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Summary:

Here, we perform a genome-wide screen for variants that regulate the expression of modules of co-

expressed genes in the aging human brain; we discover and replicate such variants in the 

TMEM106B and RBFOX1 loci. The TMEM106B haplotype is known to influence the 

accumulation of TDP-43 proteinopathy, and its large-scale transcriptomic effects include 

dysregulation of lysosomal genes and alterations in synaptic gene splicing also seen in the 

pathophysiology of TDP-43 proteinopathy. Further, a variant near GRN, another TDP-43 

proteinopathy susceptibility gene, shows concordant effects with the TMEM106B haplotype. 

Leveraging neuropathology data from the same participants, we also show that TMEM106B and 

APOE/amyloid-β effects converge to alter myelination/lysosomal gene expression, which then 

contributes to TDP-43 accumulation. These results advance our mechanistic understanding of the 

TMEM106B TDP-43 risk haplotype and uncover a transcriptional program that mediates APOE/

amyloid-β and TMEM106B effects on TDP-43 aggregation in older adults.

Graphical Abstract

eTOC Blurb

Yang et al. Page 2

Neuron. Author manuscript; available in PMC 2021 August 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Yang et al. perform a genome-wide screen of regulators of gene co-expression modules and 

identify TMEM106B and RBFOX1 as key aging human brain transcriptome regulators. Further, 

TMEM106B and APOE/amyloid-β effects converged on a transcriptional program that mediates 

TDP-43 aggregation, revealing a key pathogenic link between Alzheimer’s disease and TDP-43 

proteinopathy.

Introduction

Many common genetic variants regulate local (cis-) or distant (trans-) gene expressions, 

thereby contributing to phenotypic variability and disease risk (Albert and Kruglyak, 2015). 

Genetic regulation of local gene expression has been extensively studied, and numerous cis-

expression quantitative trait loci (cis-eQTLs) have been identified from multiple human 

tissues (Albert and Kruglyak, 2015; GTEx Consortium, 2017; Ng et al., 2017). However, 

genetic factors that determine distant gene expression (trans-eQTLs)—that are more tissue- 

and context-specific—are not as well characterized, as their discovery is hampered by the 

extensive multiple testing burden to consider millions of variants against more than ten 

thousand transcripts in the context of tissue-specific functions and diseases (Albert and 

Kruglyak, 2015; Brynedal et al., 2017; GTEx Consortium, 2017; Westra et al., 2013). This 

methodological limitation is especially problematic for tissues with limited sample access 

and extensive heterogeneity, such as the aging human brain tissue that is usually available 

only through autopsy and is affected by multiple and frequently coexisting neuropathologic 

changes, such as Alzheimer’s disease (AD), vascular brain injury (VBI), Lewy bodies, and 

limbic-predominant age-related TAR DNA binding protein-43 kDa (TDP-43) 

encephalopathy neuropathological change (LATE-NC), that alone or in combination cause 

dementia (Kapasi et al., 2017; Nelson et al., 2019). As trans-eQTLs substantially contribute 

to gene expression and can provide key insights into disease mechanisms (Albert and 

Kruglyak, 2015; Brynedal et al., 2017; GTEx Consortium, 2017; Westra et al., 2013), it is 

critical to further characterize trans-eQTLs to understand their role in prevalent diseases 

without cure, such as neurodegenerative dementia in the rapidly aging population 

(Alzheimer's Association, 2018).

To overcome methodological challenges in genome-wide assessments of trans-eQTLs, we 

focused on the fact that trans-eQTLs often regulate expression of multiple biologically 

related genes (Albert and Kruglyak, 2015; Brynedal et al., 2017; GTEx Consortium, 2017; 

Westra et al., 2013). Such co-regulated transcriptional programs can be captured as groups 

of co-expressed genes that fluctuate in synchrony across individuals (Mostafavi et al., 2018; 

Parikshak et al., 2015), which we refer to as “modules.” This modular structure of the 

transcriptome can be leveraged for dimensionality reduction: instead of performing trans-

eQTL GWAS for each gene, we aimed to identify “module-quantitative trait loci 

(modQTL)” that regulate the average expression of the genes found in the gene co-

expression modules. We utilized two community-based prospective cohorts of older adults 

with brain autopsies as a primary (discovery) dataset, and a brain bank-based study as a 

replication dataset. We performed a genome-wide association studies (GWAS) to identify 

and replicate modQTLs in the aging human cerebral cortex. Then, we performed detailed 

characterization of these modQTLs using gene expression, RNA splicing, neuropathology, 
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and cognitive data from each individual, to elaborate the causal chain of events linking the 

genetics of gene expression to late-life dementia.

Results

Discovery and replication of modQTL genome-wide associations

The primary (discovery) dataset was assembled from deceased participants in either the 

Religious Orders Study or the Rush Memory and Aging Project (ROSMAP), two 

community-based cohorts of older adults that capture a continuous spectrum of pathology 

and cognition found in aging and dementia (n=494, 62% female, median age at death=88.8 

years; Table S1) (Bennett et al., 2018; Bennett et al., 2012a; Bennett et al., 2012b; De Jager 

et al., 2018; Mostafavi et al., 2018). The first replication dataset (“replication 1”) was from 

the Mayo RNAseq study, a case-control study using samples from the Mayo Clinic and 

Banner Sun Health brain banks (n=185, 56% female, median age at death=86 years; Table 

S2) (Allen et al., 2016; Allen et al., 2018a; Allen et al., 2018b). We also leveraged 

independently processed RNA-Seq data from deceased ROSMAP participants who were not 

included in the primary dataset as the second replication dataset (“replication 2”; n=89, 73% 

female, median age at death=90.5 years; Table S1) (De Jager et al., 2018; Logsdon et al., 

2019).

We first performed 47 independent GWAS in the primary dataset, one for the average 

expression of each of the 47 non-overlapping dorsolateral prefrontal cortex (DLPFC) 

coexpression modules derived from the same dataset (Mostafavi et al., 2018). These 

modules capture large gene co-expression networks that reflect known biological pathways 

and capture gene expression changes associated with neuropathologic and cognitive 

endophenotypes of AD (Mostafavi et al., 2018). Further, this module structure has been 

shown to be largely preserved across independent datasets and different clustering 

algorithms (Mostafavi et al., 2018), and we used this module membership definition 

throughout this study to enable direct comparisons across primary and replication datasets. 

In the primary analysis, we identified two loci with a significant modQTL effect 

(significance threshold for 47 GWAS, p<1.1×10−9): (1) a linkage disequilibrium (LD) block 

which contains only the TMEM106B gene where a haplotype tagged by rs1990622A 

(ROSMAP allele frequency (AF) 0.55) was associated with expression of four different 

modules, and (2) an intronic allele within RBFOX1 (rs78930980G; ROSMAP AF 0.02) 

which was associated with expression of another module (Fig. 1, Table 1; see table S3 for 

the full list of module Gene Ontology (GO) term enrichments). In addition, there were 11 

suggestive modQTLs (1.1×10−9<p<5.0×10−8), two of which are also influenced by the same 

TMEM106B locus (Table S4). Conditional analyses ruled out independent secondary 

modQTL effects within either the TMEM106B or the RBFOX1 region (Figure S1).

The effects of both the TMEM106B and the RBFOX1 loci, with the exception of the 

rs1990622 – module 110 (m110) association, were replicated in the Mayo RNAseq temporal 

cortex (TCX) dataset (replication 1; Table 1), using the same module membership 

definitions as the primary dataset. We observed largely consistent modQTL associations 

across these studies, despite important differences in study designs of ROSMAP 

(prospective cohort studies; DLPFC) and the Mayo RNAseq study (a case-control study; 
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TCX). Post-hoc analyses of the Mayo RNAseq study data adjusting for participant’s 

diagnosis did not significantly change the results (Table S5). In addition, three out of four 

TMEM106B modQTL associations were replicated in an independent subset of ROSMAP 

participants who were not part of the primary analysis (replication 2; Table 1), using the 

same module definition. We could not assess the RBFOX1 locus with lower AF in 

replication 2 given the dataset’s limited sample size. Of note, each of the primary, replication 

1, and replication 2 datasets used different data processing pipeline, showing that our results 

are robust to the choice of aligning software and the version of reference genome used in 

data pre-processing.

The TMEM106B modQTL captures an already well-known pleiotropic locus of great 

clinical importance. The locus has been previously shown to increase susceptibility to 

TDP-43-related neurodegeneration such as frontotemporal lobar degeneration with TDP-43 

(FTLD-TDP) (Van Deerlin et al., 2010) and LATE-NC (Yu et al., 2015), as well as major 

depressive disorder (Wray et al., 2018), poor cognitive resilience to neuropathology (White 

et al., 2017), and higher triglyceride level (Klarin et al., 2018). The locus is a cis-eQTL 

increasing TMEM106B expression (Figure S2) (GTEx Consortium, 2017; Ng et al., 2017; 

Van Deerlin et al., 2010) and a previously reported trans-eQTL of many distant genes in the 

aging human brain (Ren et al., 2018). By contrast, the RBFOX1 modQTL has no previously 

reported trait associations, and is neither a cis-eQTL of RBFOX1 (p=0.77)—which is the 

only coding gene within±1 Mb from the modQTL—nor in LD with any coding variants. 

Nonetheless, RBFOX1 is a major regulator of splicing and cytoplasmic mRNA metabolism 

in neurons, and has been implicated in neurodevelopment and multiple neuropsychiatric 

disorders (Gandal et al., 2018). We performed further characterization of these modQTLs in 

the primary dataset (ROSMAP).

