions of interest within the study. 

Using statistical techniques, it is possible to identify cell subsets or biological features 

correlated with (or predictive of) clinical or experimental outcomes. Once these cell 

populations or features have been identified, they can be further characterized and visualized 

in turn using the dimensionality reduction and clustering methodologies discussed in 

previous sections.

While many predictive modeling approaches have been adapted specifically for high-

dimensional cytometry data, the majority of them are based on highly-vetted analytical 

methods originally developed for transcriptome analysis.81 We discuss some key algorithmic 

tools including Citrus (cluster identification, characterization, and regression), Statistical 

Scaffold, and Cox survival analysis below.

Differential Abundance and Differential Expression Analysis.

Most cytometry experiments include samples from two or more categories that investigators 

hypothesize will be different from each other in a meaningful way. In cancer biology, for 

instance, an experiment might include bone marrow aspirates collected from both leukemia 

patients and healthy donors, and investigators might expect to see differentially activated 

intracellular signaling programs between these two sample types. Alternatively, an 

experiment might analyze diagnostic samples versus relapse samples, primary tumors versus 

metastases, samples taken before treatment versus after treatment, or biopsies collected from 

patients with good prognoses versus poor prognoses. In each of these cases, an important 

experimental goal is identifying which characteristics represent the most important 

differences between sample types.

Citrus (cluster identification, characterization, and regression) is an algorithm that was 

designed specifically to tackle this question.82 In its first step, Citrus uses agglomerative 

hierarchical clustering to group phenotypically similar cells based on marker similarity 

(using Euclidian distance). For each cluster, Citrus then calculates several features on a per-

sample basis—including the proportion of cells in each cluster per sample and the median 

expression level of each marker within each cluster. These features are used to construct an 

M × N matrix that represents the N features computed by Citrus across each of the M 
samples being analyzed. Importantly, Citrus records all clusters identified in the entire 

clustering hierarchy and uses them for downstream analyses—this means that each cell will 

be assigned to multiple nested clusters that are all represented in the Citrus feature matrix.

Using this feature matrix, Citrus then trains a supervised model to predict which sample 

group a sample belongs to based on its cluster features. Specifically, Citrus uses either lasso-

regularized multinomial logistic regression or nearest shrunken centroid classification for the 

predictive step. Multinomial logistic regression is a type of generalized linear model in 

which input features (in this case, our cluster features) are used to predict the relative 

probability that a sample belongs to a particular class.83 By contrast, nearest shrunken 

centroid classification simply assigns each observation to the sample category whose noise-

adjusted centroid is closest.84 These models produce comparable results and are fitted across 
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a range of “regularization thresholds” that determine how many (or how few) features are 

included in the final model. Both types of model are validated using 10-fold cross-

validation, and the optimal model is ultimately selected based on maximum accuracy. Citrus 

also provides some built-in visualization of its results, all of which are easily accessible in its 

Cytobank and R implementations.

By combining clustering, generalized linear modeling, and regularization, Citrus 

automatically identifies which cytometric features are most closely associated with a 

particular experimental or clinical outcome. Thus, Citrus performs what is often referred to 

as feature selection—a process whereby an algorithm identifies a dataset’s most informative 

variables out of a large group.17 Because it considers both cluster size and marker 

expression, Citrus can also be described as performing differential abundance analysis 
(comparing cluster size between conditions) and differential expression analysis (comparing 

clusters’ marker expression levels between conditions), both of which are standard 

bioinformatic tools. Importantly, Citrus requires at least 8 samples for each experimental 

group being compared in order to maintain sufficient statistical power to differentiate 

between true differences and normal inter-sample variability (noise).83 This limitation is 

important to consider when designing experiments—if one’s sample number is limited, 

Citrus may not provide reproducible results.

Another algorithm that takes a similar approach is Scaffold (single-cell analysis by fixed 

force- and landmark-directed maps).85 Initially developed purely as a visualization tool, 

Scaffold’s main functionality is to organize cell clusters on a force-directed graph based on 

their relative similarity to manually-gated reference cell populations.86 However, the 

algorithm was later updated to include the option to apply the significance analysis of 

microarrays (SAM) permutation-based significance test to the clusters being plotted.87 To do 

so, the updated “Statistical Scaffold” algorithm first calculates the same feature matrix as 

Citrus. Then, it randomly permutes the sample labels to estimate each feature’s expected 

difference between sample types solely due to chance. Using this approach, a false-

discovery rate for the set of features can be computed, and statistically significant 

differences can be assessed.86 As a differential abundance and expression analysis tool with 

useful visualization capabilities, Scaffold has been applied to the study of chimeric antigen 

receptor (CAR) T-cell dynamics in pre-clinical studies of novel CART cell therapies.88 

However, Scaffold has seen limited use in studying cells outside of the hematopoietic 

lineage, perhaps due to the often drastic difference between cancer cell phenotypes and those 

of their native, healthy lineages. Furthermore, due to Scaffold and Citrus’s identical feature 

matrix calculations, they share similar sample size requirements. In order to maintain 

sufficient statistical power to detect relevant differences, we recommend a sample size of at 

least 8 samples per group when using Scaffold as well.

Cox Survival Analysis.

In addition to the analyses mentioned above, many translational studies include the explicit 

goal of predicting clinical outcomes directly from single-cell data. This is especially true in 

the study of cancer, in which predicting patient mortality, risk of recurrence, and other 

adverse outcomes are imminent areas of clinical need. Thus, single-cell studies of clinically 
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annotated human samples may seek to quantify the relationship between cellular features 

and outcome variables such as patient survival or time to relapse. Importantly, understanding 

such relationships is becoming increasingly possible due to the emergence of large 

repositories of clinically annotated datasets such as the National Institute of Health’s Cancer 

Genome Atlas and Therapeutically Applicable Research to Generate Effective Treatment 

(TARGET) program.

Statistical modeling for time-to-event outcomes such as mortality or relapse is typically 

accomplished using Cox regression, a supervised learning tool most commonly used in 

epidemiology.89 Like logistic regression (discussed above), Cox regression is a kind of 

generalized linear model in which input features are used to predict the “hazard rate” of a 

particular event happening over time.90 Once trained, a Cox model is capable of predicting 

the relative survival (or event-free survival) probability of a patient with a particular set of 

input features at any point in time. As generalized linear models, Cox models can be 

regularized similarly to logistic models, which allows for feature selection of only the most 

informative predictors. Thus, Cox regression can be a powerful and versatile tool in 

outcomes prediction when applied to the appropriate dataset.

Conveniently, the Citrus algorithm (discussed at length above) is capable of fitting Cox 

models to perform survival analyses of multiparameter cytometry data.82 Using the same 

feature matrix computed for logistic regression, Citrus can be specified to train a lasso-

regularized Cox model instead of a logistic model.91 Survival modeling in Citrus is 

performed using the same procedures as logistic classification, using k-fold cross-validation 

to build a model using the subset of cluster features most predictive of patient risk. Selected 

features are reported by Citrus and can be inspected for biological interpretation.

Although Citrus provides a convenient implementation of Cox regression, it has been used 

infrequently in the analysis of cancer data. This may be the case due to the Citrus 

workflow’s inability to incorporate other relevant clinical variables—such as patient age, 

treatment regimen, or tumor genetic subtype—into its survival analyses (see 23). However, 

the general approach of applying regularized Cox models to cancer cytometry data is easily 

implemented in a wide variety of available R packages (notably glmnet,92 edgeR,93caret,
94and others).