Dominant modQTL, trans-eQTL, and trans-splicing QTL effects of the TMEM106B locus

The TMEM106B modQTL had a dominant effect on module levels (Figures 2A and S3A), 

and most of this dominant effect was not moderated or mediated by TMEM106B expression 

(Figures 2B, S3B, and S4; Table S6). Further, average expression of a module that includes 

TMEM106B (m121) had a much weaker association with rs1990622A (β=5.1×10−3, 95% CI 

1.8×10−3 to 8.4×10−3, p=2.3×10−3) despite the module’s tight correlation with TMEM106B 
expression (Pearson’s r=0.82, p<2.2×10−16). These observations elucidate the main 

functional mechanism of this clinically important haplotype: the allele has a dominant effect 

on the aging brain’s transcriptome that is not dependent on TMEM106B mRNA level, 

suggesting that an allele of a coding variant rs3173615C (TMEM106B 185T; D’=1, r2=0.98 

with rs1990622A) on this haplotype could have a functional role (Nicholson et al., 2013; 

Ren et al., 2018). By contrast, a dose-dependent cis-eQTL effect of a CTCF binding site, 

rs1990620A (r2=1 with rs1990622A) (Gallagher et al., 2017), would only explain a small 

portion this haplotype’s modQTL effect (8 to 12%; Table S6). Although TMEM106B 185T 

has been linked to an increased in vitro protein stability (Nicholson et al., 2013), 

TMEM106B protein level in ROSMAP DLPFC was not associated with the modQTL 

(p=0.52, n=435), and the exact mechanism of TMEM106B 185T remains unclear. Given the 

dominant modQTL effect, we used a dominant model of rs1990622A in all further analyses.
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Transcriptome-wide analyses of the association between rs1990622A with individual genes 

show extensive trans-eQTL effects reminiscent of the transcriptional and functional changes 

in TMEM106B overexpression and Grn knock-out rodent models of TDP-43 proteionopathy 

(Figure 2C-E) (Chen-Plotkin et al., 2012; Gallagher et al., 2017; Klein et al., 2017; 

Nicholson and Rademakers, 2016; Paushter et al., 2018). Tissue injury repair and immune 

pathways were enriched in upregulated genes, and synaptic function pathways were enriched 

in downregulated genes (Figure 2D), similar to a previous observation from the Mayo TCX 

dataset that compared rs3173615C homozygotes with rs3173615G homozygotes (Ren et al., 

2018). Further, the pattern observed in rs1990622A carriers—including upregulation of 

TFEB, a principal transcription factor of lysosomal genes (Settembre et al., 2013), and 

downregulation of the autophagy pathway—suggests lysosome-autophagy pathway 

dysregulation (Figure 2E, Table S7). We note that, although statistically robust, the effect of 

the variant on most genes’ differential expression level was less than 1.5-fold change, 

consistent with modest physiologic effects at the tissue level for a common haplotype that 

has survived natural selection.

The splicing dysregulation associated with rs1990622A recapitulated molecular features of 

the TDP-43 proteinopathy models and might explain the observed synaptic gene 

downregulation. We observed a negative correlation between log mean intron length and 

rs1990622A trans-eQTL effect (Pearson’s r=−0.039, p=1.2×10−5; figure S5): genes with 

long introns (mean intron length > 10 kb) had higher odds of being downregulated in the 

rs1990622A carriers (OR=1.7, 95% CI 1.5 to 1.9, p<2.2×10−16). This is consistent with a 

rodent Tardbp (gene encoding TDP-43) knock down model where neuronal genes with large 

mean intron size were more likely to be downregulated (Polymenidou et al., 2011), which 

could be explained by splicing dysregulation from loss of a neuronal splicing regulator, 

TDP-43 (Ling et al., 2015; Tollervey et al., 2011). Thus, we leveraged the ROSMAP DLPFC 

intron usage calls (Raj et al., 2018) to assess transcriptome-wide splicing QTL (trans-sQTL) 

association of rs1990622A. Among 33,579 intron clusters from 13,484 genes, 212 intron 

clusters from 189 genes showed differential intron usage (i.e., differential splicing) 

according to rs1990622A carrier status (Table S8). Neuronal/synaptic processes were 

overrepresented in the list of differentially spliced genes (Figure 2F), similar to the 

downregulated genes in rs1990622A carriers (Figure 2D). Differentially spliced genes 

include key synaptic genes such as DLG4 (also known as PSD-95) (Figure 2G).

The GRN locus shows modQTL and trans-eQTL effects concordant with the TMEM106B 
modQTL

GRN is a gene on chromosome 17 which hosts variants that cause rare Mendelian FTLD-

TDP cases in which haploinsufficiency leads to autosomal dominant cases of FTLD-TDP 

(Baker et al., 2006; Cruts et al., 2006). Model system studies have shown a close functional 

relationship between GRN and TMEM106B (Chen-Plotkin et al., 2012; Klein et al., 2017). 

In our study, rs850737C (ROSMAP MAF 0.40), a cis-eQTL downregulating GRN (GTEx 

Consortium, 2017; Ng et al., 2017), showed modQTL and trans-eQTL effects highly 

concordant with TMEM106B rs1990622A, demonstrating consistent transcriptomic impacts 

of two distinct TDP-43 proteinopathy risk genes (Figure 3A and 3B). We initially identified 

rs850737C as a suggestive modQTL from the modQTL GWAS that decreases m16 

Yang et al. Page 6

Neuron. Author manuscript; available in PMC 2021 August 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



expression (p=4.1×10−8; Table S4), and the SNP also showed more modest evidence of 

decreasing m17 and m18 and increasing m110, effects concordant with those of rs1990622A 

(Table S9). These associations were replicated in the Mayo RNAseq data, except for the 

rs850737C – m110 association that did not reach statistical significance (Table S9). Further, 

in ROSMAP, the modQTL effects and the transcriptome-wide trans-eQTL effects of 

rs850737C were highly correlated with that of rs1990622A carrier status (Figures 3A and B). 

In fact, there was only one gene that was significantly regulated (FDR<0.05) in opposite 

directions by rs1990622A and rs850737C: GRN expression was increased by rs1990622A 

(β=0.076, FDR=0.016) while it was decreased by rs850737C (β=−0.051, FDR=0.027). We 

postulate that increased GRN mRNA expression in rs1990622A carriers might be due to a 

compensatory upregulation in the presence of altered TMEM106B function. Notably, 

rs850737 is in LD with rs5848 (D’=1, r2=0.6), a TDP-43 proteinopathy risk variant in the 

3’-UTR of GRN (Nelson et al., 2019).

There was also an epistatic interaction between rs1990622A (TMEM106B) and rs850737C 

(GRN) to decrease m16 and increase m110 (Figure 3C; Table S10). In the interaction 

models, rs1990622A had main modQTL effects, while the main effects of rs850737C was 

not significant (Table S10), consistent with a model in which the rs850737C modQTL effect 

requires the presence of the rs1990622A allele. Further, rs1990622A increased GRN 
expression (β=0.076, p=7.9×10−4), but rs850737C did not change TMEM106B expression 

(p=0.94). Together, these results support the hypothesis that TMEM106B is mechanistically 

upstream of GRN in their shared biological pathways (Chen-Plotkin et al., 2012).

Examining potential confounders of large-scale trans-eQTL effect of the TMEM106B locus

Large-scale trans-eQTL associations can be driven by biological factors such as changes in 

cell type proportion or miRNA expression (Li et al., 2019; Patrick et al., 2017; Ren et al., 

2018), or technical factors such as the choice of data processing procedures and systematic 

RNA-Seq read misalignment. Therefore, we examined whether potential biological factors 

and technical confounders could explain the observed TMEM106B modQTL and trans-

eQTL associations.

TMEM106B rs1990622A did not affect cell type proportions measured by 

immunohistochemistry (IHC) (Table S11) (Patrick et al., 2019), and the allele is not 

associated with available miRNA data (FDR>0.05 for all tested miRNAs, n=482) (De Jager 

et al., 2018; Patrick et al., 2017), making these biologic factors unlikely explanations for the 

TMEM106B modQTL and trans-eQTL effects. Previous studies reported that rs1990622A 

carriers had lower RNA-estimated neuronal proportion and higher RNA-estimated glial/

endothelial proportions (Li et al., 2019; Ren et al., 2018). This same pattern of RNA-inferred 

cell type proportion changes was associated with rs1996022A carrier status even in the small 

subset of ROSMAP participants with IHC-measured cell type proportion data (Patrick et al., 

2019) (n=54-65, Table S11). However, rs1990622A did not affect any of the IHC-measured 

cell type proportions in the same participants (Table S11), suggesting that the association 

between rs1990622A and RNA-inferred cell type proportions might be coming from the 

haplotype’s effect on marker gene expression rather than true cell type proportion changes. 

The rs1990622A modQTL effect was still present after controlling for the IHC-measured 
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proportion of each module’s most enriched cell types (Table S12). These results illustrate the 

limitation of cell type proportions that are inferred based on bulk tissue marker gene 

expression levels instead of being directly measured, as the former are vulnerable to effects 

that alter marker gene expression.

The TMEM106B modQTL and trans-eQTL effects were consistently observed in the 

discovery and two replication RNA-Seq datasets that were sequenced and processed using 

different data generation pipelines (see STAR Methods), showing that our results are not 

dependent on the choice of specific data generation procedures. Further, we tested the 

TMEM106B rs1990622 modQTL and trans-eQTL associations from the primary dataset 

(ROSMAP, n=494) using a different data processing pipeline (the same pipeline that was 

used to process the replication 2 dataset, see STAR Methods and Logsdon et al., 2019). 