This strategy was recently used to combine the use of mass cytometry and clinical metadata 

to predict disease recurrence in a cohort of 60 patient with pediatric B-cell precursor acute 

lymphoblastic leukemia (BCP-ALL).95 In this study, investigators first developed a 

supervised clustering algorithm (termed a “single-cell developmental classifier”) by using 

Mahalanobis distance to align leukemic cells with their most similar developmental 

subpopulation along healthy hematopoietic development (Figure 6). For each healthy-like 

cluster of leukemic cells, a feature matrix similar to Citrus’s was calculated and used to train 

an elastic net regularized Cox model to predict patients’ relapse risk with >90% accuracy.96 

Based on the model’s selected features, investigators were able to identify activated 

signaling in the mTOR and pre-BCR pathway in specific subpopulations of leukemic cells, 

thereby identifying potential therapeutic targets for further study in BCP-ALL.
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In sum, each of the tools described above can be used to detect associations between single-

cell measurements and clinical or experimental outcomes in annotated samples. Citrus is a 

convenient tool for a variety of analyses including differential expression analysis, 

differential abundance analysis, and survival analysis. However, it is limited by both its 

sample size requirements as well as its inability to model variables outside of its specific 

feature matrix (such as patient age or gender). Statistical Scaffold is similar to Citrus, but it 

places a larger emphasis on visualization and thus can be a more useful tool for creating 

plots to represent your data. Lastly, directly implementing cox, logistic, or any other kind of 

generalized linear regression can be an incredibly powerful and flexible tool, particularly 

because regularization approaches such as elastic net can make feature selection relatively 

easy. However, this approach is less straightforward than applying “off-the-shelf” algorithms 

like Citrus or Statistical Scaffold and may therefore require a larger amount of data pre-

processing and feature extraction, such as Good et al.’s extraction of developmental lineage 

features from their dataset before model-building. Fortunately, there are numerous open-

source tools for most data manipulation tasks, including the “Tidyverse” suite of data 

analysis tools in R and many other packages for data wrangling, visualization, and 

modeling.97,98

Conclusions and Topics For Future Consideration

We have presented a conceptual framework for understanding some of the most commonly 

used applications of machine learning to cancer cytometry data. Through a combination of 

dimensionality reduction, visualization, unsupervised clustering, and predictive modeling, it 

is possible to identify trends in cytometry data that point towards a novel understanding of 

basic and clinical cancer biology. By allowing high-dimensional data to be visualized in a 

smaller, more human-readable number of dimensions, dimensionality reduction provides a 

tool for exploring broad trends in one’s data, detecting batch effects or other technical 

artifacts, and comparing samples longitudinally across disease progression or treatment. 

Likewise, clustering analyses allow for the detection of cell subpopulations in a dataset 

through a variety of different approaches that make unique assumptions about how 

subpopulations are shaped, sized, and distributed. Finally, differential expression analysis, 

differential abundance analysis, and predictive modeling techniques can associate the 

biological measurements in a cytometry dataset with other variables of interest, such as a 

patient’s risk of relapse or their likelihood to respond to a particular treatment regimen. 

Thus, the specific goals and capabilities of each of these analytic steps can be used to guide 

an analysis from its early, exploratory stages to its targeted identification of a clinically- or 

translationally-important finding. Despite this, many areas for further development remain.

There are dozens of clustering algorithms that have been applied to cytometry data beyond 

those discussed here. Choosing a clustering approach for one’s own study can be difficult, 

and the best advice is to try a few different approaches on simple datasets you already 

understand such as a control dataset. This will allow you to assess the results based on your 

pre-existing knowledge. Then, you can either increase the complexity of your input data 

gradually or go straight to your experimental data. Despite the continued development of 

increasingly sophisticated clustering approaches, an interesting recent trend is the emergence 

of clustering strategies that explicitly emphasize the interpretability of cluster identity. One 
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approach is the developmental classifier developed by Good et al., which partitions leukemic 

cells into groups based on prior knowledge about healthy hematopoietic lineage 

development.95 Another approach is that of Marker-Enrichment Modeling (MEM), an 

algorithm that assigns text labels to pre-identified clusters of cells based on their marker 

expression profiles relative to user-specified reference populations.99 MEM labels are meant 

to recapitulate historical naming conventions in cytometry in order to emphasize easy 

interpretation of cluster identity, regardless of the particular clustering method that was used 

to perform the analysis. Finally, two recently-published algorithms—“GateFinder” and 

Hypergate—operate in a similar vein by automatically developing multistep, two-

dimensional gating strategies for novel cell populations of interest within a dataset.100–101 

Thus, these methods can be used to develop a sorting strategy for cell subsets identified 

using unsupervised clustering for follow-up experiments and additional characterization.

Regardless of how clusters are identified or annotated, one outstanding limitation of current 

analysis strategies is their loss of single-cell resolution (due either to clustering or to manual 

gating) before predictive modeling is performed. Because cells exist in a complex network 

of biological interaction and functional interdependence, this loss of single-cell information 

is likely to obscure important relationships between interacting cell types. This is especially 

true in the study of cancer, where understanding the interplay between individual tumor 

cells, the stromal microenvironment, and the immune system is generally understood to be 

of paramount significance. Although several recently developed algorithms are capable of 

predicting clinical outcomes from cytometry data without the use of clustering, methods that 

explicitly model potential interactions between cell types are yet to be developed.102–103

By contrast, current methods that do preserve the single-cell resolution of high-dimensional 

cytometry datasets are primarily focused on replicating manual gating procedures rather than 

on modeling clinical or biological outcomes. Such methods—including OpenCyto104, 

flowClust,105 flowDensity,106 FlowLearn,107 and DeepCyTOF108—were developed to 

reduce the time and resources required for identifying “standard” cell populations as well as 

to reduce subjectivity in the gating process. Perhaps because cancer cell phenotypes are 

often much more heterogeneous than those of the immune populations on which these 

methods were developed, automated gating algorithms have not yet been applied extensively 

to cancer cytometry data. However, there is growing clinical interest in using automated 

gating strategies to detect MRD in some subtypes of acute leukemia in humans, which may 

represent an area of further development of these approaches as they pertain to the study of 

cancer.109

Finally, with the progressive availability of large, publicly available multi-omics single-cell 

datasets, an exciting area for the future of cancer cytometry analysis is the application of 

deep learning. Because many current studies are often limited by the sparse availability of 

clinically annotated patient samples, deep learning is likely to overfit the small number of 

observations in most independent experiments. However, studies have begun to apply deep 

learning at the single-cell level—an approach that has been particularly effective in the 

application of convolutional neural networks to computer vision problems in image 

cytometry110–111 as well as to batch correction, denoising, and clustering procedures on at 

least one large, multi-patient dataset.112
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Together, the continued design, refinement, and widespread use of machine learning 

algorithms in cytometry data analysis hold a great of promise in aiding future developments 

in our understanding and treatment of cancer. With the application of increasingly powerful 

and intuitive tools to larger and more diverse datasets, the field of cytometry is likely to 

provide important biological and clinical insights for decades to come.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1 –. An increasing number of studies are using machine learning to analyze biomedical 
data.
Bar graphs indicating the number of PubMed Central search results for (A) the query 

“machine learning” and “medicine” since 1997 and (B) the query “machine learning” and 
“cytometry” since 2000.
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Figure 2 –. Schematic diagram representing the analysis strategy described in this review.
We encourage the reader to begin their analyses using exploratory approaches such as 

dimensionality reduction and basic visualization, later progressing to unsupervised 

clustering and predictive modeling/correlative biology. Bidirectional arrows are included in 

the diagram to emphasize that each stage of an analysis will influence multiple other stages, 

with results from earlier stages often informing the analytic approach in the subsequent stage 