Using the same module definition as the primary analyses, all significant rs1990622 

modQTLs were replicated (Table S13), and trans-eQTL results were highly correlated 

between the two different data processing pipelines (Figure S6). These results indicate that 

our modQTL and trans-eQTL results were robust to the choice of alignment algorithms 

(genome alignment using Bowtie (Langmead et al., 2009) versus splice-aware alignment 

using STAR (Dobin et al., 2013)) or the version of the reference genome used (GRCh37 

versus GRCh38) (Table 1, figure S6).

The TMEM106B trans-eQTL effect on biological pathways and concordant trans-eQTL 

associations of the TMEM106B and GRN loci could not be explained by possible 

misalignment and cross-mapping of RNA-Seq short reads from cis-eGenes. Misalignment of 

short reads from a cis-eGene to other genes that share the short-read sequence is an 

important potential source of false-positive trans-eQTLs (Saha and Battle, 2018). We 

therefore performed a sensitivity analysis to assess whether rs1990622 trans-eQTL was 

driven by short-read misalignment and cross-mapping of cis-eGenes. We leveraged a 

published resource that lists all genes that share one or more short sequences (75 bp from an 

exon, 36 bp from a 3’-UTR) with a given gene (Saha and Battle, 2018) to exclude all genes 

that have sequence similarities with any gene within 1 Mb from rs1990622. Among 8,104 

non-cross mapping trans genes, 1,968 genes were upregulated and 2,645 genes were 

downregulated (at FDR<0.05) (Figure S6). We note that this sensitivity analysis 

overestimates cross-mappability in our dataset because all datasets included in our study 

used 101 bp paired end read, that would greatly reduce the chance of alignment ambiguity. 

Nonetheless, gene set enrichment analysis for GO terms show largely consistent results 

compared to the GO term enrichment of full rs1990622A trans-eQTLs (Figures 2D and 

S7B), and trans-eQTL associations of TMEM106B (chromosome 7) and GRN (chromosome 

17) loci are highly correlated even after excluding all genes that share short sequence with 

either loci (Figure S6).

Sensitivity analyses additionally accounting for latent confounders did not change the 

overall pattern of TMEM106B rs1990622A modQTL and trans-eQTL associations. 

Accounting for latent confounders captures and controls for global variation in gene 

expression, and it is an effectively strategy to increase power in cis-eQTL studies (GTEx 

Consortium, 2017; Leek and Storey, 2007; Ng et al., 2017). On the other hand, simulations 

as well as empiric studies have shown that adjusting for latent confounders can remove true 
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large-scale biological signals including trans-eQTL hotspots, unless the primary independent 

variable of interest is explicitly modeled during latent confounder derivation (Jaffe et al., 

2015; Leek and Storey, 2007; Stegle et al., 2010). Therefore, we did not correct for latent 

confounders in our genome-wide modQTL discovery analysis, while adjusting for known 

technical and demographic confounders. However, as latent confounder adjustment can help 

decrease false-positive trans-eQTLs that are attributable to technical artifacts (GTEx 

Consortium, 2017), we performed a sensitivity analysis in the primary dataset: we performed 

a surrogate variable analysis (SVA) (Leek and Storey, 2007) conditioned on rs1990622A 

carrier status, to capture latent confounders while explicitly modeling the primary 

independent variable of interest. The surrogate variables explained 43 – 72% of variances in 

module levels of the top rs1990622A modQTL modules (Table S14), and cis-eQTL 

association between rs1990622A and TMEM106B strengthened after adjusting for SVs 

(without adjustment: t=4.1, p=5.9×10−5; with adjustment: t=5.5, p=6.0×10−8), showing that 

these SVs effectively capture and remove large-scale transcriptome changes. Nonetheless, 

the rs1990622A modQTL associations actually strengthened after adjusting for SVs (Table 

S14), and the rs1990622A trans-eQTL effects were highly concordant before and after 

adjusting for SVs (r=0.97, p<2.2×10−16; Figure S6). These results support that the modQTL 

and trans-eQTL associations of the TMEM106B locus are robust to measured and 

unmeasured confounding factors.

Clinical implications of the TMEM106B modQTL: LATE-NC and cognitive resilience

A module with myelination/lysosomal genes (m110; Table S3), that is upregulated in the 

presence of rs1990622A, mediated much of the association between rs1990622A and LATE-

NC, the most common form of TDP-43 proteinopathy and an important cause of dementia in 

older adults (Nelson et al., 2019). In all ROSMAP participants with genotypes and TDP-43 

immunohistochemistry data (Table S1), rs1990622A carrier status was associated with more 

LATE-NC burden (β=0.24, 95% CI 0.09 to 0.39, p=1.6×10−3, n=1,117). The association 

between rs850737C dosage and LATE-NC was not significant (β=0.086, 95% CI −9.0×10−4 

to 0.17, p=0.052, n=1,117). Among the four modules associated with rs1990622A, only 

m110 correlated with LATE-NC burden and stage, while other modules enriched with 

neuronal/synaptic genes did not exhibit this association (Table S15). Increased m110 

expression mediated much of the association between rs1990622A carrier status and LATE-

NC (Figure 4A), and the rs1990622A modQTL effects were present in a subset of 

participants without detectable LATE-NC (n=217; Table S16). The latter results suggest that 

TMEM106B-related dysregulation of myelination/lysosomal processes are upstream 

molecular events—rather than downstream consequences—of abnormal TDP-43 

aggregation.

The myelination/lysosomal module (m110) is an important hub where APOE/Aβ and 

TMEM106B pathways converge in LATE-NC pathogenesis. APOE ε4, a previously 

reported genetic risk factor of LATE-NC (Wennberg et al., 2018; Yang et al., 2018), 

increases m110 expression through increased Aβ accumulation (Figure 4B). In a structural 

equation model, the APOE/Aβ effect and the TMEM106B haplotype’s effect converged on 

enhancing m110 expression, and together, both APOE/Aβ- and TMEM106B-related 

pathways lead to LATE-NC (Figure 4C). We note that although Aβ had a strong association 
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with m110 (r=0.19, p=3.0×10−5), the rs1990622A modQTL effects are observed in a subset 

of participants without detectable Aβ accumulation (n=85; Table S16). Also, Aβ did not 

moderate the rs1990622A – m110 association (interaction term p=0.98). These results 

support independent and additive effects of APOE/Aβ- and TMEM106B-related pathways in 

increasing m110 expression. On the other hand, PHFtau was not associated with m110 

(r=0.058, p=0.20), suggesting that m110 dysregulation might be an Aβ-specific mechanism 

that connects AD and LATE-NC.

M110 is enriched with oligodendroglial/myelination genes (Table S3) and includes the two 

most abundant lysosomal membrane proteins (LAMP1, LAMP2) (Settembre et al., 2013). 

Further unsupervised submodule clustering within m110 could not separate its component 

myelination and lysosomal pathway genes, as most of the m110 genes are strongly co-

regulated with one another (Figure S7). We note that all four m110 submodules as well as 

key genes from both myelination and lysosomal pathways were associated with both 

rs1990622A and LATE-NC burden (Table S17 and S18), preventing us from refining the 

association to one molecular theme. Although cell-type specific analyses such as single 

nuclei RNA-Seq (sNuc-Seq) is required to further dissect the role of these pathways in 

different cell types, previous model system studies showed that TMEM106B manipulation 

leads to neuronal lysosomal changes (Klein et al., 2017; Nicholson and Rademakers, 2016), 

indicating that the TMEM106B-related lysosomal gene dysregulation is not confined to 

oligodendroglia.

We also observed that m18 and m110 partially mediate an association between rs1990622A 

and residual cognition (White et al., 2017), a measure that captures cognitive resilience 

(spared cognition despite neuropathologies) (Figures 4D and 4E). On the other hand, m16 

and m17 were not correlated with Aβ, PHFtau, cognitive decline, LATE-NC, or residual 

cognition (p>0.05 for all tests), and the modQTL association with these two modules remain 

of unclear clinical significance.

RBFOX1 rs78930980G is associated with upregulation of microglial genes

The RBFOX1 modQTL rs78930980G (Figure 5A) as well as lower expression of RBFOX1 
(Figure 5B) were associated with m234, a module most enriched with microglial genes. 

Further, rs78930980G was a significant trans-eQTL of more than a thousand genes (Figure 

5C): upregulated genes were enriched with inflammation and innate immune processes 

(Figure 5D). Since RBFOX1 is primarily expressed in neurons, our observation could hint at 

an interesting effect on neuroglial interaction. However, although RBFOX1 is a well-known 

neuron-specific splicing regulator (Gandal et al., 2018), splicing of only 14 genes were 

significantly affected by rs78930980G (Table S19), and these genes were not enriched with 

any biological processes. Neither rs78930980G nor m234 was correlated with measured 

neuropathologies or cognitive decline (p>0.05).

In sensitivity analyses, the RBFOX1 modQTL association was reproduced in the re-

processed primary dataset (β=0.77, 95% CI 0.50 to 1.04, p=3.7×10−8), and two data 

processing pipelines showed highly concordant trans-eQTL results (Figure S8). There was 

only one gene that shared one or more short sequences (75 bp from an exon, 36 bp from a 

3’-UTR) with genes within 1 Mb from rs78930980, and thus short-read misalignment cannot 
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explain the rs78930980G trans-eQTL associations. We could not assess the role of cell type 

proportion differences or unmeasured confounders in the RBFOX1 modQTL, given the low 

allele frequency of rs78930980G (n=17 allele carriers in the primary dataset; no allele 

carriers among the subset with neuronal IHC cell type proportion data).

Therefore, while the RBFOX1 modQTL has a replicable effect on the transcriptome of the 

aging human neocortex, we could not assess the role of cell type proportion change or 

unmeasured confounders in this locus, and the mechanism and clinical implication of the 

locus remains unclear.

Discussion

Our module-based strategy provided a data-driven approach to organize the vast numbers of 

genes expressed in the aging human cortex and enabled us to perform an unbiased genome-

wide screen of large-scale trans-eQTLs followed by detailed modeling of the variants’ 

impact on the transcriptome, neuropathology, and resilience of the aging human brain. The 

TMEM106B locus has been previously reported to affect the aging neocortical transcriptome 

in a candidate polymorphism study of gene expression (Ren et al., 2018) and GWAS of 

surrogate traits that reflect transcriptome changes such as transcriptome-inferred age (Rhinn 

and Abeliovich, 2017) and RNA-inferred neuronal proportion (Li et al., 2019). Our 

modQTL GWAS confirms the exceptional impact of the TMEM106B locus on the aging 

neocortical transcriptome and also identifies a new RBFOX1 locus that exerts a large-scale 

trans-eQTL effect. Further, we present a distinct approach considering genetic data, 

transcriptomic data, and pathologic measures from the same subjects, and produce new 

insights into molecular events leading to LATE-NC.

Based on our observation from hundreds of aging human brain samples, we postulate the 

following model of LATE-NC pathogenesis. TMEM106B S185T within the TDP-43 

proteinopathy risk haplotype causes a dominant TMEM106B hyperfunction that shares 

pathophysiology with TMEM106B overexpression models (Chen-Plotkin et al., 2012; 

Gallagher et al., 2017; Nicholson and Rademakers, 2016), and leads to lysosomal/

myelination gene dysregulation and subsequent pathologic aggregation of TDP-43. 

Genetically decreased GRN expression by the rs850737C haplotype as well as Aβ 
accumulation further exacerbates this pathophysiology. Consistent with this model, more 

extreme genetic perturbations of either TMEM106B or GRN cause earlier-onset, more 

severe phenotypes of lysosomal/myelination dysregulation and neurodegeneration: 

hypomyelinating leukodystrophy-16 (a rare dominant mutation TMEM106B D252N) 

(Simons et al., 2017), a Mendelian form of FTLD-TDP (GRN haploinsufficiency) (Baker et 

al., 2006; Cruts et al., 2006), and neuronal ceroid lipofuscinosis-11 (GRN homozygous loss-

of-function) (Smith et al., 2012). Further, we postulate that large-scale downregulation and 

splicing dysregulation of the synaptic genes associated with the TMEM106B variant, that 

recapitulates prior observations from TDP-43 knock down/knock out models (Ling et al., 

2015; Polymenidou et al., 2011; Tollervey et al., 2011), are reflective of varying degrees of 

nuclear TDP-43 depletion. Although synaptic gene downregulation did not correlate with 

histologically observable TDP-43 inclusions in our study, this could be due to the limitation 

of current histological methods that underestimate true TDP-43 pathology burden, as 
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suggested by a recent study that observed splicing dysregulation in persons who only had 

nuclear TDP-43 depletion without pathologic inclusions (Sun et al., 2017). In our study, the 

transcriptomic effects of the TMEM106B haplotype were similarly present in the subsets of 

ROSMAP participants without Aβ or LATE-NC, suggesting that pre-existing 

neurodegenerative proteinopathies are not necessary for the genetically-driven TMEM106B-

related transcriptome dysregulation. However, previous studies have shown attenuated 

transcriptomic impact of the TMEM106B 185T allele in healthy controls (Ren et al., 2018) 

or in younger subjects (Li et al., 2019; Rhinn and Abeliovich, 2017). Therefore, it is possible 

that the link between TMEM106B 185T and transcriptome dysregulation is context-

dependent and is more accentuated in the setting of non-specific age-related brain changes 

rather than being contingent on a specific type of neurodegenerative process such as AD.

We acknowledge the limitations of our study. First, spurious co-expression module clusters 

can arise from unaccounted biological and technical artifacts (Parsana et al., 2019; Saha and 

Battle, 2018), and exact module membership might vary with the discovery sample 

characteristic and choice of clustering algorithm (Logsdon et al., 2019; Mostafavi et al., 

2018). Thus, we used gene co-expression modules previously derived from our primary 

dataset, that were shown to be largely preserved across independent datasets and clustering 

algorithms (Mostafavi et al., 2018), and performed extensive sensitivity analyses to rule out 

artifact-driven results. Second, because longitudinal human brain sampling cannot be done, 

our models are derived from cross-sectional data that limit causal inference. However, our 

causal pathway model includes genetic factors that are not susceptible to reverse causation, 

and we ruled out alternate directions of causality by bidirectional mediation analyses and 

subgroup analyses. Third, all of our participants are older adults of European ancestry and 

the predominant form of TDP-43 proteinopathy in the older adults we studied is LATE-NC, 

so our results have limited generalizability to other age groups, races, and patients with other 

forms of TDP-43 neurodegeneration such as FTLD-TDP or ALS. Fourth, we cannot fully 

exclude the possibility that measurement errors and limited power masked true association 

between rs1990622A and cell type proportions. Nonetheless, our results uncover genetics of 

distant gene expression in the aging human brain, and identify a transcriptional program 

mediating APOE/Aβ and TMEM106B effects on TDP-43 aggregation, thereby opening a 

new avenue of further biological investigations and drug development efforts to tackle 

neurodegenerative dementia.

STAR Methods

RESOURCE AVAILABILITY

Lead Contact—Further information and requests for resources and reagents should be 

directed to and will be fulfilled by the Lead Contact, Philip L. De Jager 

(pld2115@cumc.columbia.edu).

Materials Availability—This study did not generate new unique reagents.

Data and Code Availability—Genotypes, RNA-Seq, proteomics, and miRNA data from 

ROSMAP and Genotypes and RNA-Seq data from the Mayo RNAseq study are available via 

the Alzheimer’s Disease (AD) Knowledge Portal (https://adknowledgeportal.org). The AD 
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Knowledge Portal is a platform for accessing data, analyses, and tools generated by the 

Accelerating Medicines Partnership (AMP-AD) Target Discovery Program and other 

National Institute on Aging (NIA)-supported programs to enable open-science practices and 

accelerate translational learning. Data is available for general research use according to the 

following requirements for data access and data attribution (https://

adknowledgeportal.synapse.org/#/DataAccess/Instructions).

See the following links for direct data access:

• ROSMAP study - Phenotype data: https://www.radc.rush.edu

• ROSMAP study - Genotypes-Imputed: https://doi.org/10.7303/syn3157329

• ROSMAP study - Gene co-expression networks: https://doi.org/10.7303/

syn7169817

• ROSMAP study - DLPFC RNA-Seq (primary dataset): https://doi.org/10.7303/

syn3505732.2

• ROSMAP study - DLPFC RNA-Seq (reprocessed data; primary + replication 2): 

https://doi.org/10.7303/syn8456719.21

• ROSMAP study - DLPFC LC-SRM proteomics (TMEM106B protein 

quantification): https://doi.org/10.7303/syn10468856

• ROSMAP study - DLPFC miRNA: https://doi.org/10.7303/syn3387325

• MayoRNAseq study - Genotypes-Imputed: https://doi.org/0.7303/syn8650955

• MayoRNAseq study - Temporal Cortex RNAseq: https://doi.org/10.7303/

syn3163039

For additional information and metadata on these studies see the following links:

• The Religious Orders Study and the Memory and Aging Project (ROSMAP): 

https://adknowledgeportal.synapse.org/Explore/Studies?Study=syn3219045

• The MayoRNAseq study: https://adknowledgeportal.synapse.org/Explore/

Studies?Study=syn5550404

EXPERIMENTAL MODELS AND SUBJECT DETAILS

The primary dataset of this study is from the Religious Orders Study (ROS) and the Rush 

Memory and Aging Project (MAP), two community-based cohort studies that enroll older 

adults without dementia at baseline. ROS started in 1994, and enrolls Catholic priests, 

brothers, and nuns across religious communities in the United States. MAP started in 1997, 

and enrolls diverse participants throughout northern Illinois in the United States, including 

Chicago metropolitan area (Bennett et al., 2018; Bennett et al., 2012a; Bennett et al., 2012b). 

ROS and MAP (ROSMAP) participants sign informed consent and Anatomical Gift Act at 

the time of enrollment, and the Rush University Medical Center Institutional Review Board 

(IRB) has approved the data collection and usage protocols. ROS and MAP are designed for 

combined analyses, and collect coordinated sets of clinical and neuropathological measures. 

At the time of death, ROSMAP participants have wide spectrum of cognitive and functional 
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impairment (cognitively normal to dementia) and neuropathology burden (e.g., Braak stage 

of neurofibrillary tangles (NFT) ranging from 0 to 6), reflective of the general aging 

population. For our primary analyses, we included ROSMAP participants of European 

descent who had genome-wide genotyping and dorsolateral prefrontal cortex (DLPFC) bulk 

RNA-Sequencing (De Jager et al., 2018), from whom a previous study derived DLPFC gene 

co-expression modules (n=494) (Mostafavi et al., 2018). In addition, we accessed recently 

re-processed ROSMAP DLPFC RNA-Seq data that include newer batches (n=583 with 

quality-controlled genotype and RNA-Seq data) (De Jager et al., 2018; Logsdon et al., 

2019), and used the data for second biological replication (“replication 2”; n=89 who were 

not included in the primary analysis) and sensitivity analyses (n=494 who were included in 

the primary analysis; to assess whether the results are robust to the choice of front-end RNA-

Seq data processing procedure). For the genetic association analyses of TDP-43 

proteinopathy and TMEM106B and GRN variants, we included ROSMAP participants of 

European descent who had genome-wide genotyping and semi-quantitative TDP-43 

assessment (n=1,117). Characteristics of ROSMAP participants are summarized in Table S1. 