(and vice versa). Throughout the figure, exploratory analyses are coded as blue, whereas 

more targeted analyses are coded as red.
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Figure 3 –. Dimensionality reduction using 3 commonly-used approaches: PCA, t-SNE, and 
UMAP.
10,000 cells were subsampled from 3 B-cell Progenitor Acute Lymphoblastic Leukemia 

(BCP-ALL) patient samples analyzed using mass cytometry. Data were obtained from the 

GitHub repository from Good et al. (2018).96 (A) Two-dimensional plot of 3 patient samples 

along their first (PC1) and second (PC2) principal component axes. Note that PCA does not 

require the user to set any hyperparameters and will return the same result each time it is 

used. (B) Two-dimensional plot after performing t-SNE on the same cells as in A across 

several t-SNE hyperparameter values. Note that samples fail to separate from one another 

when the number of iterations is too low and that neither inter-sample distances or 

dispersion are conserved across perplexity settings. (C) Two-dimensional plot computed 

using the same cells as in A-B across varying levels of min-dist and n. Slightly different 
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embeddings result from different hyperparameter settings, although global relationships are 

more robust to these changes than those observed in t-SNE embeddings.
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Figure 4 –. Comparison of clustering results using SPADE, K-means clustering, PhenoGraph, 
and FlowSOM.
10,000 cells were subsampled from each of 3 B-cell Progenitor Acute Lymphoblastic 

Leukemia (BCP-ALL) patient samples analyzed using mass cytometry. Data were obtained 

from the GitHub repository from Good et al. (2018)96 and analyzed using R 

implementations of SPADE, k-means clustering, PhenoGraph, and FlowSOM. PhenoGraph 

automatically detected the presence of 4 clusters, so this number of clusters was specified 

for the 3 remaining algorithms in order to compare results; otherwise, default parameters 

were used. Contour plots were embedded within UMAP axes computed using all 30,000 

subsampled cells, with distinct clusters identified by each algorithm represented with a 

unique color in each panel. Across all clustering methods, markers used for clustering were 

the following: CD19, CD20, CD24, CD34, CD38, CD127, CD179a, CD179b, IgM 

(intracellular and extracellular), and terminal deoxynucleotidyl transferase. Notably, 

different clustering approaches identify subtly different cellular subsets even within this 

relatively simple dataset. Often, iteratively testing different clustering approaches, 
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visualizing the results, and adjusting hyperparameters can help to determine which method 

fits best for one’s particular dataset.
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Figure 5 –. Graph architectures can be used to represent cytometry data.
(A) Schematization of a “graph,” a data structure that expresses observations as nodes and 

the relationships between observations as edges. The red arrow points to a node; the blue 

arrow points to an edge. (B) Example graphs constructed from cytometry data collected via 

CyTOF (data taken from Good et al., 2018). This is an example of a graph representing 

single-cell cytometry data: in it, the nodes represent clusters of single-cell observations and 

the edges represent relationships between those nodes. In this case, a k-nearest-neighbor 

graph was built, meaning that each cluster is connected to the k clusters to which it is most 

similar (using Euclidean distance and k = 3). (B) Clustering was performed by applying 

PhenoGraph in healthy and leukemic samples. Each cluster’s expression level of 

phosphylated Syk protein (pSyk), a relapse-predictive feature in pediatric BCPALL, is 

indicated colorimetrically for each node. This example graph illustrates how biological 

parameters can be depicted by using a graph-based representation.
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Figure 6 –. Schematization of Good et al.’s single-cell developmental classifier.
Using this approach, cancer cells are classified into their most analogous healthy cell type in 

normal lineage development in a series of 2 steps. First, healthy populations across lineage 

development are manually gated, and a single-cell “barcode” of marker expression values is 

computed for each manually-gated subpopulation. Second, cancer cells are aligned with 

their most similar healthy subpopulation based on the Mahalanobis distance between their 

marker expression profile (or “barcode”) and that of each manually-gated population. Using 

this method, cancer cells can be classified into readily interpretable, “healthy-like” cell 

subtypes that each have unique properties.
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