Pertinent ROSMAP data acquisition and processing procedures are detailed below, and full 

description is available through previous publications (Bennett et al., 2018; Bennett et al., 

2012a; Bennett et al., 2012b; Bennett et al., 2014; De Jager et al., 2018; Logsdon et al., 

2019) and the Rush Alzheimer’s Disease Center Resource Sharing Hub (https://

www.radc.rush.edu/).

The first replication dataset (“replication 1”) is from the Mayo RNA-Seq study (Allen et al., 

2016; Allen et al., 2018a; Allen et al., 2018b). The Mayo RNA-Seq study is a case-control 

study that includes participants with definite Alzheimer’s disease (AD; Braak NFT stage 4 

or above), pathologic diagnosis of progressive supranuclear palsy (PSP), pathologic aging 

(defined as presence of amyloid-β (Aβ) plaques but not NFTs or dementia), and elderly 

controls (no or sparse Aβ plaques, Braak NFT stage 3 or less, and does not have AD, 

Parkinson’s disease, dementia with Lewy bodies (DLB), vascular dementia, PSP, motor 

neuron disease, corticobasal degeneration, frontotemporal lobar degeneration, Huntington’s 

disease, hippocampal sclerosis, or dementia lacking distinctive histology). All AD and PSP 

subjects were from the Mayo Clinic Brain Bank, and all pathologic aging subjects were from 

the Banner Sun Health Institute. Control subjects are from either brain banks. Age at death 

was 60 years or older for the cases, and 50 years or older for the controls. The Mayo Clinic 

IRB approved Mayo RNA-Seq study. To select participants comparable to our primary 

dataset (ROSMAP participants with DLPFC RNA-Seq), we excluded participants with a 

diagnosis of PSP, a diagnostic entity that is rare in the general population and in the 

ROSMAP dataset, and included participants with genotype and temporal cortex (TCX) 

RNA-Seq data. Characteristics of Mayo RNA-Seq study participants are summarized in 

Table S2. Detailed Mayo RNA-Seq study procedures were described in previous 

publications (Allen et al., 2016; Allen et al., 2018a; Allen et al., 2018b), and we briefly 

summarize genotyping and RNA-Seq procedures in the following sections.

METHOD DETAILS

Clinical Phenotypes—Cognitive measures and clinical diagnoses of ROSMAP 

participants were accessed through the Rush Alzheimer’s Disease Center Resource Sharing 
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Hub (https://www.radc.rush.edu/). Each ROSMAP participant gets annual comprehensive 

cognitive evaluation including the following 19 tests spanning multiple cognitive domains 

(Bennett et al., 2018; Bennett et al., 2012a; Bennett et al., 2012b): Word List Memory/

Recall/Recognition, East Boston Immediate/Delayed Recall, Logical memory immediate/

delayed, Boston Naming Test, Category Fluency, reading test (10 items), Digit Span 

forward/backward/ordering, Judgment of Line Orientation, Standard Progressive Matrices, 

Symbol Digit Modalities Test, Number Comparison, Stroop Color Naming, and Stroop 

Word Reading. Annual global cognitive function for each participant was defined as the 

average of z scores from these tests, standardized to baseline. The final clinical diagnosis of 

Alzheimer’s disease (AD) dementia was determined after death by a neurologist blinded to 

post-mortem pathology, using all available clinical data (Bennett et al., 2018; Bennett et al., 

2012a; Bennett et al., 2012b).

Genotype Data Acquisition—Imputed genome-wide genotype data from ROSMAP was 

obtained from the Accelerating Medicines Partnership in Alzheimer’s Disease (AMP-AD) 

Knowledge Portal (synapse ID: syn3157329). DNA was extracted from blood or post-

mortem brain tissue from ROSMAP participants, and genotyped on either the Affymetrix 

GeneChip 6.0 platform or the Illumina OmniQuad Express platform. After quality control 

(genotype success rate>0.95, Hardy–Weinberg equilibrium p>0.001, and misshap 

test<1×10−9) and excluding population outliers (participants of non-European Ancestry 

inferred from the genotype covariance matrix; to avoid confounding from population 

stratification), we had total of 2093 participants with genome-wide genotype data (n=1709 

genotyped on the Affymetrix platform, and n=382 genotyped on the Illumina platform). 

Imputation was done on the 1000 Genomes Project (Phase 1b data freeze) reference panel, 

and after removing rare (MAF<0.01) or poorly imputed variants (INFO score<0.3), we 

analyzed about 7.5 million SNPs. APOE haplotypes (ε2, ε3, ε4) were derived from direct 

sequencing of APOE codons 112 and 158. Further details are available through previous 

publications (De Jager et al., 2018).

Genotype data from the Mayo RNA-Seq study is available through the AMP-AD 

KnowledgepOrtal (synapse ID: syn55504040). In the Mayo RNA-Seq study, genome-wide 

genotyping was done on the Illumina Infinium HumanOmni2.5-8 BeadChip platform (Allen 

et al., 2018a), and the two modQTL genotypes from the primary analyses (rs1054168, a 

proxy of rs1990622 (r2=0.98); rs78930980) were extracted for replication.

Neuropathological Assessment—Neuropathological phenotypes of ROSMAP 

participants were downloaded from the Rush Alzheimer’s Disease Center Resource Sharing 

Hub (https://www.radc.rush.edu/). ROSMAP participants underwent quantitative 

neuropathological assessment (Bennett et al., 2018; Bennett et al., 2012a; Bennett et al., 

2012b). Individuals with high or intermediate likelihood according to the modified National 

Institute on Aging–Reagan Institute criteria were given pathological diagnosis of AD. Mean 

percentage area of cortex occupied by amyloid-β (Aβ) was assessed with 

immunohistochemistry (one of three monoclonal antibodies: 4G8 [Covance Labs, Madison, 

WI, USA; 1:9000 dilution], 6F/3D [Dako North America, Carpinteria, CA, USA; 1:50 

dilution], or 10D5 [Elan Pharmaceuticals, San Francisco, CA, USA; 1:600 dilution]) in eight 
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regions (hippocampus, entorhinal cortex, midfrontal cortex, inferior temporal cortex, angular 

gyrus, calcarine cortex, anterior cingulate cortex, and superior frontal cortex) to derive a 

quantitative Aβ burden measure. Mean cortical density of paired helical filament tau 

(PHFtau) was assessed with immunohistochemistry using an anti-phosphotau antibody 

(AT8, targeting Ser202/ Thr205 [Thermo Fisher Scientific, Rockford, IL, USA; 1:2000 

dilution]) in the same eight regions to derive a quantitative PHFtau burden measure. TDP-43 

proteinopathy was assessed with immunohistochemistry (TAR5P-1D3, targeting 

phosphorylated TDP-43 at Ser409/Ser410 [Ascenion, Munich, Germany; 1:100 dilution]). 

The stage of TDP-43 proteinopathy was documented to capture the topographic progression 

pattern of limbic-predominant age-related TDP-43 encephalopathy neuropathologic change 

(LATE-NC) (Nag et al., 2018): stage 0=no TDP-43 proteinopathy; stage 1=amygdala only; 

stage 2=hippocampus/entorhinal cortex; stage 3=anterior temporal pole cortex; stage 

4=midtemporal cortex/orbitofrontal cortex; stage 5=middle frontal cortex. The burden of 

TDP-43 cytoplasmic inclusion was quantified by averaging a semi-quantitative six-point 

scale (0=none; 1=sparse [1–2 inclusions in a 0·25 mm2 area of greatest density within that 

region]; 2=sparse to moderate [3–5 inclusions]; 3=moderate [6–12 inclusions]; 4=moderate 

to severe [13–19 inclusions]; 5=severe [≥20 inclusions]) across six brain regions (amygdala, 

hippocampus CA1 or subiculum, dentate gyrus, entorhinal cortex, midfrontal cortex, and 

middle temporal cortex). Lewy body was detected with α-synuclein immunostain (either 

LB509 [Zymed Labs, Invitrogen, Carlsbad, CA, USA; 1:150 or 1:100 dilution] or pSyn#64 

[Wako Chemicals, Richmond, VA, USA; 1:20,000 dilution]), and whether a participant has 

neocortical Lewy bodies, that are associated with dementia (Schneider et al., 2012), were 

coded as a binary variable. Presence of chronic macroscopic and microscopic infarcts were 

recorded as binary variables. Atherosclerosis and arteriolosclerosis were recorded as four-

level severity scale variables (Arvanitakis et al., 2017). Cerebral amyloid angiopathy was 

graded on a five-point severity scale (0-4) in four neocortical regions (dorsolateral prefrontal 

cortex, angular gyrus, inferior temporal gyrus, and calcarine cortex) and averaged to create a 

semi-quantitative scale (Boyle et al., 2015).

RNA and Protein Data Acquisition—RNA-Seq data from ROSMAP (primary dataset) 

are available through the AMP-AD Knowledge Portal (synapse ID: syn3505732). In 

ROSMAP, frozen dorsolateral prefrontal cortex (DLPFC) gray matter from deceased 

ROSMAP participants was separated from white matter and vasculature, and was 

homogenized to extract RNA. For the samples that had RNA Integrity score (RIN)>5 and 

RNA quantity>5ug, next-generation RNA-Sequencing (RNA-Seq) was done on Illumina 

HiSeq platform with 101 bp paired end reads, aiming 50 million paired end reads coverage. 

Samples from n=540 participants (batches 1-6) were sequenced in the first phase (Mostafavi 

et al., 2018), and the reads were aligned to the hg19 transcriptome reference (GENCODE 

v14) using Bowtie (Langmead et al., 2009). Transcriptome outliers were removed, and 

Fragments Per Kilobase of transcript per Million mapped reads (FPKM) values were 

quantified for n=508 participants, n=494 of whom had quality-controlled genome-wide 

genotypes. We note that the average sequencing depth was 50 million reads, and all samples 

had more than 9.5 million total aligned reads. The distribution of FPKM values in each 

individual was quantile-normalized and batch-corrected. We selected 13,484 genes that have 

at least 4 reads in 100 participants for further analyses (Mostafavi et al., 2018), and linear 
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regression was applied to log2 expression data to derive residual log expression values 

controlling for age at death, sex, three principal components from genotype covariance 

matrix (PC1-3), RIN, post-mortem interval, number of ribosomal bases, number of aligned 

reads, and study (ROS vs MAP). These residual expression values were used for 

transcriptome-wide trans-eQTL analyses. In a previous study (Mostafavi et al., 2018), we 

rank-normalized the residual expression values and used SpeakEasy algorithm (Gaiteri et al., 

2015) to derive co-expression modules, resulting in 47 modules that have more than 20 gene 

members. We used this previously published module definition (Mostafavi et al., 2018) that 

was derived from the same participants as our primary dataset, and used mean values of 

rank-normalized expression of each module member genes to represent module expression, 

as previously described (Mostafavi et al., 2018). We note that each module expression had a 

near-perfect linear relationship (r2>0.99) with the first principal component of the same 

module.

In addition, we also analyzed recently re-aligned ROSMAP DLPFC RNA-Seq data (AMP-

AD Knowledge Portal, synapse ID: syn8456719) (Logsdon et al., 2019) to ensure that 

results from the primary analyses are robust to the choice of data processing methodology, 

and to provide additional replication dataset (“replication 2”) by including additional RNA-

Seq samples that were not included in the primary dataset (e.g., RNA-Seq batches 7-8). 

BAM files from the original data processing pipeline were converted to FASTQs using the 

Picard tools (http://broadinstitute.github.io/picard/), and then realigned to GRCh38 reference 

genome (GENCODE v24) using STAR aligner (Dobin et al., 2013). Gene counts were 

derived from each sample using STAR. Sample quality metrics were calculated with the 

Picard tools. Genes with less than 1 CPM (read counts per million total reads) in at least 

50% of samples per clinical diagnosis (AD, Control, Other) were removed. Sample outliers 

were removed through principal component analysis and clustering. Then, conditional 

quantile normalization was used for library normalization, to account for variations in gene 

length and GC content. Then, the data was regressed against significant covariates (that were 

correlated with gene expression principal components) including Batch, age at death, sex, 

RIN, percent coding bases, percent intergenic bases, and percent intronic bases, post mortem 

interval. The residual gene expression was used for further analysis.

Tissue TMEM106B protein quantity was measured from ROSMAP DLPFC (AMP-AD 

Knowledge Portal, synapse ID: syn10468856), using targeted liquid chromatography-

selection reaction monitoring (LC-SRM) quantitative proteomics as previously detailed (Yu 

et al., 2018), using a peptide sequence “NGLVNSEVHNEDGR” (that does not overlap with 

the common rs3173615C (S185T) variant). miRNA profile (AMP-AD Knowledge Portal, 

synapse ID: syn3387325) was measured using the Nanostring nCounter platform, and 309 

quantified miRNAs that passed quality control in a previously study (De Jager et al., 2018; 

Patrick et al., 2017) were analyzed in the current study. Further details on ROSMAP DLPFC 

multi-omics data generation are available through previous publications (De Jager et al., 

2018; Mostafavi et al., 2018; Yu et al., 2018).

In the Mayo RNA-Seq study (Allen et al., 2016; Allen et al., 2018a; Allen et al., 2018b), 

RNA-Seq was done from TCX and cerebellar samples using an Illumina platform, and 

SNAPR software (Magis et al., 2015) was used to align reads (to GRCh38 reference genome 
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and Ensmbl v77 gene models) and quantify read counts. We accessed processed TCX RNA-

Seq data (see Key Resources Table) for replication analyses. Residual expression values 

were taken from a linear model adjusted for age at death, sex, RIN, sequencing flow cell, 

and brain bank tissue source. Then, we imposed the same module definition as the primary 

ROSMAP dataset, and derived module expression (mean expression of module member 

genes) of the five modules that had significant module-SNP association in the primary 

analyses. Further details on the Mayo RNA-Seq study procedures are available through 

previous publications (Allen et al., 2016; Allen et al., 2018a; Allen et al., 2018b).

QUANTIFICATION AND STATISTICAL ANALYSIS

All statistical analyses were done in R, version 3.3, unless otherwise specified. Of note, we 

used Bonferroni correction to account for multiple testing in the initial GWAS, where we 

aimed to have a pre-specified p-value threshold. All other analyses requiring multiple testing 

corrections used FDR<0.05 as the statistical significance threshold.

In primary modQTL analysis in ROSMAP (DLPFC RNA-Seq), 47 GWAS were performed 

to identify modQTLs for each module expression, using linear regression using imputed 

SNP dosages, assuming additive models. Here, we only adjusted for genotyping platforms, 

as module expression is the mean of each module member gene expression level that is 

already extensively adjusted for demographic and technical covariates including genotype 

PC1-3, as noted above. We used Bonferroni-corrected significance threshold of 

p=5.0×10−8/47=1.1×10−9 to determine significant modQTLs, and also identified suggestive 

modQTLs that reached a genome-wide significance threshold for a single GWAS 

(p=5.0×10−8) but did not meet the study-wise significance threshold (p=1.1×10−9). 

LocusZoom (Pruim et al., 2010) was used to draw regional genetic association plots. A 

candidate gene for each significant modQTL was identified using previous literature and 

positional proximity. We used HaploReg v4.1 database (Ward and Kellis, 2012) and 1000 

Genomes Project Phase 1 EUR reference panel (The 1000 Genomes Project Consortium, 

2012) to assess the LD structure among the identified top SNPs in the TMEM106B locus. 

Given tight LD of all TMEM106B top SNPs with rs1990622A, a previously reported 

TDP-43 proteinopathy risk locus (Van Deerlin et al., 2010; Yu et al., 2015), we used 

rs1990622A dosage for the follow-up analyses of the TMEM106B modQTL. Conditional 

analyses of modQTLs were performed, controlling for the top modQTL or its proxy 

(rs1990622A for the TMEM106B modQTLs), and the result for the candidate gene ± 250 kb 

region were plotted with LocusZoom. The modQTL replication 1 analyses were performed 

for significant modQTLs discovered in the primary analysis, using the Mayo RNAseq study 

TCX data (n=185). Replication 2 analyses were performed for rs1990622A in the re-

processed ROSMAP DLPFC RNA-Seq data from samples that do not overlap with the 

primary dataset (n=89).

Given the observed dominant effect of rs1990622A on module expression, we used dominant 

model for all follow-up analyses with rs1990622A. All individual gene expression data used 

for follow-up analyses are log2 residual expression values controlling for age at death, sex, 

three principal components from genotype covariance matrix (PC1-3), RIN, post-mortem 

interval, number of ribosomal bases, number of aligned reads, and study (ROS vs MAP).
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Association between rs1990622A and ROSMAP DLPFC TMEM106B gene expression was 

assessed using linear model controlling for genotyping platform. An R package “mediation” 

(Tingley et al., 2014) was used to assess mediation of the rs1996022A modQTL effect 

through TMEM106B gene expression. Mediation analyses were done with nonparametric 

bootstrap with 10,000 simulations, having rs1990622A carrier status as the binary 

independent variable, TMEM106B expression as the continuous mediator, and the module 

expression as the continuous outcome variable. We controlled for genotyping platform in all 

models. We reported estimated average causal mediated effect (“effect mediated by cis-

eQTL”), estimated average direct effect (“direct genetic effect”), and estimated proportion 

mediated (“mediated proportion”). Association between rs1990622A and ROSMAP DLPFC 

TMEM106B protein level was assessed by a linear model, in a subset of the primary dataset 

(ROSMAP) with genotypes and the TMEM106B protein measure (n=435): we used batch-

adjusted z-score of the protein quantity as an outcome variable, and the analysis was 

adjusted for age at death, sex, genotyping platform, and PC1-3.

Trans-eQTL associations of rs1990622A with 13,484 genes expressed in DLPFC that pass 

our QC measures (Mostafavi et al., 2018) were assessed using linear models controlling for 

genotyping platform, and FDR<0.05 was used as a statistical significance threshold. Gene 

Ontology (GO) term enrichment visualization was performed using WebGestalt (Liao et al., 

2019), using Gene Set Enrichment Analysis (Subramanian et al., 2005) (using t-values from 

each trans-eQTL to weigh and rank genes) with the following options: Gene Ontology 

Biological Process noRedundant, minimum number of IDs in the category: 5, maximum 

number of IDs in the category: 2000, significance Level: FDR < 0.05, number of 

permutation: 1000, and weighted set cover (Golab et al., 2015) for top 10 genes. 

Visualization from top 10 weighted set cover In addition, we selected Kyoto Encyclopedia of 

Genes and Genomes (KEGG) pathways from the TMEM106B/GRN/TDP-43 literature 

(Klein et al., 2017; Nicholson and Rademakers, 2016; Paushter et al., 2018), and 

summarized up-regulated and down-regulated genes from each pathway in rs1990622A 

carriers.

We calculated mean intron length from the longest transcripts of each gene per the GRCh37 

reference genome, and assessed its relationship with rs1990622A-associated gene expression 

changes. We excluded genes with mean intron length of less than 30 bp (a minimum intron 

length in human genome (Piovesan et al., 2015)), and log10-transformed the mean intron 

length before analysis given its positively skewed distribution. Then, we used the differential 

splicing analysis feature of an R package “leafcutter” (Li et al., 2018) to assess trans-

splicing QTL (trans-sQTL) associations. Among 35,855 ROSMAP DLPFC intron clusters 

that were previously reported from n=450 ROSMAP participants (Raj et al., 2018), 33,002 

clusters were within the 13,484 genes analyzed in our study. We set rs1990622A carrier 

status (binary) as a condition to assess differential splicing, and controlled age at death, sex, 

genotyping platform, PC1-3, RNA-Seq batch, RIN, and post-mortem interval. Differential 

splicing was successfully assessed for 15,472 intron clusters, and we applied a statistical 

significance threshold of FDR<0.05. Intron clusters that showed significant different usage 

rate were mapped to genes to enlist differentially spliced genes, and the resulting gene list 

was assessed for GO term overrepresenation using WebGestalt (Liao et al., 2019). We used 
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the leafcutter Shiny application (leafviz) to illustrate an example differential splicing gene, 

DLG4.

Cis-eQTL, modQTL, and trans-eQTL of rs850737C were calculated using the same analytic 

strategy as rs1990622A, but using rs850737C dosage as an independent variable (additive 

model). We correlated modQTL and trans-eQTL effect size (β-coefficient from linear 

regression models) of rs850737C dosage with that of rs1990622A carrier status using 

Pearson correlation.

We used RNA-estimated (per Digital Sorting Algorithm (DSA)) and immunohistochemistry 

(IHC)-measured ROSMAP DLPFC cell type proportions from a previous study (Patrick et 

al., 2019) to examine whether modQTL association can be explained by changes in cell type 

proportion in ROSMAP. As detailed in a previous study (Patrick et al., 2019), RNA-

estimated cell type proportions are calculated using up to 100 markers per cell type, and IHC 

cell type assignment was based on the following markers: NeuN (neurons), GFAP 

(astrocytes), Iba1 (microglia), Olig2 (oligodendrocytes) and PECAM-1 (endothelial cells). 

To assess whether previously reported association between rs1990622A and RNA-inferred 

cell type proportions are due to actual cell type proportion change, we assessed and 

compared the associations of rs1990622A carrier status with both RNA-inferred and IHC-

measured cell type. We used linear regression models, in a subset of participants with IHC-

measured cell type proportions: either a measured or inferred cell type proportion was a 

dependent variable, rs1990622A carrier status was an independent variable, and we adjusted 

for genotyping platform. Then, we analyzed whether cell type proportion confounded the 

modQTL association, by testing the modQTL association while adjusting for the IHC-

measured cell type proportions.

Association of modQTLs with miRNAs were tested with linear regression models: miRNA 

level was a dependent variable, a modQTL allele (either rs1990622A carrier status or 

rs78930980G dosage) was an independent variable, and we controlled age at death, sex, 

RIN, post-mortem interval, genotyping platform, and PC1-3. FDR<0.05 was used as a 

statistical significance threshold.

A set of sensitivity analyses was performed to rule out technical biases specific to front-end 

RNA-Seq data processing procedure: we performed modQTL and trans eQTL analyses of 

the significant modQTLs from the primary analyses, using the reprocessed ROSMAP 

DLPFC RNA-Seq data from the same participants as the primary dataset, and compared the 

results with our primary analyses. We performed another set of sensitivity analyses 

excluding trans-genes with sequence similarities with cis-genes, to exclude possible 

misalignment-driven trans-eQTL results. Genes with sequence similarities were defined as 

all genes that share one or more short sequences (75 bp from an exon, 36 bp from a 3’-UTR) 

with a given gene, per a published resource (Saha and Battle, 2018). We analyzed the trans-

eQTL results excluding all genes with sequence similarities with any gene within 1 Mb from 

a given SNP. Then, to examine whether our results were driven by unmeasured confounders, 

we derived 10 surrogate variables (SVs) conditioned on the rs1990622A allele carrier status 

using the R “sva” package (Leek et al., 2019; Leek and Storey, 2007). We examined whether 

adjusting these SVs change the rs1990622A modQTL and trans-eQTL associations. Of note, 
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we did not assess the RBFOX1 rs78930980 locus with SV analysis given that we had only 

17 minor allele carriers.

Association of rs1990622 and rs850737 with LATE-NC burden (captured by a global semi-

quantitative TDP-43 measure) was assessed in an extended dataset that include all deceased 

ROSMAP participants of European descents with genotype and TDP-43 proteinopathy 

assessment, controlling for age at death, sex, genotyping platform, and PC1-3. Correlation of 

each rs1990622-associated module with LATE-NC stage was tested through Spearman 

correlation, and Pearson correlation between each module expression and LATE-NC burden 

was also assessed. Mediation analyses were done with nonparametric bootstrap with 10,000 

simulations, having either rs1990622A carrier status or APOE ε4 carrier status as the binary 

independent variable. We first set m110 expression as the continuous mediator, and 

quantitative neuropathology (Aβ for the APOE ε4 model, LATE-NC burden for the 

rs1990622A model) as the continuous outcome variable. Then, we repeated the analysis 

switching the mediator and the outcome, to determine a more plausible direction of causal 

mediation. We controlled for age at death, sex, genotyping platform, and PC1-3 in all 

models. Then, based on the mediation analyses results and literature, we set the following 

model for a structural equation modeling (SEM) through the R “lavaan” package:

Aβ ∼ β0 + β1 × (APOE ε4 allele count) + β2 × (age at death) + β3 × (sex)

m110 ∼ β0 + β1 × (rs1990622A carrier status) + β2 × (Aβ)

LATE‐NC burden ∼ β0 + β1 × (m110) + β2 × (Aβ) + β3 × (APOE ε4 allele count) + β4 × (age at death)
+ β5 × (sex)

Model fit of the SEM was assess with multiple metrics including chi-square, comparative fit 

index (CFI), Tucker Lewis Index (TLI), and root mean square error of approximation 

(RMSEA).

We captured resilience to neuropathology with residual cognition, a quantitative trait defined 

in this study as a residual from a linear model with global cognition as the outcome and Aβ, 

PHF-tau, macroscopic/microscopic infarcts, atherosclerosis, arteriolosclerosis, cerebral 

amyloid angiopathy, neocortical Lewy body, TDP-43 proteinopathy burden, age at death, 

sex, and education as predictors. Then, Pearson correlation was used to test association of 

residual cognition with each rs1990622-associated module. We performed mediation 

analysis (R “mediation” package; nonparametric bootstrap with 10,000 simulations) with 

rs1990622A carrier status as a binary independent variable, a module expression as a 

continuous mediator, and residual cognition as a continuous outcome, while adjusting for 

genotyping platform and PC1-3.
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Cis-eQTL, trans-eQTL, and trans-sQTL associations of rs78909380G were calculated using 

the same analytic strategy as rs1990622A, using rs78909380G dosage as an independent 

variable.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Genome-wide screen identifies regulators of aging brain gene co-expression 

modules

• TMEM106B and GRN variants show coordinated effects on aging brain 

transcriptome

• TMEM106B-regulated myelination/lysosomal genes connect amyloid-β and 

TDP-43

• An RBFOX1 variant upregulates innate immunity genes in the aging human 

brain
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Figure 1. Module quantitative trait loci (ROSMAP).
Summary of the genome-wide association studies (GWAS) of gene co-expression module 

levels in the primary dataset (ROSMAP DLPFC, n=494). The circos plot displays five 

independent Manhattan plots: each colored sector represents a Manhattan plot summarizing 

the GWAS result for a module that had a significant modQTL. Outer (red) dotted circle 

indicates the Bonferroni-corrected p-value threshold for genome-wide significance, 

considering 47 independent GWAS we conducted, each for one of the 47 ROSMAP DLPFC 

modules. Inner (blue) dotted circle indicates genome-wide threshold for a single GWAS 

(p=5×10−8). Top association SNP is noted for each module, and the candidate gene 

corresponding to each SNP is noted in parenthesis. We note that four TMEM106B SNPs are 

in the same haplotype with rs1990622 (D’=0.99 to 1, r2=0.95 to 0.98).
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Figure 2. The TMEM106B locus harbors multiple modQTL, trans-eQTL, and trans-sQTL 
effects.
(A) Dominant effect of rs1990622A on m110 expression. Violin plot shows the distribution 

of module expression level (y-axis) in relation to rs1990622A allele count (x-axis). The 

upper edges of the boxes are the 75th percentiles, and the middle horizontal lines are 

medians, and the lower edges are 25th percentiles. The whiskers of the boxes extend to the 

maximum and minimum values, but no further than 1.5 × interquartile range. See Figure 

S3A for m16-18.

(B) TMEM106B expression level (x-axis) does not modify the strength of the association 

between rs1990622A carrier status (red: yes, blue: no) and m110 expression (y-axis). Solid 

colored line is a fitted linear regression line for each rs1990622A carrier status, and shaded 

regions indicate 95% confidence interval for the regression line. See Figure S3B for m16-18.

(C) Volcano plot from the transcriptome-wide trans-eQTL analysis of rs1990622A 

(dominant model) shows n=4,170 upregulated genes and n=3,360 downregulated genes at 

FDR<0.05 (indicated by the black horizontal line). x-axis indicates log 2 fold change in gene 

expression, and y-axis is −log10 p-value. Observed extensive trans-eQTL association was not 

limited to the genes in the modQTL-associated modules (blue: m16/m/17/m18, red: m110).
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(D) Top 10 enriched GO terms (all FDR<0.05) of the rs1990622A trans-eQTLs (dominant 

model).

(E) Schematic summary of selected upregulated and downregulated KEGG pathways. See 

Table S7 for the list of genes from each pathway that are up/downregulated.

(F) Top 10 overrepresented GO terms (all FDR<0.05) among the genes differentially spliced 

according to rs1990622A carrier status (trans-sQTL). See Table S8 for the full list of 

differentially spliced genes.

(G) DLG4 is an example gene that has a trans-sQTL association with rs1990622A. 

Differential intron usage at cluster 6185 (toward the 3’-end of DLG4) is shown.

CLEAR, Coordinated Lysosomal Expression and Regulation network; dPSI, delta percent 

spliced in; KEGG, Kyoto Encyclopedia of Genes and Genomes; v-ATPase, vacuolar-

ATPase.
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Figure 3. Concordant and synergistic modQTL effects between rs850737C (GRN) and 
rs1990622A (TMEM106B).
(A and B) rs850737C and rs1990622A show highly correlated modQTL (A) and trans-eQTL 

(B) effects. m16-18 and their gene members are indicated by blue color, and m110 and its 

gene members are indicated by red color. The gray dots are other modules or genes.

(C) Each panel shows module expression of m16, m17, m18, and m110 (y-axis; each dot 

representing each participant) according to rs1990622A carrier status (blue dots – non-

carrier, red dots – carrier) and rs850737C allele count (x-axis). Blue and red lines capture 

mean module expression of rs1990622A non-carriers and carriers, respectively, at a given 

rs850737C allele count (with 95% confidence interval indicated by gray color). FDR for 

epistasis between rs1990622A carrier status and rs850737C dosage are indicated (FDRint; 

adjusted across four analyses displayed in the figure), showing significant epistasis between 

TMEM106B and GRN SNPs for m16 and m110. For full results of epistasis analysis, see 

Table S10.

Yang et al. Page 31

Neuron. Author manuscript; available in PMC 2021 August 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. Clinical implications of the rs1990622A modQTL.
(A) Bidirectional mediation models (nonparametric bootstrap with 10,000 simulations) 

testing the relationship of m110 and LATE-NC (TDP-43) burden with rs1990622A. The 

model assuming m110 as a mediator showed significant mediation (upper diagram, red box), 

while an alternative model did not (lower diagram).

(B) Bidirectional mediation models testing the relationship of m110 and Aβ burden with 

APOE ε4. The model having Aβ as a mediator showed significant mediation (lower 

diagram, red box), while an alternative model did not (upper diagram).

(C) A structural equation modeling of APOE/Aβ and TMEM106B-related pathways for 

LATE-NC pathogenesis. The analyses were conducted in 420 ROSMAP participants with 

non-missing data and were adjusted for age at death and sex. Model fit metrics (left lower 

corner) indicate excellent model fit.

(D and E) m18 (D) and m110 (E) mediate the association between rs1990622A and residual 

cognition. APOE ε4, APOE ε4 carrier status; CFI, comparative fit index; Nobs=number of 

participants; RMSEA, root mean square error of approximation; rs1990622A, rs1990622A 

carrier status; TLI, Tucker Lewis index.
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Figure 5. RBFOX1 rs78930980 modQTL and trans-eQTL.
(A) modQTL association between rs78930980G and m234. There was no rs78930980G 

homozygote in ROSMAP. Violin plot shows the distribution of module expression level (y-

axis) in relation to rs78930980G allele count (x-axis). The upper edges of the boxes are the 

75th percentiles, and the middle horizontal lines are medians, and the lower edges are 25th 

percentiles. The whiskers of the boxes extend to the maximum and minimum values, but no 

further than 1.5 × interquartile range.

(B) Lower RBFOX1 expression is associated with higher m234 expression. Pearson’s r and 

p-value are indicated in the label. Solid line is a fitted linear regression line, and shaded 

regions indicate 95% confidence interval for the regression line.

(C) Volcano plot from the transcriptome-wide trans-eQTL analysis of rs78930980G shows 

n=547 upregulated genes and n=537 downregulated genes at FDR<0.05 (indicated by the 

black horizontal line). x-axis indicates log 2 fold change in gene expression, and y-axis is 

−log10 p-value. M234 genes are indicated in red dots.

(D) Top 10 enriched GO terms (all FDR<0.05) of the rs78930980G trans-eQTLs.
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Table 1.
ModQTLs.

Significantly associated modQTLs from the primary discovery analyses in ROSMAP, with replication analyses 

in the Mayo RNAseq study (replication 1) and additional ROSMAP participants (replication 2). aMost 

enriched cell type” for each module indicates the cell type that has a gene expression profile with highest 

median rank of expression for each module’s gene members, and points to a cell type that best reflects 

coherent clustering of each module, as detailed in Mostafavi et al., 2018. It should be noted that the most 

enriched cell type for each module does not indicate absolute cell-type specificity of the gene members, and 

only serves as a relative indicator. bAuthor summary of enriched gene ontology (GO) terms. See table S3 for 

the full list. cAssociation statistics for a proxy allele, rs1054168C (r2=0.98 with rs1990622A), is shown for 

modules 16, 17, 18, and 110. Chr, chromosome; NA, not applicable; Pos, position per the hg19 reference.

Module Module Characteristics
(Size; most enriched cell

typea; enriched pathwaysb)

SNP
Chr:Pos

(LD r2 with
rs1990622A)

Primary:
ROSMAP

(n=494)
Beta (95% CI), P

Replication 1:
Mayo RNAseqc

(n=185)
Beta (95% CI),

P

Replication 2:
ROSMAP

(n=89)
Beta (95% CI),

P

16 352 genes; Glutamatergic; 
Trans-synaptic signaling, ion 

channels, dendrite

rs12669919G

Chr7:12271997
(0.98)

−0.013
(−0.017 to −0.010), 

p=4.9×10−13

−0.22
(−0.37 to −0.07), 

p=5.1×10−3

−0.31
(−0.49 to −0.13), 

p=1.2×10−3

17 338 genes; Glutamatergic; No 
enriched GO terms

rs7797705G

Chr7:12277773
(0.98)

−0.011
(−0.014 to −0.008), 

p=3.3×10−12

−0.16
(−0.27 to −0.05), 

p=5.9×10−3

−0.25
(−0.40 to −0.11), 

p=7.3×10−4

18 241 genes; GABAergic;
No enriched GO terms

rs13230513C

Chr7:12268243
(0.97)

−0.012
(−0.015 to −0.009), 

p=1.9×10−13

−0.19
(−0.30 to −0.08), 

p=6.0×10−4

−0.091
(−0.22 to 0.035),

p=0.16

110 348 genes; Oligodendrocyte; 
Myelination

rs7804736G

Chr7:12266867
(0.95)

0.011
(0.007 to 0.014), 

p=5.0×10−10

0.12
(−0.04 to 0.28), p=0.14

0.28
(0.13 to 0.43), 

p=5.2×10−4

234 30 genes; Microglia; RNA 
helicase activity

rs78930980G

Chr16:7131924
(NA)

0.040
(0.028 to 0.052), 

p=7.6×10−11

0.41
(0.02 to 0.80), p=0.041

NA
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited Data

ROSMAP phenotype data (cognition, 
neuropathology)

Bennett et al., 2018, Bennett et al., 2012a, 
Bennett et al., 2012b

https://www.radc.rush.edu/

ROSMAP genotypes (imputed) De Jager et al., 2018 https://doi.org/10.7303/syn3157329

ROSMAP gene co-expression networks Mostafavi et al., 2018 https://doi.org/10.7303/syn7169817

ROSMAP DLPFC RNA-Seq (primary 
dataset)

De Jager et al., 2018 https://doi.org/10.7303/syn3505732.2

ROSMAP DLPFC RNA-Seq 
(reprocessed data; primary + replication 
2)

De Jager et al., 2018, Logsdon et al., 2019 https://doi.org/10.7303/syn8456719.21

ROSMAP DLPFC LC-SRM proteomics 
(TMEM106B protein quantification)

De Jager et al., 2018 https://doi.org/10.7303/syn10468856

ROSMAP DLPFC miRNA De Jager et al., 2018 https://doi.org/10.7303/syn3387325

Mayo RNA-Seq Study genotypes 
(imputed)

Allen et al., 2016, Allen et al., 2018a; Allen et 
al., 2018b

https://doi.org/0.7303/syn8650955

Mayo RNA-Seq Study temporal cortex 
RNA-Seq (replication 1)

Allen et al., 2016, Allen et al., 2018a; Allen et 
al., 2018b

https://doi.org/10.7303/syn3163039

Software and Algorithms

R (version 3.3) The R Foundation https://cran.r-project.org/

Bowtie Langmead et al., 2009 http://bowtie-bio.sourceforge.net/index.shtml

SpeakEasy Gaiteri et al., 2015 http://www.cs.rpi.edu/~szymansk/SpeakEasy/
index.html

Picard tools The Broad Institute https://broadinstitute.github.io/picard/

STAR Dobin et al., 2013 https://github.com/alexdobin/STAR

SNAPR Magis et al., 2015 https://github.com/PriceLab/snapr

LocusZoom Pruim et al., 2010 http://locuszoom.org/

HaploReg v4.1 Ward and Kellis, 2012 https://pubs.broadinstitute.org/mammals/
haploreg/haploreg.php

Mediation (R package) Tingley et al., 2014 https://cran.r-project.org/web/packages/
mediation/

Leafcutter (R package) Li et al., 2018 https://github.com/davidaknowles/leafcutter

sva (R package) Leek et al., 2019, Leek and Storey, 2007 https://bioconductor.org/packages/release/bioc/
html/sva.html
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